

 [image: Java Network Programming, 3rd Edition]

 Java Network Programming, 3rd Edition

Elliotte Rusty Harold

Editor
Mike Loukides

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596007218/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

Java's growth over the last 10 years has been nothing short of
 phenomenal. Given Java's rapid rise to prominence and the even more
 spectacular growth of the Internet, it's a little surprising that network
 programming in Java is still so mysterious to so many. It doesn't have to
 be. In fact, writing network programs in Java is quite simple, as this
 book will show. Readers with previous experience in network programming in
 a Unix, Windows, or Macintosh environment should be pleasantly surprised
 at how much easier it is to write equivalent programs in Java. The Java
 core API includes well-designed interfaces to most network features.
 Indeed, there is very little application-layer network software you can
 write in C or C++ that you can't write more easily in Java. Java
 Network Programming, 3rd Edition endeavors to show you how to
 take advantage of Java's network class library to quickly and easily write
 programs that accomplish many common networking tasks. Some of these
 include:
	Browsing the Web with HTTP

	Parsing and rendering HTML

	Sending email with SMTP

	Receiving email with POP and IMAP

	Writing multithreaded servers

	Installing new protocol and content handlers into
 browsers

	Encrypting communications for confidentiality, authentication,
 and guaranteed message integrity

	Designing GUI clients for network services

	Posting data to server-side programs

	Looking up hosts using DNS

	Downloading files with anonymous FTP

	Connecting sockets for low-level network communication

	Distributing applications across multiple systems with Remote
 Method Invocation

Java is the first language to provide such a powerful cross-platform
 network library, which handles all these diverse tasks. Java
 Network Programming exposes the power and sophistication of
 this library. This book's goal is to enable you to start using Java as a
 platform for serious network programming. To do so, this book provides a
 general background in network fundamentals, as well as detailed
 discussions of Java's facilities for writing network programs. You'll
 learn how to write Java programs that share data across the Internet for
 games, collaboration, software updates, file transfer, and more. You'll
 also get a behind-the-scenes look at HTTP, SMTP, TCP/IP, and the other
 protocols that support the Internet and the Web. When you finish this
 book, you'll have the knowledge and the tools to create the next
 generation of software that takes full advantage of the Internet.
About the Third Edition

In 1996, in the first chapter of the first edition of this book, I
 wrote extensively about the sort of dynamic, distributed network
 applications I thought Java would make possible. One of the most
 exciting parts of writing subsequent editions has been seeing virtually
 all of the applications I foretold come to pass. Programmers are using
 Java to query database servers, monitor web pages, control telescopes,
 manage multiplayer games, and more, all by using Java's native ability
 to access the Internet. Java in general and network programming in Java
 in particular has moved well beyond the hype stage and into the realm of
 real, working applications. Not all network software is yet written in
 Java, but it's not for a lack of trying. Efforts are well under way to
 subvert the existing infrastructure of C-based network clients and
 servers with pure Java replacements. Clients for newer protocols like
 Gnutella and Freenet are preferentially written in Java. It's unlikely
 that Java will replace C for all network programming in the near future.
 However, the mere fact that many people are willing to use web browsers,
 web servers, and more written in Java shows just how far we've come
 since 1996.
This book has come a long way, too. The third edition has one
 completely new chapter to describe the most significant development in
 network programming since readers and writers were introduced in Java
 1.1. I refer of course to the new I/O APIs in the java.nio package. The ability to perform
 asynchronous, non-blocking I/O operations is critical for
 high-performance network applications, especially servers. It removes
 one of the last barriers to using Java for network servers. Many other
 chapters have been updated to take advantage of these new I/O
 APIs.
There've been lots of other small changes and updates throughout
 the java.net and supporting packages
 in Java 1.4 and 1.5, and these are covered here as well. New classes
 addressed in this edition include CookieHandler, SocketAddress, Proxy, NetworkInterface, and URI. IPv6 has become a reality, and is now
 covered extensively. Many other methods have been added to existing
 classes in the last two releases of Java, and these are discussed in the
 relevant chapters. I've also rewritten large parts of the book to
 reflect changing fashions in Java programming in general and network
 programming in particular. Applets and CGI programs are emphasized much
 less. In their place, you'll find more generic discussion of remote code
 execution and server-side environments, however implemented.
Of course, the text has been cleaned up, too. There's only one
 completely new chapter here, but the 18 existing chapters have been
 extensively rewritten and expanded to bring them up-to-date with new
 developments as well as to make them clearer and more engaging. I hope
 you'll find this third edition an even stronger, longer-lived, more
 accurate, and more enjoyable tutorial and reference to network
 programming in Java than the last edition.

Organization of the Book

This book begins with three chapters that outline how networks and
 network programs work. Chapter 1,
 is a gentle introduction to network programming in Java and the
 applications it makes possible. All readers should find something of
 interest in this chapter. It explores some of the unique programs that
 become feasible when networking is combined with Java. Chapter 2, and Chapter 3, explain in detail what a
 programmer needs to know about how the Internet and the Web work. Chapter 2 describes the protocols that
 underlie the Internet, such as TCP/IP and UDP/IP. Chapter 3 describes the standards that
 underlie the Web, such as HTTP, HTML, and REST. If you've done a lot of
 network programming in other languages on other platforms, you may be
 able to skip these two chapters.
The next two chapters throw some light on two parts of Java
 programming that are critical to almost all network programs but are
 often misunderstood and misused, I/O and threading. Chapter 4, explores Java's classic I/O
 models which, despite the new I/O APIs, aren't going away any time soon
 and are still the preferred means of handling input and output in most
 client applications. Understanding how Java handles I/O in the general
 case is a prerequisite for understanding the special case of how Java
 handles network I/O. Chapter 5,
 explores multithreading and synchronization, with a special emphasis on
 how they can be used for asynchronous I/O and network servers.
 Experienced Java programmers may be able to skim or skip these two
 chapters. However, Chapter 6, is
 essential reading for everyone. It shows how Java programs interact with
 the domain name system through the InetAddress class, the one class that's needed
 by essentially all network programs. Once you've finished this chapter,
 it's possible to jump around in the book as your interests and needs
 dictate. There are, however, some interdependencies between specific
 chapters. Figure P-1 should allow you to map out possible paths through
 the book.
[image: Chapter prerequisites]

Figure P-1. Chapter prerequisites

Chapter 7, URLs and
 URIs, explores Java's URL
 class, a powerful abstraction for downloading information and files from
 network servers of many kinds. The URL class enables you to connect to and
 download files and documents from a network server without concerning
 yourself with the details of the protocol the server speaks. It lets you
 connect to an FTP server using the same code you use to talk to an HTTP
 server or to read a file on the local hard disk.
Once you've got an HTML file from a server, you're going to want
 to do something with it. Parsing and rendering HTML is one of the most
 difficult challenges network programmers can face. Chapter 8, introduces some little known
 classes for parsing and rendering HTML documents that take this burden
 off your shoulders and put it on Sun's.
Chapter 9 through Chapter 11 discuss Java's low-level
 socket classes for network access. Chapter
 9, introduces the Java sockets API and the Socket class in particular. It shows you how
 to write network clients that interact with TCP servers of all kinds
 including whois, finger, and HTTP. Chapter 10, shows you how to use the
 ServerSocket class to write servers
 for these and other protocols in Java. Chapter 11, shows you how to protect
 your client server communications using the Secure Sockets Layer (SSL)
 and the Java Secure Sockets Extension (JSSE).
Chapter 12, covers the new
 I/O APIs introduced in Java 1.4. These APIs were specifically designed
 for network servers. They enable a program to figure out whether a
 connection is ready before it tries to read from or write to the socket.
 This allows a single thread to manage many different connections
 simultaneously, thereby placing much less load on the virtual machine.
 The new I/O APIs don't help much for small servers or clients that don't
 open many simultaneous connections, but they provide huge performance
 boosts for high volume servers that want to transmit as much data as the
 network can handle as fast as the network can deliver it.
Chapter 13, introduces the
 User Datagram Protocol (UDP) and the associated DatagramPacket and DatagramSocket classes that provide fast,
 unreliable communication. Finally, Chapter 14, shows you how to use UDP to
 communicate with multiple hosts at the same time. All the other classes
 that access the network from Java rely on the classes described in these
 five chapters.
Chapter 15 through Chapter 17 look more deeply at the
 infrastructure supporting the URL
 class. These chapters introduce protocol and content handlers, concepts
 unique to Java that make it possible to write dynamically extensible
 software that automatically understands new protocols and media types.
 Chapter 15, describes the class
 that serves as the engine for the URL
 class of Chapter 7. It shows you
 how to take advantage of this class through its public API. Chapter 16, also focuses on the URLConnection class but from a different
 direction; it shows you how to subclass this class to create handlers
 for new protocols and URLs. Finally, Chapter 17, explores Java's somewhat
 moribund mechanism for supporting new media types.
Chapter 18 and Chapter 19 introduce two unique
 higher-level APIs for network programs, Remote Method Invocation (RMI)
 and the JavaMail API. Chapter 18,
 introduces this powerful mechanism for writing distributed Java
 applications that run across multiple heterogeneous systems at the same
 time while communicating with straightforward method calls just like a
 nondistributed program. Chapter
 19, acquaints you with this standard extension to Java, which
 offers an alternative to low-level sockets for talking to SMTP, POP,
 IMAP, and other email servers. Both of these APIs provide distributed
 applications with less cumbersome alternatives to lower-level
 protocols.

Who You Are

This book assumes you are comfortable with the Java language and
 programming environment, in addition to object-oriented programming in
 general. This book does not attempt to be a basic language tutorial. You
 should be thoroughly familiar with the syntax of Java. You should have
 written simple applications and applets. You should also be comfortable
 with basic AWT and Swing programming. When you encounter a topic that
 requires a deeper understanding for network programming than is
 customary—for instance, threads and streams—I'll cover that topic as
 well, at least briefly.
You should also be an accomplished user of the Internet. I will
 assume you know how to FTP files and visit web sites. You should know
 what a URL is and how you locate one. You should know how to write
 simple HTML and be able to publish a home page that includes Java
 applets, although you do not need to be a super web designer.
However, this book doesn't assume that you have prior experience
 with network programming. You should find it a complete introduction to
 networking concepts and network application development. I don't assume
 that you have a few thousand networking acronyms (TCP, UDP, SMTP, etc.)
 at the tip of your tongue. You'll learn what you need to know about
 these here. It's certainly possible that you could use this book as a
 general introduction to network programming with a socket-like
 interface, and then go on to learn WSA (the Windows Socket Architecture)
 and figure out how to write network applications in C++. But it's not
 clear why you would want to: as I said earlier, Java lets you write very
 sophisticated applications with ease.

Java Versions

 Java's network classes have changed a lot more slowly
 since Java 1.0 than other parts of the core API. In comparison to the
 AWT or I/O, there have been almost no changes and only a few additions.
 Of course, all network programs make extensive use of the I/O classes
 and many make heavy use of GUIs. This book is written with the
 assumption that you and your customers are using at least Java 1.1. In
 general, I use Java 1.1 features like readers and writers and the new
 event model freely without further explanation.
Java 2 is a bit more of a stretch. Although I wrote almost this
 entire book using Java 2, and although Java 2 has been available for
 most platforms for several years, no Java 2 runtime or development
 environment is yet available for MacOS 9. It is virtually certain that
 neither Apple nor Sun will ever port any version of Java 2 to
 MacOS 9.x or earlier, thus effectively locking out 60% of the current
 Mac-installed base from future developments. This is not a good thing
 for a language that claims to be "write once, run anywhere."
 Furthermore, Microsoft's Java virtual machine supports Java 1.1 only
 and does not seem likely to improve in this respect for the foreseeable
 future. Thus, while I have not shied away from using Java 2-specific
 features where they seemed useful or convenient—for instance, the ASCII
 encoding for the InputStreamReader
 and the keytool program—I have been
 careful to point out my use of such features. Where 1.1 safe
 alternatives exist, they are noted. When a particular method or class is
 new in Java 1.2 or later, it is noted by a comment following its
 declaration like this:
public void setTimeToLive(int ttl) throws IOException // Java 1.2
To further muddy the waters, there are multiple versions of Java
 2. At the time this book was completed, the current release was the
 "Java™ 2 SDK, Standard Edition, v 1.4.2_05". At least that's what it was
 called then. Sun seems to change names at the drop of a marketing
 consultant. In previous incarnations, this is what was simply known as
 the JDK. Sun also makes available the "Java™ 2 Platform, Enterprise
 Edition (J2EE©)" and "Java™ 2 Platform, Micro Edition (J2ME©)". The
 Enterprise Edition is a superset of the standard edition that adds
 features like the Java Naming and Directory Interface and the JavaMail
 API that provide high-level APIs for distributed applications. Most of
 these additional APIs are also available as extensions to the standard
 edition, and will be so treated here. The Micro Edition is a subset of
 the standard edition targeted at cell phones, set-top boxes, and other
 memory, CPU, and display-challenged devices. It removes a lot of the GUI
 APIs programmers have learned to associate with Java, although
 surprisingly it retains many of the basic networking and I/O classes
 discussed in this book. Finally, when this book was about half complete,
 Sun released a beta of the "Java™ 2 SDK, Standard Edition, v1.5". This
 added a few pieces to the networking API, but left most of the existing
 API untouched. Over the next few months Sun released several more betas
 of JDK 1.5. The finishing touches were placed on this book and all the
 code tested with JDK 1.5 beta 2. You shouldn't have any trouble using
 this book after 1.5 is released. With any luck at all, discrepancies
 between the final specification and what I discuss here will be quite
 minor.
To be honest, the most annoying problem with all these different
 versions and editions was not the rewriting they necessitated. It was
 figuring out how to identify them in the text. I simply refuse to write
 Java™ 2 SDK, Standard Edition, v1.3 or even
 Java 2 1.3 every time I want to point out a new
 feature in the latest release of Java. I normally simply refer to Java
 1.1, Java 1.2, Java 1.3, Java 1.4, and Java 1.5. Overall, though, the
 networking API seems fairly stable. Java 1.1 through Java 1.3 are very
 similar, and there are a few only major additions in Java 1.4 and 1.5.
 Very little of the post-1.0 networking API has been deprecated.

About the Examples

Most methods and classes described in this book are illustrated
 with at least one complete working program, simple though it may be. In
 my experience, a complete working program is essential to showing the
 proper use of a method. Without a program, it is too easy to drop into
 jargon or to gloss over points about which the author may be unclear in
 his own mind. The Java API documentation itself often suffers from
 excessively terse descriptions of the method calls. In this book, I have
 tried to err on the side of providing too much explication rather than
 too little. If a point is obvious to you, feel free to skip over it. You
 do not need to type in and run every example in this book, but if a
 particular method does give you trouble, you are guaranteed to have at
 least one working example.
Each chapter includes at least one (and often several) more
 complex programs that demonstrate the classes and methods of that
 chapter in a more realistic setting. These often rely on Java features
 not discussed in this book. Indeed, in many of the programs, the
 networking components are only a small fraction of the source code and
 often the least difficult parts. Nonetheless, none of these programs
 could be written as easily in languages that didn't give networking the
 central position it occupies in Java. The apparent simplicity of the
 networked sections of the code reflects the extent to which networking
 has been made a core feature of Java, and not any triviality of the
 program itself. All example programs presented in this book are
 available online, often with corrections and additions. You can download
 the source code from http://www.cafeaulait.org/books/jnp3/.
This book assumes you are using Sun's Java Development Kit. I have
 tested all the examples on Linux and many on Windows and MacOS X. Almost
 all the examples given here should work on other
 platforms and with other compilers and virtual machines that support
 Java 1.2 (and most on Java 1.1, as well). The occasional examples that
 require Java 1.3, 1.4, or 1.5 are clearly noted.

Conventions Used in This Book

Body text is Times Roman, normal, like you're reading now.
A monospaced typewriter font is
 used for:
	Code examples and fragments

	Anything that might appear in a Java program, including
 keywords, operators, data types, method names, variable names, class
 names, and interface names

	Program output

	Tags that might appear in an HTML document

A bold monospaced font is
 used for:
	Command lines and options that should be typed verbatim on the
 screen

An italicized font is used for:
	New terms where they are defined

	Pathnames, filenames, and program names (however, if the
 program name is also the name of a Java class, it is given in a
 monospaced font, like other class names)

	Host and domain names (java.oreilly.com)

	URLs (http://www.cafeaulait.org/slides/)

	Titles of other chapters and books
 (JavaI/O)

Significant code fragments and complete programs are generally
 placed into a separate paragraph, like this:
Socket s = new Socket("java.oreilly.com", 80);
if (!s.getTcpNoDelay()) s.setTcpNoDelay(true);
When code is presented as fragments rather than complete programs,
 the existence of the appropriate import statements should be inferred. For
 example, in the above code fragment you may assume that java.net.Socket was imported.
Some examples intermix user input with program output. In these
 cases, the user input will be displayed in bold, as in this example from
 Chapter 9:
% telnet rama.poly.edu 7
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.
This is a test
This is a test
This is another test
This is another test
9876543210
9876543210
^]
telnet> close
Connection closed.
The Java programming language is case-sensitive. Java.net.socket is not the same as java.net.Socket. Case-sensitive programming
 languages do not always allow authors to adhere to standard English
 grammar. Most of the time, it's possible to rewrite the sentence in such
 a way that the two do not conflict, and when possible I have endeavored
 to do so. However, on those rare occasions when there is simply no way
 around the problem, I have let standard English come up the loser. In
 keeping with this principle, when I want to refer to a class or an
 instance of a class in body text, I use the capitalization that you'd
 see in source code, generally an initial capital with internal
 capitalization—for example, ServerSocket.
Throughout this book, I use the British convention of placing
 punctuation inside quotation marks only when punctuation is part of the
 material quoted. Although I learned grammar under the American rules,
 the British system has always seemed far more logical to me, even more
 so than usual when one must quote source code where a missing or added
 comma, period, or semicolon can make the difference between code that
 compiles and code that doesn't.
Finally, although many of the examples used here are toy
 examples unlikely to be reused, a few of the classes I develop have real
 value. Please feel free to reuse them or any parts of them in your own
 code. No special permission is required. As far as I am concerned, they
 are in the public domain (although the same is most definitely not true
 of the explanatory text!). Such classes are placed somewhere in the com.macfaq package, generally mirroring the
 java package hierarchy. For instance,
 Chapter 4's SafePrintWriter class is in the com.macfaq.io package. When working with these
 classes, don't forget that the compiled .class files must reside in directories
 matching their package structure inside your class path, and that you'll
 have to import them in your own classes before you can use them. The
 book's web page at http://www.cafeaulait.org/books/jnp3/ includes a
 jar file containing all these classes that can be
 installed in your class path.
Tip
Indicates a tip, suggestion, or general note.

Warning
Indicates a warning or caution.

Request for Comments

I enjoy hearing from readers, whether with general comments about
 this book, specific corrections, other topics you would like to see
 covered, or just war stories about your own network programming
 travails. You can reach me by sending email to
 elharo@metalab.unc.edu. Please realize, however, that I
 receive several hundred pieces of email a day and cannot personally
 respond to each one. For the best chances of getting a personal
 response, please identify yourself as a reader of this book. If you have
 a question about a particular program that isn't working as you expect,
 try to reduce it to the simplest case that reproduces the bug,
 preferably a single class, and paste the text of the entire program into
 the body of your email. Unsolicited attachments
 will be deleted unopened. And please, please send the message from the
 account you want me to reply to and make sure that your Reply-to address
 is properly set! There's nothing quite so frustrating as spending an
 hour or more carefully researching the answer to an interesting question
 and composing a detailed response, only to have it bounce because my
 correspondent was sending from a public terminal and neglected to set
 the browser preferences to include their actual email address.
I also adhere to the old saying "If you like this book, tell your
 friends. If you don't like it, tell me." I'm especially interested in
 hearing about mistakes. This is my eighth book. I've yet to publish a
 perfect one, but I keep trying. As hard as I and the editors at O'Reilly
 worked on this book, I'm sure there are mistakes and typographical
 errors that we missed here somewhere. And I'm sure that at least one of
 them is a really embarrassing whopper of a problem. If you find a
 mistake or a typo, please let me know so I can correct it. I'll post it
 on the web page for this book at http://www.cafeaulait.org/books/jnp3/ and on the O'Reilly
 web site at http://www.oreilly.com/catalog/javanetwk/errata/. Before
 reporting errors, please check one of those pages to see if I already
 know about it and have posted a fix. Any errors that are reported will
 be fixed in future printings.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/javanp3/

To comment on or ask technical questions about this book, send
 email to:
	bookquestions@oreilly.com

For more information about books, conferences, software, Resource
 Centers, and the O'Reilly Network, see the O'Reilly web site at:
	http://www.oreilly.com

The author maintains a web site for the discussion of EJB and
 related distributed computing technologies at http://www.jmiddleware.com.
 jMiddleware.com provides news about this book as well as code tips,
 articles, and an extensive list of links to EJB resources.

Acknowledgments

Many people were involved in the production of this book. My
 editor, Mike Loukides, got this book rolling, and provided many helpful
 comments along the way that substantially improved the book. Dr. Peter
 "Peppar" Parnes helped out immensely with the multicast chapter. The
 technical editors all provided invaluable assistance in hunting down
 errors and omissions. Simon St. Laurent provided invaluable advice on
 which topics deserved more coverage. Scott Oaks lent his thread
 expertise to Chapter 5, proving
 once again by the many subtle bugs he hunted down that multithreading
 still requires the attention of an expert. Ron Hitchens shone light into
 many of the darker areas of the new I/O APIs. Marc Loy and Jim Elliott
 reviewed some of the most bleeding edge material in the book. Jim Farley
 and William Grosso provided many helpful comments and assistance on
 remote method invocation. Timothy F. Rohaly was unswerving in his
 commitment to making sure I closed all my sockets and caught all
 possible exceptions, and in general wrote the cleanest, safest, most
 exemplary code I could write. John Zukowski found numerous errors of
 omission, all now filled thanks to him. And the eagle-eyed Avner Gelb
 displayed an astonishing ability to spot mistakes that had somehow
 managed to go unnoticed by myself, all the other editors, and the tens
 of thousands of readers of the first edition.
It isn't customary to thank the publisher, but the publisher does
 set the tone for the rest of the company, authors, editors, and
 production staff alike; and I think Tim O'Reilly deserves special credit
 for making O'Reilly Media absolutely one of the best houses an author
 can write for. If there's one person without whom this book would never
 have been written, it's him. If you, the reader, find O'Reilly books to
 be consistently better than most of the drek on the market, the reason
 really can be traced straight back to Tim.
My agent, David Rogelberg, convinced me it was possible to make a
 living writing books like this rather than working in an office. The
 entire crew at ibiblio.org over the last several
 years has really helped me to communicate better with my readers in a
 variety of ways. Every reader who sent in bouquets and brickbats about
 the first and second editions has been instrumental in helping me write
 this much-improved edition. All these people deserve much thanks and
 credit. Finally, as always, I'd like to offer my largest thanks for my
 wife, Beth, without whose love and support this book would never have
 happened.
—Elliotte Rusty Harold elharo@metalab.unc.edu
 September 22, 2004

Chapter 1. Why Networked Java?

In the last 10 years, network programming has stopped being the province of a few
 specialists and become a core part of every developer's toolbox. Today,
 more programs are network aware than aren't. Besides classic applications
 like email, web browsers, and Telnet clients, most major applications have
 some level of networking built in. For example:
	Text editors like BBEdit save and open files directly from FTP
 servers.

	IDEs like Eclipse and IntelliJ IDEA communicate with CVS
 repositories.

	Word processors like Microsoft Word open files from URLs.

	Antivirus programs like Norton AntiVirus check for new virus
 definitions by connecting to the vendor's web site every time the
 computer is started.

	Music players like Winamp and iTunes upload CD track lengths to
 CDDB and download the corresponding track titles.

	Gamers playing Quake gleefully frag each other in real
 time.

	Supermarket cash registers running IBM SurePOS ACE communicate
 with their store's server in real time with each transaction. The
 server uploads its daily receipts to the chain's central computers
 each night.

	Schedule applications like Microsoft Outlook automatically
 synchronize calendars with other employees in the company.

In the future, the advent of web services and the semantic web is
 going to entwine the network ever more deeply in all kinds of
 applications. All of this will take place over the Internet and all of it
 can be written in Java.
Java was the first programming language designed from the
 ground up with networking in mind. Java was originally designed for
 proprietary cable television networks rather than the Internet, but it's
 always had the network foremost in mind. One of the first two real Java
 applications was a web browser. As the global Internet continues to grow,
 Java is uniquely suited to build the next generation of network
 applications. Java provides solutions to a number of problems—platform
 independence and security being the most important—that are crucial to
 Internet applications, yet difficult to address in other languages.
One of the biggest secrets about Java is that it makes writing
 network programs easy. In fact, it is far easier to write network programs
 in Java than in almost any other language. This book shows you dozens of
 complete programs that take advantage of the Internet. Some are simple
 textbook examples, while others are completely functional applications.
 One thing you'll notice in the fully functional applications is just how
 little code is devoted to networking. Even in network intensive programs
 like web servers and clients, almost all the code handles data
 manipulation or the user interface. The part of the program that deals
 with the network is almost always the shortest and simplest.
In brief, it is easy for Java applications to send and receive data
 across the Internet. It is also possible for applets to communicate across
 the Internet, though they are limited by security restrictions. In this
 chapter, you'll learn about a few of the network-centric applications that
 have been written in Java. In later chapters, you'll develop the tools you
 need to write your own network programs.
What Can a Network Program Do?

Networking adds a lot of power to simple programs. With
 networks, a single program can retrieve information stored in millions
 of computers located anywhere in the world. A single program can
 communicate with tens of millions of people. A single program can
 harness the power of many computers to work on one problem.
Network applications generally take one of several forms. The
 distinction you hear about most is between clients and servers. In the
 simplest case, clients retrieve data from a server and display it. More
 complex clients filter and reorganize data, repeatedly retrieve changing
 data, send data to other people and computers, and interact with peers
 in real time for chat, multiplayer games, or collaboration. Servers
 respond to requests for data. Simple servers merely look up some file
 and return it to the client, but more complex servers often do a lot of
 processing on the data before answering an involved question.
 Peer-to-peer applications such as Gnutella connect many computers, each
 of which acts as both a client and a server. And that's only the
 beginning. Let's look more closely at the possibilities that open up
 when you add networking to your programs.
Retrieve Data

At the most basic level, a network client retrieves data
 from a server. It can format the data for display to a user, store it
 in a local database, combine it with other data sources both local and
 remote, analyze it, or all of the above. Network clients written in
 Java can speak standard protocols like HTTP, FTP, or SMTP to
 communicate with existing servers written in a variety of languages.
 However, there are many clients for these protocols already and
 writing another one isn't so exciting. More importantly, programs can
 speak custom protocols designed for specific purposes, such as the one
 used to remotely control the High Resolution Airborne Wideband Camera
 (HAWC) on the Stratospheric Observatory for Infrared Astronomy
 (SOFIA). Figure 1-1 shows
 an early prototype of the HAWC controller.
[image: The HAWC controller prototype]

Figure 1-1. The HAWC controller prototype

Also interesting is the use of existing protocols like HTTP to
 retrieve data that will be manipulated in new and unique ways. A
 custom network client written in Java can extract and display the
 exact piece of information the user wants. For example, an indexing
 program might extract only the actual text of a page while filtering
 out the HTML tags and navigation links. Of course, not every file
 downloaded from a web server has to be loaded into a browser window,
 or even has to be HTML. Custom network clients can process any data
 format the server sends, whether it's tab-separated text, a special
 purpose binary format for data acquired from scientific instruments,
 XML, or something else. Nor is a custom client limited to one server
 or document at a time. For instance, a summary program can combine
 data from multiple sites and pages. For example, RSS clients like
 RSSOwl, shown in Figure
 1-2, combine news feeds in several different formats from many
 different sources and allow the user to browse the combined group.
 Finally, a Java program can use the full power of a modern graphical
 user interface to show this data to the user in a way that makes sense
 for the data: a grid, a document, a graph, or something else. And
 unlike a web browser, this program can continuously update the data in
 real time.
[image: The RSSOwl newsreader is written in Java using the SWT API]

Figure 1-2. The RSSOwl newsreader is written in Java using the SWT
 API

Of course, not everything transmitted over HTTP is meant for
 humans. Web services allow machines to communicate with each other by
 exchanging XML documents over HTTP for purposes ranging from inventory
 management to stock trading to airline reservations. This can be
 completely automated with no human intervention, but it does require
 custom logic written in some programming language.
Java network clients are flexible because Java is a fully
 general programming language. Java programs see network connections as
 streams of data that can be interpreted and responded to in any way
 necessary. Web browsers see only certain kinds of data streams and can
 interpret them only in certain ways. If a browser sees a data stream
 that it's not familiar with (for example, a response to an SQL query),
 its behavior is unpredictable. Web sites can use server-side programs
 written in Java or other languages to provide some of these
 capabilities, but they're still limited to HTML for the user
 interface.
Writing Java programs that talk to Internet servers is easy.
 Java's core library includes classes for communicating with Internet
 hosts using the TCP and UDP protocols of the TCP/IP family. You just
 tell Java what IP address and port you want, and Java handles the
 low-level details. Java does not support NetWare IPX, Windows NetBEUI,
 AppleTalk, or other non-IP-based network protocols, but in the first
 decade of the new millennium, this is a non-issue. TCP/IP has become
 the lingua franca of networked applications and
 has effectively replaced pretty much all other general-purpose network
 protocols. A slightly more serious issue is that Java does not provide
 direct access to the IP layer below TCP and UDP, so it can't be used
 to write programs like ping or traceroute. However, these are fairly
 uncommon needs. Java certainly fills well over 90% of most network
 programmers' needs.
Once a program has connected to a server, the local program must
 understand the protocol the remote server speaks and properly
 interpret the data the server sends back. In almost all cases,
 packaging data to send to a server and unpacking the data received is
 harder than simply making the connection. Java includes classes that
 help your programs communicate with certain types of servers, most
 notably web servers. It also includes classes to process some kinds of
 data, such as text, GIF images, and JPEG images. However, not all
 servers are web servers, and not all data is text, GIF, or JPEG. As a
 result, Java lets you write protocol handlers to communicate with
 different kinds of servers and content handlers that understand and
 display different kinds of data. A web browser can automatically
 download and install the software needed by a web site it visits using
 Java WebStart and the Java Network Launching Protocol (JNLP). These
 applications can run under the control of a security manager that
 prevents them from doing anything potentially harmful without user
 permission.

Send Data

Web browsers are optimized for retrieving data: they
 send only limited amounts of data back to the server, mostly through
 forms. Java programs have no such limitations. Once a connection
 between two machines is established, Java programs can send data
 across the connection just as easily as they can receive from it. This
 opens up many possibilities.
File storage

Applets often need to save data between runs—for example, to
 store the level a player has reached in a game. Untrusted applets
 aren't allowed to write files on local disks, but they can store
 data on a cooperating server. The applet just opens a network
 connection to the host it came from and sends the data to it. The
 host may accept the data through HTTP POST, FTP, SOAP, or a custom
 server or servlet.

Massively parallel computing

There've always been problems that are too big for one
 computer to solve in a reasonable period of a time. Sometimes the
 answer to such a problem is buying a faster computer. However, once
 you reach the top of the line of off-the-shelf systems you can pick
 up at CompUSA, price begins to increase a lot faster than
 performance. For instance, one of the fastest personal computers you
 can buy at the time of this writing, an Apple PowerMac with two
 2.5GHz processors, will set you back about $3,000 and provide speeds
 in the ballpark of a few gigaflops per second. If you need something
 a thousand times that fast, you can buy a Cray X1 supercomputer,
 which will cost you several tens of million dollars, or you can buy
 a thousand or so PowerMacs for only a few million dollars—roughly an
 order of magnitude less. The numbers change as the years go by.
 Doubtless you can buy a faster computer for less money today, but
 the general rule holds steady. Past a certain point, price goes up
 faster than performance.
At least since the advent of the cheap microcomputer a quarter
 of a century ago, programmers have been splitting problems across
 multiple, cheap systems rather than paying a lot more for the
 supercomputer of the day. This can be done informally by running
 little pieces of the problem on multiple systems and combining the
 output manually, or more formally in a system like Beowulf. There's
 some overhead involved in synchronizing the data between all the
 different systems in the grid, so the price still goes up faster
 than the performance, but not nearly as much faster as it does with
 a more traditional supercomputer. Indeed, cluster supercomputers
 normally cost about 10 times less than equally fast non-cluster
 supercomputers. That's why clusters are rapidly displacing the old
 style supercomputers. As of June 2004, just under 60% of the world's
 top 500 publicly acknowledged supercomputers were built from
 clusters of small, off-the-shelf PCs, including the world's
 third-fastest. There are probably a few more computers worthy of
 inclusion in the list hidden inside various government agencies with
 black budgets, but there's no reason to believe the general
 breakdown of architectures is different enough to skew the basic
 shape of the results.
When it comes to grid computing, Java is uniquely suited to
 the world of massively parallel clusters of small, off-the-shelf
 machines. Since Java is cross-platform, distributed programs can run
 on any available machine, rather than just all the Windows boxes,
 all the Solaris boxes, or all the PowerMacs. Since Java applets are
 secure, individual users can safely offer the use of their spare CPU
 cycles to scientific projects that require massively parallel
 machines. When part of the calculation is complete, the program
 makes a network connection to the originating host and adds its
 results to the collected data.
There are numerous ongoing efforts in this area. Among them is
 David Bucciarelli's work on JCGrid (http://jcgrid.sourceforge.net/), an open source
 virtual filesystem and grid-computing framework that enables
 projects to be divided among multiple worker machines. Clients
 submit computation requests to the server, which doles them out to
 the worker systems. What's unique about JCGrid compared to systems
 like Beowulf implemented in C is that the workers don't have to
 trust the server or the client. Java's security manager and byte
 code verifier can ensure the uploaded computation tasks don't do
 anything besides compute. This enables grids to be established that
 allow anyone to borrow the CPU cycles they need. These grids can be
 campus-wide, company-wide, or even worldwide on the public Internet.
 There is a lot of unused computing power wasting electricity for no
 reason at any given time of day on the world's desktops. Java
 networking enables researchers and other users to take advantage of
 this power even more cheaply than they could build a cluster of
 inexpensive machines.

Peer-to-Peer Interaction

The above examples all follow a client/server model.
 However, Java applications can also talk to each other across the
 Internet, opening up many new possibilities for group applications.
 Java applets can also talk to each other, though for security reasons
 they have to do it via an intermediary proxy program running on the
 server they were downloaded from. (Again, Java makes writing this
 proxy program relatively easy.)
Games

Combine the easy ability to include networking in your
 programs with Java's powerful graphics and you have the recipe for
 truly awesome multiplayer games. Some that have already been written
 include Backgammon, Battleship, Othello, Go, Mahjongg, Pong,
 Charades, Bridge, and even strip poker. Figure 1-3 shows a four-player
 game of Hearts in progress on Yahoo. Network sockets send the plays
 back to the central Yahoo server, which copies them out to all the
 participants.
[image: A networked game of Hearts using a Java applet from http://games.yahoo.com/]

Figure 1-3. A networked game of Hearts using a Java applet from
 http://games.yahoo.com/

Chat

Real-time chat probably isn't one of the first generation
 network applications (those would be file transfer, email, and
 remote login), but it certainly showed up by the second generation.
 Internet Relay Chat (IRC) is the original Internet chat protocol,
 and the cause of much caffeine consumption and many late nights in
 the dorm rooms of highly connected campuses in the 90s. More
 recently, the focus has shifted from public chat rooms to private
 instant messaging systems that connect users who already know each
 other. Network-wise, however, there isn't a huge amount of
 difference between the two. Perhaps the biggest innovation is the
 buddy list that allows you to know who among your friends and
 colleagues is online and ready to chat. Instant messaging systems
 include AOL Instant Messenger (AIM), Yahoo! Messenger, and Jabber.
 It isn't hard to find Java clients for any of these. Text typed on
 one desktop can be echoed to other clients around the world. Figure 1-4 shows the JETI
 client participating in a Jabber chat room.
[image: Networked text chat using Jabber]

Figure 1-4. Networked text chat using Jabber

Java programs aren't limited to sending text. They can send
 graphics and other data formats, too. Adding a canvas with basic
 drawing ability to the chat program allows a whiteboard to be shared
 between multiple locations. A number of programmers have developed
 whiteboard software that allows users in diverse locations to draw
 on their computers. For the most part, the user interfaces of these
 programs look like any simple drawing program with a canvas area and
 a variety of pencil, text, eraser, paintbrush, and other tools.
 However, when networking is added, many different people can
 collaborate on the same drawing at the same time. The final drawing
 may not be as polished or as artistic as the Warhol/Basquiat
 collaborations, but it doesn't require the participants to all be in
 the same New York loft, either. Figure 1-5 shows several
 windows in a session of the IBM WebCollab program. WebCollab allows
 users in diverse locations to display and annotate slides during
 teleconferences. One participant runs the central WebCollab server
 that all the peers connect to, while conferees participate using a
 Java applet loaded into their web browsers.
[image: WebCollab]

Figure 1-5. WebCollab

Peer-to-peer networked Java programs allow multiple people to
 collaborate on a document at one time. Imagine a Java word processor
 that two people, perhaps in different countries, can both pull up
 and edit simultaneously. More recently, the Java Media Framework 2.0
 has added voice to the media that Java can transmit across the
 network, making collaboration even more convenient. For example, two
 astronomers could work on a paper while one's in New Mexico and the
 other in Moscow. The Russian could say, "I think you dropped the
 superscript in Equation 3.9," and then type the corrected equation
 so that it appears on both displays simultaneously. Then the
 astronomer in New Mexico might say, "I see, but doesn't that mean we
 have to revise Figure 3.2 like this?" and use a drawing tool to make
 the change immediately. This sort of interaction isn't particularly
 hard to implement in Java (a word processor with a decent
 user-interface for equations is probably the hardest part of the
 problem), but it does need to be built into the word processor from
 the start. It cannot be retrofitted onto a word processor that did
 not have networking in mind when it was designed.

File sharing

File transfer is one of the three earliest and most useful
 network applications (the other two being email and remote login).
 Traditionally, file transfer required a constantly available server
 at a stable address. Early Internet protocols such as FTP were
 designed under the assumption that sites were available 24/7 with
 stable addresses. This made sense when the Internet was composed
 mostly of multiuser Unix boxes and other big servers, but it began
 to fail when people started connecting desktop PCs to the network.
 These systems were generally only available while a single user was
 sitting in front of them. Furthermore, they often had slow dialup
 connections that weren't always connected, and hostnames and IP
 addresses that changed every time the computer was rebooted or
 reconnected. Sometimes they were hidden behind firewalls and proxy
 servers that did not let the outside world initiate connections to
 these systems at all. While clients could connect from anywhere and
 send files to anywhere, they couldn't easily talk to each other. In
 essence, the Internet was divided into two classes of users:
 high-bandwidth, stable, well-connected server sites, and
 low-bandwidth, sporadically connected client sites. Clients could
 talk to each other only through an intermediate server site.
In the last few years, this classist system has begun to break
 down. High-bandwidth connections through cable modems and DSL lines
 mean that even a $298 Wal-Mart PC may have bandwidth that would have
 been the envy of a major university 15 years ago. More importantly,
 first Napster and now Gnutella, Kazaa, Freenet, and BitTorrent have
 developed file transfer protocols that throw out the old assumptions
 of constant, reliable connectivity. These protocols allow
 sporadically connected clients with unstable IP addresses hidden
 behind firewalls to query each other and transfer files among
 themselves. Many of the best clients for these networks are written
 in Java. For instance, the LimeWire Gnutella client shown in Figure 1-6 is an open source
 pure Java application that uses a Swing GUI and standard Java
 networking classes.
[image: LimeWire]

Figure 1-6. LimeWire

The Gnutella protocol LimeWire supports is primarily used for
 trading music, pornography, and other copyright violations. The more
 recent BitTorrent protocol is designed for larger files such as
 Linux distro CD images. BitTorrent is designed to serve files that
 can be referenced from known keys provided by traditional sources
 like web sites, rather than allowing users to search for what's
 currently available. Another unique feature of BitTorrent is that
 downloaders begin sharing a file while they're still downloading it.
 This means hosting a large and popular file, such as the latest
 Fedora core release, doesn't immediately overwhelm a connection
 because only the first couple of users will get it directly from the
 original site. Most downloaders will grab much of the file from
 previous downloaders. Finally, BitTorrent throttles download
 bandwidth to match upload bandwidth, so leeching is discouraged. One
 of the best BitTorrent clients, Azureus (http://azureus.sourceforge.net/), shown in Figure 1-7, is written in pure
 Java.
[image: Azureus]

Figure 1-7. Azureus

The free sharing of information between individuals without
 controllable server intermediaries terrifies all sorts of groups
 that would like to control the information whether for profit (the
 RIAA and the MPAA) or politics (various governments). Many of these
 have attempted to use legal and/or technological means to block
 peer-to-peer networks. The techies have responded with network
 protocols that are designed to be censorship-resistant through
 encryption and other means. One of the most serious is Ian Clarke's
 Freenet (http://freenet.sourceforge.net/). In
 this network protocol, encrypted files are divided up and duplicated
 on different computers that do not even know which files they're
 sharing. Furthermore, file transfers are routed through several
 intermediate hosts. These precautions make it extremely difficult
 for cybervigilantes, lawyers, and the police to find out who is
 sharing which files and shut them down. Once again, the primary
 Freenet implementation is written in Java, and most research and
 development has been done with Java as the language of
 choice.

Servers

Java applications can listen for network connections and
 respond to them, so it's possible to implement servers in Java. Both
 Sun and the W3C have written web servers in Java designed to be as
 fully functional and fast as servers written in C, such as the Apache
 HTTP server and Microsoft's Internet Information Server. Many other
 kinds of servers have been written in Java as well, including IRC
 servers, NFS servers, file servers, print servers, email servers,
 directory servers, domain name servers, FTP servers, TFTP servers, and
 more. In fact, pretty much any standard TCP or UDP server you can
 think of has probably been ported to Java.
More interestingly you can write custom servers that fill your
 specific needs. For example, you might write a server that stores
 state for your game applet and has exactly the functionality needed to
 let players save and restore their games, and no more. Or, since
 applets can normally only communicate with the host from which they
 were downloaded, a custom server could mediate between two or more
 applets that need to communicate for a networked game. Such a server
 could be very simple, perhaps just echoing what one applet sent to all
 other connected applets. WebCollab uses a custom server written in
 Java to collect annotations, notes, and slides from participants in
 the teleconference and distribute them to all other participants. It
 also stores the notes on the central server. It uses a combination of
 the normal HTTP and FTP protocols as well as its custom WebCollab
 protocol.
Along with classical servers that listen for and accept socket
 connections, Java provides several higher-level abstractions for
 client-server communication. Remote method invocation allows objects
 located on a server to have their methods called by clients. Servers
 that support the Java Servlet API can load extensions written in Java
 called servlets that give them new capabilities.
 The easiest way to build a multiplayer game server might be to write a
 servlet rather than an entire server.

Searching the Web

Java programs can wander through the Web, looking for
 crucial information. Search programs that run on a single client
 system are called spiders . A spider downloads a page at a particular URL,
 extracts the URLs from the links on that page, downloads the pages
 referred to by the URLs, and repeats the process for each page it
 downloads. Generally, a spider does something with each page it sees,
 from indexing it in a database to performing linguistic analysis to
 hunting for specific information. This is more or less what services
 like Google do to build their indices. Building your own spider to
 search the Internet is a bad idea because Google and similar services
 have already done the work, and a few million private spiders would
 soon bring the Net to its knees. However, this doesn't mean you
 shouldn't write spiders to index your own local Intranet. In a company
 that uses the Web to store and access internal information, a local
 index service might be very useful. You can use Java to build a
 program that indexes all your local servers and interacts with another
 server program (or acts as its own server) to let users query the
 index.
The purposes of agents are similar to those of spiders (researching a stock,
 soliciting quotations for a purchase, bidding on similar items at
 multiple auctions, finding the lowest price for a CD, finding all
 links to a site, and so on), but whereas spiders run a single host
 system to which they download pages from remote sites, agents actually
 move themselves from host to host and execute their code on each
 system they move to. When they find what they're looking for, they
 return to the originating system with the information, possibly even a
 completed contract for goods or services. People have been talking
 about mobile agents for years, but until now, practical agent
 technology has been rather boring. It hasn't come close to achieving
 the possibilities envisioned in various science fiction novels. The
 primary reason for this is that agents have been restricted to running
 on a single system—and that's neither useful nor exciting. In fact,
 through 2003, the only successful agents have been hostile code such
 as the Morris Internet worm of 1989 and the numerous Microsoft Outlook
 vectored worms.
These cases demonstrate one reason developers haven't been
 willing to let agents go beyond a single host: they can be
 destructive. For instance, after breaking in to a system, the Morris
 worm proceeded to overload the system, rendering it useless. Letting
 agents run on a system introduces the possibility that hostile or
 buggy agents may damage that system, and that's a risk most network
 managers haven't been willing to take. Java mitigates the security
 problem by providing a controlled environment for the execution of
 agents that ensure that, unlike worms, the agents won't do anything
 nasty. This kind of control makes it safe for systems to open their
 doors to agents.
The second problem with agents has been portability. Agents
 aren't very interesting if they can only run on one kind of computer.
 It's sort of like having a credit card for Nieman-Marcus: a little bit
 useful and has a certain snob appeal, but it won't help as much as a
 Visa card if you want to buy something at Sears. Java provides a
 platform-independent environment in which agents can run; the agent
 doesn't care if it's visiting a Sun workstation, a Macintosh, a Linux
 box, or a Windows PC.
An indexing program could be implemented in Java as a mobile
 agent: instead of downloading pages from servers to the client and
 building the index there, the agent could travel to each server and
 build the index locally, sending much less data across the network.
 Another kind of agent could move through a local network to inventory
 hardware, check software versions, update software, perform backups,
 and take care of other necessary tasks. A massively parallel computer
 could be implemented as a system that assigns small pieces of a
 problem to individual agents, which then search out idle machines on
 the network to carry out parts of the computation. The same security
 features that allow clients to run untrusted programs downloaded from
 a server lets servers run untrusted programs uploaded from a
 client.

Electronic Commerce

Shopping sites have proven to be one of the few real
 ways to make money from consumers on the Web. Although many sites
 accept credit cards through HTML forms, this method is inconvenient
 and costly for small payments of a couple of dollars or less. Nobody
 wants to fill out a form with their name, address, billing address,
 credit card number, and expiration date every day just to pay $0.50 to
 read today's Daily Planet. A few sites, notably
 Amazon and Apple's iTunes Music Store, have implemented one-click
 systems that allow customers to reuse previously entered data.
 However, this only really helps sites that users shop at regularly. It
 doesn't work so well for sites that typically only receive a visit or
 two per customer per year.
But imagine how easy it would be to implement this kind of
 transaction in Java. The user clicks on a link to some information.
 The server downloads a small applet that pops up a dialog box saying,
 "Access to the information at
 http://www.greedy.com/ costs $0.50. Do you wish
 to pay this?" The user can then click buttons that say "Yes" or "No".
 If the user clicks the No button, then they don't get into the site.
 Now let's imagine what happens if the user clicks Yes.
The applet contains a small amount of information: the price,
 the URL, and the seller. If the client agrees to the transaction, then
 the applet adds the buyer's data to the transaction, perhaps a name
 and an account number, and signs the order with the buyer's private
 key. The applet next sends the data back to the server over the
 network. The server grants the user access to the requested
 information using the standard HTTP security model. Then it signs the
 transaction with its private key and forwards the order to a central
 clearinghouse. Sellers can offer money-back guarantees or delayed
 purchase plans (No money down! Pay nothing until July!) by agreeing
 not to forward the transaction to the clearinghouse until a certain
 amount of time has elapsed.
The clearinghouse verifies each transaction with the buyer and
 seller's public keys and enters the transaction in its database. The
 clearinghouse can use credit cards, checks, or electronic fund
 transfers to move money from the buyer to the seller. Most likely, the
 clearinghouse won't move the money until the accumulated total for a
 buyer or seller reaches a certain minimum threshold, keeping the
 transaction costs low.
Every part of this process can be written in Java. An applet
 requests the user's permission. The Java Cryptography Extension
 authenticates and encrypts the transaction. The data moves from the
 client to the seller using sockets, URLs, servlets, and/or remote
 method invocation (RMI). These can also be used for the host to talk
 to the central clearinghouse. The web server itself can be written in
 Java, as can the database and billing systems at the central
 clearinghouse, or JDBC can be used to talk to a traditional database
 like Informix or Oracle.
The hard part of this is setting up a clearinghouse, and getting
 users and sites to subscribe. The major credit card companies have a
 head start, although none of them yet use the scheme described here.
 In an ideal world, the buyer and the seller should be able to use
 different banks or clearinghouses. However, this is a social problem,
 not a technological one, and it is solvable. You can deposit a check
 from any American bank at any other American bank where you have an
 account. The two parties to a transaction do not need to bank in the
 same place.

Ubiquitous Computing

Networked devices don't have to be tied to particular
 physical locations, subnets, or IP addresses. Jini is a framework that
 sits on top of Java, easily and instantly connecting all sorts of
 devices to a network. For example, when a group of coworkers gather
 for a meeting, they generally bring a random assortment of personal
 digital assistants, laptops, cell phones, pagers, and other electronic
 devices with them. The conference room where they meet may have one or
 two PCs, perhaps a Mac, a digital projector, a printer, a coffee
 machine, a speaker phone, an Ethernet router, and assorted other
 useful tools. If these devices include a Java virtual machine and
 Jini, they form an impromptu network as soon as they're turned on and
 plugged in. (With wireless connections, they may not even need to be
 plugged in.) Devices can join or leave the local network at any time
 without explicit reconfiguration. They can use one of the cell phones,
 the speaker phone, or the router to connect to hosts outside the
 room.
Participants can easily share files and trade data. Their
 computers and other devices can be configured to recognize and trust
 each other regardless of where in the network one happens to be at any
 given time. Trust can be restricted; for example, all company
 employees' laptops in the room are trusted, but those of outside
 vendors at the meeting aren't. Some devices, such as the printer and
 the digital projector, may be configured to trust anyone in the room
 to use their services, but not allow more than one person to use them
 at once. Most importantly of all, the coffee machine may not trust
 anyone; but it can notice that it's running out of coffee and email
 the supply room that it needs to be restocked.

Interactive Television

Before the Web took the world by storm, Java was
 intended for the cable TV set-top box market. Five years after Java
 made its public debut, Sun finally got back to its original plans, but
 this time those plans were even more network-centric. The Java 2 Micro Edition (J2ME) is a stripped-down version
 of the rather large Java 2 API that's useful for set-top boxes and
 other devices with restricted memory, CPU power, and user interface,
 such as Palm Pilots. J2ME does include networking support, though for
 reasons of size, it uses a completely different set of classes called
 the Generic Connection Framework rather than the java.net classes from the desktop-targeted
 J2SE.
The Java TV API sits on top of J2ME to add
 television-specific features like channel changing and audio and video
 streaming and synchronization. TV stations can send programs down the
 data stream that allow channel surfers to interact with the shows. An
 infomercial for spray-on hair could serve a GUI program that lets the
 viewer pick a color, enter their credit card number, and send the
 order through the cable modem and over the Internet using their remote
 control. A news magazine could conduct a viewer poll in real time and
 report the responses after the commercial break. Ratings could be
 collected from every household with a cable modem instead of merely
 the 5,000 Nielsen families.

Security

Not all network programs need to run code uploaded from remote
 systems, but those that do (applets, Java WebStart, agent hosts,
 distributed computers) need strong security protections. A lot of FUD (fear, uncertainty, and doubt) has been
 spread around about exactly what remotely loaded Java code, applets in
 particular, can and cannot do. This is not a book about Java security,
 but I will mention a few things that code loaded from the network is
 usually prohibited from doing.
	Remotely loaded code cannot access arbitrary addresses in
 memory. Unlike the other restrictions in the list, which are
 enforced by a SecurityManager,
 this restriction is a property of the Java language itself and the
 byte code verifier.

	Remotely loaded code cannot access the local filesystem. It
 cannot read from or write to the local filesystem nor can it find
 out any information about files. Therefore, it cannot find out
 whether a file exists or what its modification date may be. (Java
 WebStart applications can actually ask the user for permissions to
 read or write files on a case-by-case basis.)

	Remotely loaded code cannot print documents. (Java WebStart
 applications can do this with the user's explicit permission on a
 case-by-case basis.)

	Remotely loaded code cannot read from or write to the system
 clipboard. (Java WebStart applications can do this with the user's
 explicit permission on a case-by-case basis.) It can read from and
 write to its own clipboard.

	Remotely loaded code cannot launch other programs on the
 client. In other words, it cannot call System.exec() or Runtime.exec().

	Remotely loaded code cannot load native libraries or define
 native method calls.

	Remotely loaded code is not allowed to use System.getProperty() in a way that
 reveals information about the user or the user's machine, such as a
 username or home directory. It may use System.getProperty() to find out what
 version of Java is in use.

	Remotely loaded code may not define any system
 properties.

	Remotely loaded code may not create or manipulate any Thread that is not in the same ThreadGroup.

	Remotely loaded code cannot define or use a new instance of
 ClassLoader, SecurityManager, ContentHandlerFactory, SocketImplFactory, or URLStreamHandlerFactory. It must use the
 ones already in place.

Finally, and most importantly for this book:
	Remotely loaded code can only open network connections to the
 host from which the code itself was downloaded.

	Remotely loaded code cannot listen on ports below
 1,024.

	Even if a remotely loaded program can listen on a port, it can
 only accept incoming connections from the host from which the code
 itself was downloaded.

These restrictions can be relaxed for digitally signed code. Figure 1-8 shows the dialog a Java
 WebStart application uses to ask the user for additional
 preferences.
[image: Java WebStart requesting the user allow unlimited access for remotely loaded code]

Figure 1-8. Java WebStart requesting the user allow unlimited access for
 remotely loaded code

Even if you sign the application with a verifiable certificate so
 the warning is a little less blood-curdling, do not expect the user to
 allow connections to arbitrary hosts. If a program cannot live with
 these restrictions, you'll need to ask the user to download and install
 an application, rather than running your program directly from a web
 site. Java applications are just like any other sort of application:
 they aren't restricted as to what they can do. If you are writing an
 application that downloads and executes classes, carefully consider what
 restrictions should be put in place and design an appropriate security
 policy to implement those restrictions.

But Wait! There's More!

Java makes it possible to write many kinds of applications
 that have been imagined for years, but haven't been practical before.
 Many of these applications would require too much processing power if
 they were entirely server-based; Java moves the processing to the
 client, where it belongs. Other application types require extreme
 portability and some guarantee that the application can't do anything
 hostile to its host. While Java's security model has been criticized
 (and yes, some bugs have been found), it's a quantum leap beyond
 anything that has been attempted in the past and an absolute necessity
 for the mobile software we will want to write in the future.
Most of this book describes the fairly low-level APIs needed to
 write the kinds of programs discussed above. Some of these programs have
 already been written. Others are still only possibilities. Maybe you'll
 be the first to write them! This chapter has just scratched the surface
 of what you can do when you make your Java programs network aware.
 You're going to come up with ideas others would never think of. For the
 first time, you're not limited by the capabilities that other companies
 build into their browsers. You can give your users both the data you
 want them to see and the code they need to see that data at the same
 time.

Chapter 2. Basic Network Concepts

This chapter covers the background networking concepts you need to understand before writing
 networked programs in Java (or, for that matter, in any language). Moving
 from the most general to the most specific, it explains what you need to
 know about networks in general, IP and TCP/IP-based networks in
 particular, and the Internet. This chapter doesn't try to teach you how to
 wire a network or configure a router, but you will learn what you need to
 know to write applications that communicate across the Internet. Topics
 covered in this chapter include the definition of network, the TCP/IP
 layer model, the IP, TCP, and UDP protocols, firewalls and proxy servers,
 the Internet, and the Internet standardization process. Experienced
 network gurus may safely skip this chapter.
Networks

A network is a collection of computers and other devices that can
 send data to and receive data from each other, more or less in real
 time. A network is often connected by wires, and the bits of data are
 turned into electromagnetic waves that move through the wires. However,
 wireless networks transmit data through infrared light and microwaves,
 and many long-distance transmissions are now carried over fiber optic
 cables that send visible light through glass filaments. There's nothing
 sacred about any particular physical medium for the transmission of
 data. Theoretically, data could be transmitted by coal-powered computers
 that send smoke signals to each other. The response time (and
 environmental impact) of such a network would be rather poor.
Each machine on a network is called a node
 . Most nodes are computers, but printers, routers,
 bridges, gateways, dumb terminals, and Coca-Cola™ machines can also be
 nodes. You might use Java to interface with a Coke machine but
 otherwise, you'll mostly talk to other computers. Nodes that are fully
 functional computers are also called hosts
 . We will use the word node to refer
 to any device on the network, and the word host to
 refer to a node that is a general-purpose computer.
Every network node has an address , a series of bytes that uniquely identify it. You can
 think of this group of bytes as a number, but in general the number of
 bytes in an address or the ordering of those bytes (big endian or little
 endian) is not guaranteed to match any primitive numeric data type in
 Java. The more bytes there are in each address, the more addresses there
 are available and the more devices that can be connected to the network
 simultaneously.
Addresses are assigned differently on different kinds of networks.
 AppleTalk addresses are chosen randomly at startup by each host. The
 host then checks to see if any other machine on the network is using
 that address. If another machine is using the address, the host randomly
 chooses another, checks to see if that address is already in use, and so
 on until it gets one that isn't being used. Ethernet addresses are
 attached to the physical Ethernet hardware. Manufacturers of Ethernet
 hardware use pre-assigned manufacturer codes to make sure there are no
 conflicts between the addresses in their hardware and the addresses of
 other manufacturer's hardware. Each manufacturer is responsible for
 making sure it doesn't ship two Ethernet cards with the same address.
 Internet addresses are normally assigned to a computer by the
 organization that is responsible for it. However, the addresses that an
 organization is allowed to choose for its computers are assigned by the
 organization's Internet Service Provider (ISP). ISPs get their IP addresses from one of four regional
 Internet Registries (the registry for North America is ARIN, the American Registry for Internet Numbers, at
 http://www.arin.net/), which are in turn assigned
 IP addresses by the Internet Corporation for Assigned Names and Numbers
 (ICANN, at http://www.icann.org/).
On some kinds of networks, nodes also have names that help human
 beings identify them. At a set moment in time, a particular name
 normally refers to exactly one address. However, names are not locked to
 addresses. Names can change while addresses stay the same or addresses
 can change while the names stay the same. It is not uncommon for one
 address to have several names and it is possible, though somewhat less
 common, for one name to refer to several different addresses.
All modern computer networks are
 packet-switched networks: data traveling on the network is broken into
 chunks called packets and each packet is handled separately. Each packet
 contains information about who sent it and where it's going. The most
 important advantage of breaking data into individually addressed packets
 is that packets from many ongoing exchanges can travel on one wire,
 which makes it much cheaper to build a network: many computers can share
 the same wire without interfering. (In contrast, when you make a local
 telephone call within the same exchange, you have essentially reserved a
 wire from your phone to the phone of the person you're calling. When all
 the wires are in use, as sometimes happens during a major emergency or
 holiday, not everyone who picks up a phone will get a dial tone. If you
 stay on the line, you'll eventually get a dial tone when a line becomes
 free. In some countries with worse phone service than the United States,
 it's not uncommon to have to wait half an hour or more for a dial tone.)
 Another advantage of packets is that checksums can be used to detect
 whether a packet was damaged in transit.
We're still missing one important piece: some notion of what
 computers need to say to pass data back and forth. A
 protocol is a precise set of rules defining how computers
 communicate: the format of addresses, how data is split into packets,
 and so on. There are many different protocols defining different aspects
 of network communication. For example, the Hypertext Transfer Protocol
 (HTTP) defines how web browsers and servers communicate; at the other
 end of the spectrum, the IEEE 802.3 standard defines a protocol for how
 bits are encoded as electrical signals on a particular type of wire
 (among other protocols). Open, published protocol standards allow
 software and equipment from different vendors to communicate with each
 other: your web browser doesn't care whether any given server is a Unix
 workstation, a Windows box, or a Macintosh, because the server and the
 browser speak the same HTTP protocol regardless of platform.

The Layers of a Network

Sending data across a network is a complex operation that
 must be carefully tuned to the physical characteristics of the network
 as well as the logical character of the data being sent. Software that
 sends data across a network must understand how to avoid collisions
 between packets, convert digital data to analog signals, detect and
 correct errors, route packets from one host to another, and more. The
 process becomes even more complicated when the requirement to support
 multiple operating systems and heterogeneous network cabling is
 added.
To make this complexity manageable and hide most of it from the
 application developer and end user, the different aspects of network
 communication are separated into multiple layers. Each layer represents
 a different level of abstraction between the physical hardware (e.g.,
 the wires and electricity) and the information being transmitted. Each
 layer has a strictly limited function. For instance, one layer may be
 responsible for routing packets, while the layer above it is responsible
 for detecting and requesting retransmission of corrupted packets. In
 theory, each layer only talks to the layers immediately above and
 immediately below it. Separating the network into layers lets you modify
 or even replace the software in one layer without affecting the others,
 as long as the interfaces between the layers stay the same.
There are several different layer models, each organized to fit
 the needs of a particular kind of network. This book uses the standard
 TCP/IP four-layer model appropriate for the Internet, shown in Figure 2-1. In this model,
 applications like Internet Explorer and Eudora run in the application
 layer and talk only to the transport layer. The transport layer talks
 only to the application layer and the internet layer. The internet layer
 in turn talks only to the host-to-network layer and the transport layer,
 never directly to the application layer. The host-to-network layer moves
 the data across the wires, fiber optic cables, or other medium to the
 host-to-network layer on the remote system, which then moves the data up
 the layers to the application on the remote system.
[image: The layers of a network]

Figure 2-1. The layers of a network

For example, when a web browser sends a request to a web server to
 retrieve a page, the browser is actually only talking to the transport
 layer on the local client machine. The transport layer breaks the
 request up into TCP segments, adds some sequence numbers and checksums
 to the data, and then passes the request to the local internet layer.
 The internet layer fragments the segments into IP datagrams of the
 necessary size for the local network and passes them to the
 host-to-network layer for transmission onto the wire. The
 host-to-network layer encodes the digital data as analog signals
 appropriate for the particular physical medium and sends the request out
 the wire where it will be read by the host-to-network layer of the
 remote system to which it's addressed.
The host-to-network layer on the remote system decodes the analog
 signals into digital data then passes the resulting IP datagrams to the
 server's internet layer. The internet layer does some simple checks to
 see that the IP datagrams aren't corrupt, reassembles them if they've
 been fragmented, and passes them to the server's transport layer. The
 server's transport layer checks to see that all the data arrived and
 requests retransmission of any missing or corrupt pieces. (This request
 actually goes back down through the server's internet layer, through the
 server's host-to-network layer, and back to the client system, where it
 bubbles back up to the client's transport layer, which retransmits the
 missing data back down through the layers. This is all transparent to
 the application layer.) Once the server's transport layer has received
 enough contiguous, sequential datagrams, it reassembles them and writes
 them onto a stream read by the web server running in the server
 application layer. The server responds to the request and sends its
 response back down through the layers on the server system for
 transmission back across the Internet and delivery to the web
 client.
As you can guess, the real process is much more elaborate. The
 host-to-network layer is by far the most complex, and a lot has been
 deliberately hidden. For example, it's entirely possible that data sent
 across the Internet will pass through several routers and their layers
 before reaching its final destination. However, 90% of the time your
 Java code will work in the application layer and only need to talk to
 the transport layer. The other 10% of the time, you'll be in the
 transport layer and talking to the application layer or the internet
 layer. The complexity of the host-to-network layer is hidden from you;
 that's the point of the layer model.
Tip
If you read the network literature, you're likely to encounter
 an alternative seven-layer model called the Open Systems
 Interconnection Reference Model (OSI). For network programs in Java,
 the OSI model is overkill. The biggest difference between the OSI
 model and the TCP/IP model used in this book is that the OSI model
 splits the host-to-network layer into data link and physical layers
 and inserts presentation and session layers in between the application
 and transport layers. The OSI model is more general and better suited
 for non-TCP/IP networks, although most of the time it's still overly
 complex. In any case, Java's network classes only work on TCP/IP
 networks and always in the application or transport layers, so for the
 purposes of this book, absolutely nothing is gained by using the more
 complicated OSI model.

To the application layer, it seems as if it is talking directly to
 the application layer on the other system; the network creates a logical
 path between the two application layers. It's easy to understand the
 logical path if you think about an IRC chat session. Most participants
 in an IRC chat would say that they're talking to another person. If you
 really push them, they might say that they're talking to their computer
 (really the application layer), which is talking to the other person's
 computer, which is talking to the other person. Everything more than one
 layer deep is effectively invisible, and that is exactly the way it
 should be. Let's consider each layer in more detail.
The Host-to-Network Layer

 As a Java programmer, you're fairly high up in the
 network food chain. A lot happens below your radar. In the standard
 reference model for IP-based Internets (the only kind of network Java
 really understands), the hidden parts of the network belong to the
 host-to-network layer (also known as the link
 layer, data link layer, or network interface layer). The
 host-to-network layer defines how a particular network interface—such
 as an Ethernet card or a PPP connection—sends IP datagrams over its
 physical connection to the local network and the world.
The part of the host-to-network layer made up of the hardware
 that connects different computers (wires, fiber optic cables,
 microwave relays, or smoke signals) is sometimes called the physical
 layer of the network. As a Java programmer, you don't need to worry
 about this layer unless something goes wrong—the plug falls out of the
 back of your computer, or someone drops a backhoe through the T-1 line
 between you and the rest of the world. In other words, Java never sees
 the physical layer.
For computers to communicate with each other, it isn't
 sufficient to run wires between them and send electrical signals back
 and forth. The computers have to agree on certain standards for how
 those signals are interpreted. The first step is to determine how the
 packets of electricity or light or smoke map into bits and bytes of
 data. Since the physical layer is analog, and bits and bytes are
 digital, this process involves a digital-to-analog conversion on the
 sending end and an analog-to-digital conversion on the receiving
 end.
Since all real analog systems have noise, error correction and
 redundancy need to be built into the way data is translated into
 electricity. This is done in the data link layer. The most common data
 link layer is Ethernet. Other popular data link layers include
 TokenRing, PPP, and Wireless Ethernet (802.11). A specific data link
 layer requires specialized hardware. Ethernet cards won't communicate
 on a TokenRing network, for example. Special devices called
 gateways convert information from one type of
 data link layer, such as Ethernet, to another, such as TokenRing. As a
 Java programmer, the data link layer does not affect you directly.
 However, you can sometimes optimize the data you send in the
 application layer to match the native packet size of a particular data
 link layer, which can have some affect on performance. This is similar
 to matching disk reads and writes to the native block size of the
 disk. Whatever size you choose, the program will still run, but some
 sizes let the program run more efficiently than others, and which
 sizes these are can vary from one computer to the next.

The Internet Layer

 The next layer of the network, and the first that you
 need to concern yourself with, is the internet
 layer. In the OSI model, the internet layer goes by the
 more generic name network layer . A network layer protocol defines how bits and bytes of
 data are organized into the larger groups called packets, and the
 addressing scheme by which different machines find each other. The
 Internet Protocol (IP) is the most widely used network layer protocol
 in the world and the only network layer protocol Java understands. IP
 is almost exclusively the focus of this book. Other, semi-common
 network layer protocols include Novell's IPX, and IBM and Microsoft's
 NetBEUI, although nowadays most installations have replaced these
 protocols with IP. Each network layer protocol is independent of the
 lower layers. IP, IPX, NetBEUI, and other protocols can each be used
 on Ethernet, Token Ring, and other data link layer protocol networks,
 each of which can themselves run across different kinds of physical
 layers.
Data is sent across the internet layer in packets called
 datagrams . Each IP datagram contains a header between 20 and 60
 bytes long and a payload that contains up to 65,515 bytes of data. (In
 practice, most IP datagrams are much smaller, ranging from a few dozen
 bytes to a little more than eight kilobytes.) The header of each
 IP datagram contains these items, in this order:
	4-bit version number
	Always 0100 (decimal 4) for current IP; will be changed to
 0110 (decimal 6) for IPv6, but the entire header format will
 also change in IPv6.

	4-bit header length
	An unsigned integer between 0 and 15 specifying the number
 of 4-byte words in the header; since the maximum value of the
 header length field is 1111 (decimal 15), an IP header can be at
 most 60 bytes long.

	1-byte type of service
	A 3-bit precedence field that is no longer used, four
 type-of-service bits (minimize delay, maximize throughput,
 maximize reliability, minimize monetary cost) and a zero bit.
 Not all service types are compatible. Many computers and routers
 simply ignore these bits.

	2-byte datagram length
	An unsigned integer specifying the length of the entire
 datagram, including both header and payload.

	2-byte identification number
	A unique identifier for each datagram sent by a host;
 allows duplicate datagrams to be detected and thrown
 away.

	3-bit flags
	The first bit is 0; the second bit is 0 if this datagram
 may be fragmented, 1 if it may not be; and the third bit is 0 if
 this is the last fragment of the datagram, 1 if there are more
 fragments.

	13-bit fragment offset
	In the event that the original IP datagram is fragmented
 into multiple pieces, this field identifies the position of this
 fragment in the original datagram.

	1-byte time-to-live (TTL)
	Number of nodes through which the datagram can pass before
 being discarded; used to avoid infinite loops.

	1-byte protocol
	6 for TCP, 17 for UDP, or a different number between 0 and
 255 for each of more than 100 different protocols (some quite
 obscure); see http://www.iana.org/assignments/protocol-numbers
 for the complete current list.

	2-byte header checksum
	A checksum of the header only (not the entire datagram)
 calculated using a 16-bit one's complement sum.

	4-byte source address
	The IP address of the sending node.

	4-byte destination address
	The IP address of the destination node.

In addition, an IP datagram header may contain between 0 and 40
 bytes of optional information, used for security options, routing
 records, timestamps, and other features Java does not support.
 Consequently, we will not discuss them here. The interested reader is
 referred to TCP/IP Illustrated, Volume 1: The
 Protocols, by W. Richard Stevens (Addison Wesley), for more
 details on these fields. Figure
 2-2 shows how the different quantities are arranged in an IP
 datagram. All bits and bytes are big-endian; most significant to least
 significant runs left to right.
[image: The structure of an IPv4 datagram]

Figure 2-2. The structure of an IPv4 datagram

The Transport Layer

 Raw datagrams have some drawbacks. Most notably, there's
 no guarantee that they will be delivered. Even if they are delivered,
 they may have been corrupted in transit. The header checksum can only
 detect corruption in the header, not in the data portion of a
 datagram. Finally, even if the datagrams arrive uncorrupted, they do
 not necessarily arrive in the order in which they were sent.
 Individual datagrams may follow different routes from source to
 destination. Just because datagram A is sent before datagram B does
 not mean that datagram A will arrive before datagram B.
The transport layer is responsible for
 ensuring that packets are received in the order they were sent and
 making sure that no data is lost or corrupted. If a packet is lost,
 the transport layer can ask the sender to retransmit the packet. IP
 networks implement this by adding an additional header to each
 datagram that contains more information. There are two primary
 protocols at this level. The first, the Transmission Control Protocol
 (TCP), is a high-overhead protocol that allows for retransmission of
 lost or corrupted data and delivery of bytes in the order they were
 sent. The second protocol, the User Datagram Protocol (UDP), allows
 the receiver to detect corrupted packets but does not guarantee that
 packets are delivered in the correct order (or at all). However, UDP
 is often much faster than TCP. TCP is called a
 reliable protocol; UDP is an unreliable
 protocol. Later, we'll see that unreliable protocols are much more
 useful than they sound.

The Application Layer

 The layer that delivers data to the user is called the
 application layer. The three lower layers all
 work together to define how data is transferred from one computer to
 another. The application layer decides what to do with the data after
 it's transferred. For example, an application protocol like HTTP (for
 the World Wide Web) makes sure that your web browser knows to display
 a graphic image as a picture, not a long stream of numbers. The
 application layer is where most of the network parts of your programs
 spend their time. There is an entire alphabet soup of application
 layer protocols; in addition to HTTP for the Web, there are SMTP, POP,
 and IMAP for email; FTP, FSP, and TFTP for file transfer; NFS for file
 access; NNTP for news transfer; Gnutella, FastTrack, and Freenet for
 file sharing; and many, many more. In addition, your programs can
 define their own application layer protocols as necessary.

IP, TCP, and UDP

 IP, the Internet protocol, has a number of advantages over
 competing protocols such as AppleTalk and IPX, most stemming from its
 history. It was developed with military sponsorship during the Cold War,
 and ended up with a lot of features that the military was interested in.
 First, it had to be robust. The entire network couldn't stop functioning
 if the Soviets nuked a router in Cleveland; all messages still had to
 get through to their intended destinations (except those going to
 Cleveland, of course). Therefore IP was designed to allow multiple
 routes between any two points and to route packets of data around
 damaged routers.
Second, the military had many different kinds of computers, and
 all of them had to be able to talk to each other. Therefore the IP had
 to be open and platform-independent; it wasn't good enough to have one
 protocol for IBM mainframes and another for PDP-11s. The IBM mainframes
 needed to talk to the PDP-11s and any other strange computers that might
 be lying around.
Since there are multiple routes between two points, and since the
 quickest path between two points may change over time as a function of
 network traffic and other factors (such as the existence of Cleveland),
 the packets that make up a particular data stream may not all take the
 same route. Furthermore, they may not arrive in the order they were
 sent, if they even arrive at all. To improve on the basic scheme,
 TCP was layered on top of IP to give each end of a
 connection the ability to acknowledge receipt of IP packets and request
 retransmission of lost or corrupted packets. Furthermore, TCP allows the
 packets to be put back together on the receiving end in the same order
 they were sent.
TCP, however, carries a fair amount of overhead. Therefore, if the
 order of the data isn't particularly important and if the loss of
 individual packets won't completely corrupt the data stream, packets are
 sometimes sent without the guarantees that TCP provides. This is
 accomplished through the use of the UDP protocol. UDP is an unreliable protocol that does not
 guarantee that packets will arrive at their destination or that they
 will arrive in the same order they were sent. Although this would be a
 problem for uses such as file transfer, it is perfectly acceptable for
 applications where the loss of some data would go unnoticed by the end
 user. For example, losing a few bits from a video or audio signal won't
 cause much degradation; it would be a bigger problem if you had to wait
 for a protocol like TCP to request a retransmission of missing data.
 Furthermore, error-correcting codes can be built into UDP data streams
 at the application level to account for missing data.
A number of other protocols can run on top of IP. The most
 commonly requested is ICMP, the Internet Control Message Protocol, which
 uses raw IP datagrams to relay error messages between hosts. The
 best-known use of this protocol is in the ping program. Java does not
 support ICMP nor does it allow the sending of raw IP datagrams (as
 opposed to TCP segments or UDP datagrams). The only protocols Java
 supports are TCP and UDP, and application layer protocols built on top
 of these. All other transport layer, internet layer, and lower layer
 protocols such as ICMP, IGMP, ARP, RARP, RSVP, and others can only be
 implemented in Java programs by using native code.
IP Addresses and Domain Names

As a Java programmer, you don't need to worry about the
 inner workings of IP, but you do need to know about addressing. Every
 computer on an IPv4 network is identified by a four-byte number. This
 is normally written in a dotted quad format like 199.1.32.90, where each of the four
 numbers is one unsigned byte ranging in value from 0 to 255. Every
 computer attached to an IPv4 network has a unique four-byte address.
 When data is transmitted across the network, the packet's header
 includes the address of the machine for which the packet is intended
 (the destination address) and the address of the machine that sent the
 packet (the source address). Routers along the way choose the best
 route to send the packet along by inspecting the destination address.
 The source address is included so the recipient will know who to reply
 to.
There are a little more than four billion possible IP addresses,
 not even one for every person on the planet, much less for every
 computer. To make matters worse, the addresses aren't allocated very
 efficiently. A slow transition is under way to IPv6, which will use
 16-byte addresses. This provides enough IP addresses to identify every
 person, every computer, and indeed every atom on the planet. IPv6
 addresses are customarily written in eight blocks of four hexadecimal
 digits separated by colons, such as
 FEDC:BA98:7654:3210:FEDC:BA98:7654:3210. Leading
 zeros do not need to be written. A double colon, at most one of which
 may appear in any address, indicates multiple zero blocks. For
 example, FEDC:0000:0000:0000:00DC:0000:7076:0010
 could be written more compactly as
 FEDC::DC:0:7076:10. In mixed networks of IPv6 and
 IPv4, the last four bytes of the IPv6 address are sometimes written as
 an IPv4 dotted quad address. For example,
 FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 could be
 written as
 FEDC:BA98:7654:3210:FEDC:BA98:118.84.50.16. IPv6
 is only supported in Java 1.4 and later. Java 1.3 and earlier only
 support four-byte addresses.
Although computers are very comfortable with numbers, human
 beings aren't very good at remembering them. Therefore the Domain Name System (DNS) was developed to translate
 hostnames that humans can remember (like www.oreilly.com) into numeric
 Internet addresses (like 208.201.239.37). When Java
 programs access the network, they need to process both these numeric
 addresses and their corresponding hostnames. Methods for doing this
 are provided by the java.net.InetAddress class, which is
 discussed in Chapter 6.
Some computers, especially servers, have fixed addresses.
 Others, especially clients on local area networks and dial-up
 connections, receive a different address every time they boot up,
 often provided by a DHCP server or a PPP server. This is not
 especially relevant to your Java programs. Mostly you just need to
 remember that IP addresses may change over time, and not write any
 code that relies on a system having the same IP address. For instance,
 don't serialize the local IP address when saving application state.
 Instead, look it up fresh each time your program starts. It's also
 possible, although less likely, for an IP address to change while the
 program is running (for instance, if a dialup connection hangs up and
 then reconnects), so you may want to check the current IP address
 every time you need it rather than caching it. Otherwise, the
 difference between a dynamically and manually assigned address is not
 significant to Java programs.

Ports

Addresses would be all you needed if each computer did
 no more than one thing at a time. However, modern computers do many
 different things at once. Email needs to be separated from FTP
 requests, which need to be separated from web traffic. This is
 accomplished through ports. Each
 computer with an IP address has several thousand logical ports (65,535
 per transport layer protocol, to be precise). These are purely
 abstractions in the computer's memory and do not represent anything
 physical, like a serial or parallel port. Each port is identified by a
 number between 1 and 65,535. Each port can be allocated to a
 particular service.
For example, HTTP, the underlying protocol of the Web, generally
 uses port 80. We say that a web server listens on
 port 80 for incoming connections. When data is sent to a web server on
 a particular machine at a particular IP address, it is also sent to a
 particular port (usually port 80) on that machine. The receiver checks
 each packet it sees for the port and sends the data to any programs
 that are listening to the specified port. This is how different types
 of traffic are sorted out.
Port numbers between 1 and 1,023 are reserved for well-known
 services like finger, FTP, HTTP, and IMAP. On Unix systems, including
 Linux and Mac OS X, only programs running as root can receive data
 from these ports, but all programs may send data to them. On Windows
 and Mac OS 9, any program may use these ports without special
 privileges. Table 2-1
 shows the well-known ports for the protocols that are discussed in
 this book. These assignments are not absolutely guaranteed; in
 particular, web servers often run on ports other than 80, either
 because multiple servers need to run on the same machine or because
 the person who installed the server doesn't have the root privileges
 needed to run it on port 80. On Unix systems, a fairly complete
 listing of assigned ports is stored in the file /etc/services.
Table 2-1. Well-known port assignments
	Protocol
	Port
	Protocol
	Purpose

	echo
	7
	TCP/UDP
	Echo is a test protocol used to verify that two
 machines are able to connect by having one echo back the
 other's input.

	discard
	9
	TCP/UDP
	Discard is a less useful test protocol in which
 all data received by the server is ignored.

	daytime
	13
	TCP/UDP
	Provides an ASCII representation of the current
 time on the server.

	FTP data
	20
	TCP
	FTP uses two well-known ports. This port is used
 to transfer files.

	FTP
	21
	TCP
	This port is used to send FTP commands like
 put and get.

	SSH
	22
	TCP
	Used for encrypted, remote logins.

	telnet
	23
	TCP
	Used for interactive, remote command-line
 sessions.

	smtp
	25
	TCP
	The Simple Mail Transfer Protocol is used to send
 email between machines.

	time
	37
	TCP/UDP
	A time server returns the number of seconds that
 have elapsed on the server since midnight, January 1, 1900, as
 a four-byte, signed, big-endian integer.

	whois
	43
	TCP
	A simple directory service for Internet network
 administrators.

	finger
	79
	TCP
	A service that returns information about a user
 or users on the local system.

	HTTP
	80
	TCP
	The underlying protocol of the World Wide
 Web.

	POP3
	110
	TCP
	Post Office Protocol Version 3 is a protocol for
 the transfer of accumulated email from the host to
 sporadically connected clients.

	NNTP
	119
	TCP
	Usenet news transfer; more formally known as the
 "Network News Transfer Protocol".

	IMAP
	143
	TCP
	Internet Message Access Protocol is a protocol
 for accessing mailboxes stored on a server.

	RMI Registry
	1099
	TCP
	The registry service for Java remote objects.
 This will be discussed in Chapter 18.

The Internet

The Internet is the world's largest IP-based network. It is an
 amorphous group of computers in many different countries on all seven
 continents (Antarctica included) that talk to each other using the IP
 protocol. Each computer on the Internet has at least one unique IP
 address by which it can be identified. Most of them also have at least
 one name that maps to that IP address. The Internet is not owned by
 anyone, although pieces of it are. It is not governed by anyone, which
 is not to say that some governments don't try. It is simply a very large
 collection of computers that have agreed to talk to each other in a
 standard way.
The Internet is not the only IP-based network, but it is the
 largest one. Other IP networks are called internets
 with a little i: for example, a corporate IP
 network that is not connected to the Internet.
 Intranet is a current buzzword that loosely
 describes corporate practices of putting lots of data on internal web
 servers.
Unless you're working in a high security environment that's
 physically disconnected from the broader network, it's likely that the
 internet you'll be using is the Internet. To make sure that hosts on
 different networks on the Internet can communicate with each other, a
 few rules need to be followed that don't apply to purely internal
 internets. The most important rules deal with the assignment of
 addresses to different organizations, companies, and individuals. If
 everyone picked the Internet addresses they wanted at random, conflicts
 would arise almost immediately when different computers showed up on the
 Internet with the same address.
Internet Address Classes

To avoid this problem, blocks of IPv4 addresses are
 assigned to Internet Service Providers (ISPs) by their regional
 Internet registry. When a company or an organization wants to set up
 an IP-based network connected to the Internet, their ISP gives them a
 block of addresses. Traditionally, these blocks come in three sizes
 called Class A, Class B, and Class C. A Class C address block
 specifies the first three bytes of the address; for example, 199.1.32.
 This allows room for 254 individual addresses from 199.1.32.1 to
 199.1.32.254.[1] A class B address block only specifies the first two
 bytes of the addresses an organization may use; for instance, 167.1.
 Thus, a class B address has room for 65,024 different hosts (256 Class
 C size blocks times 254 hosts per Class C block). A class A address
 block only specifies the first byte of the address range—for instance,
 18—and therefore has room for over 16 million nodes.
Tip
There are also Class D and E addresses. Class D addresses are
 used for IP multicast groups, and will be discussed at length in
 Chapter 14. Class D addresses
 all begin with the four bits 1110. Class E addresses begin with the
 five bits 11110 and are reserved for future extensions to the
 Internet.

There's no block with a size between a class A and a Class B, or
 Class B and a Class C. This has become a problem because there are
 many organizations with more than 254 computers connected to the
 Internet but less than 65,024. If each of these organizations gets a
 full Class B block, many addresses are wasted. There's a limited
 number of IPv4 addresses—about 4.2 billion, to be precise. That sounds
 like a lot, but it gets crowded quickly when you can easily waste
 fifty or sixty thousand addresses at a shot.
There are also many networks, such as the author's own personal
 basement-area network, that have a few to a few dozen computers but
 not 255. To more efficiently allocate the limited address space,
 Classless Inter-Domain Routing (CIDR) was invented. CIDR
 mostly (though not completely) replaces the whole A, B, C, D, E
 addressing scheme with one based on a specified numbers of prefix
 bits. These prefixes are generally written as
 /nn, where nn is a two-digit
 number specifying the number of bits in the network portion of the
 address. The number after the / indicates the number of fixed prefix
 bits. Thus, a /24 fixes the first 24 bits in the address, leaving 8
 bits available to distinguish individual nodes. This allows 256 nodes,
 and is equivalent to an old style Class C. A /19 fixes 19 bits,
 leaving 13 for individual nodes within the network. It's equivalent to
 32 separate Class C networks or an eighth of a Class B. A /28,
 generally the smallest you're likely to encounter in practice, leaves
 only four bits for identifying local nodes. It can handle networks
 with up to 16 nodes. CIDR also carefully specifies which address
 blocks are associated with which ISPs. This scheme helps keep Internet
 routing tables smaller and more manageable than they would be under
 the old system.
Several address blocks and patterns are special. All IPv4
 addresses that begin with 10., 172.16. through 172.31., and 192.168.
 are deliberately unassigned. They can be used on internal networks,
 but no host using addresses in these blocks is allowed onto the global
 Internet. These non-routable addresses are useful for building private networks that
 can't be seen from the rest of the Internet or for building a large
 network when you've only been assigned a class C address block. IPv4
 addresses beginning with 127 (most commonly 127.0.0.1) always mean the
 local loopback address . That is, these addresses always point to the local
 computer, no matter which computer you're running on. The hostname for
 this address is generally localhost . In IPv6 0:0:0:0:0:0:0:1 (a.k.a. ::1) is the loopback
 address. The address 0.0.0.0 always refers to the originating host,
 but may only be used as a source address, not a destination.
 Similarly, any IPv4 address that begins with 0.0 is assumed to refer
 to a host on the same local network.

Network Address Translation

For reasons of both security and address space conservation,
 many smaller networks, such as the author's home network, use
 network address translation (NAT). Rather than allotting even a /28, my ISP gives
 me a single address, 216.254.85.72. Obviously, that
 won't work for the dozen or so different computers and other devices
 running in my apartment at any one time. Instead, I assign each one of
 them a different address in the non-routable block
 192.168.254.xxx. When they connect to the
 internet, they have to pass through a router my ISP sold me that
 translates the internal addresses into the external addresses.
The router watches my outgoing and incoming connections and
 adjusts the addresses in the IP packets. For an outgoing packet, it
 changes the source address to the router's external address (216.254.85.72 on my network). For
 an incoming packet, it changes the destination address to one of the
 local addresses, such as 192.168.254.12. Exactly how it
 keeps track of which connections come from and are aimed at which
 internal computers is not particularly important to a Java programmer.
 As long as your machines are configured properly, this process is
 mostly transparent to Java programs. You just need to remember that
 the external and internal addresses may not be the same. From outside
 my network, nobody can talk to my system at 192.168.254.12 unless I initiate
 the connection, or unless I configure my router to forward requests
 addressed to 216.254.85.72
 to 192.168.254.12. If the
 router is safe, then the rest of the network is too. On the other
 hand, if someone does crack the router or one of the servers behind
 the router that is mapped to 216.254.85.72, I'm hosed. This is
 why I installed a firewall as the next line of defense.

Firewalls

There are some naughty people on the Internet. To keep them out,
 it's often helpful to set up one point of access to a local network
 and check all traffic into or out of that access point. The hardware
 and software that sit between the Internet and the local network,
 checking all the data that comes in or out to make sure it's kosher,
 is called a firewall. The firewall is often part
 of the router that connects the local network to the broader Internet
 and may perform other tasks, such as network address translation. Then
 again, the firewall may be a separate machine. Modern operating
 systems like Mac OS X and Red Hat Linux often have built-in personal
 firewalls that monitor just the traffic sent to that one machine.
 Either way, the firewall is responsible for inspecting each packet
 that passes into or out of its network interface and accepting it or
 rejecting it according to a set of rules.
Filtering is usually based on network addresses and ports. For
 example, all traffic coming from the Class C network 193.28.25 may be
 rejected because you had bad experiences with hackers from that
 network in the past. Outgoing Telnet connections may be allowed, but
 incoming Telnet connections may not. Incoming connections on port 80
 (web) may be allowed, but only to the corporate web server. More
 intelligent firewalls look at the contents of the packets to determine
 whether to accept or reject them. The exact configuration of a
 firewall—which packets of data are and are not allowed to pass
 through—depends on the security needs of an individual site. Java
 doesn't have much to do with firewalls—except in so far as they often
 get in your way.

Proxy Servers

Proxy servers are related to firewalls. If a firewall prevents hosts
 on a network from making direct connections to the outside world, a
 proxy server can act as a go-between. Thus, a machine that is
 prevented from connecting to the external network by a firewall would
 make a request for a web page from the local proxy server instead of
 requesting the web page directly from the remote web server. The proxy
 server would then request the page from the web server and forward the
 response back to the original requester. Proxies can also be used for
 FTP services and other connections. One of the security advantages of
 using a proxy server is that external hosts only find out about the
 proxy server. They do not learn the names and IP addresses of the
 internal machines, making it more difficult to hack into internal
 systems.
While firewalls generally operate at the level of the transport
 or internet layer, proxy servers normally operate at the application
 layer. A proxy server has a detailed understanding of some application
 level protocols, such as HTTP and FTP. (The notable exception are
 SOCKS proxy servers that operate at the transport layer, and can proxy
 for all TCP and UDP connections regardless of application layer
 protocol.) Packets that pass through the proxy server can be examined
 to ensure that they contain data appropriate for their type. For
 instance, FTP packets that seem to contain Telnet data can be
 rejected. Figure 2-3 shows
 how proxy servers fit into the layer model.
[image: Layered connections through a proxy server]

Figure 2-3. Layered connections through a proxy server

As long as all access to the Internet is forwarded through the
 proxy server, access can be tightly controlled. For instance, a
 company might choose to block access to www.playboy.com but allow access
 to www.microsoft.com.
 Some companies allow incoming FTP but disallow outgoing FTP so
 confidential data cannot be as easily smuggled out of the company.
 Other companies have begun using proxy servers to track their
 employees' web usage so they can see who's using the Internet to get
 tech support and who's using it to check out the Playmate of the
 Month. Such monitoring of employee behavior is controversial and not
 exactly an indicator of enlightened management techniques.
Proxy servers can also be used to implement local caching. When a file is requested from a web
 server, the proxy server first checks to see if the file is in its
 cache. If the file is in the cache, the proxy serves the file from the
 cache rather than from the Internet. If the file is not in the cache,
 the proxy server retrieves the file, forwards it to the requester, and
 stores it in the cache for the next time it is requested. This scheme
 can significantly reduce load on an Internet connection and greatly
 improve response time. America Online runs one of the largest farm of
 proxy servers in the world to speed the transfer of data to its users.
 If you look at a web server logfile, you'll probably find some hits
 from clients in the http://aol.com domain, but
 not as many as you'd expect given the more than twenty million AOL
 subscribers. That's because AOL proxy servers supply many pages out of
 their cache rather than re-requesting them for each user. Many other
 large ISPs do similarly.
The biggest problem with proxy servers is their inability to
 cope with all but a few protocols. Generally established protocols
 like HTTP, FTP, and SMTP are allowed to pass through, while newer
 protocols like Gnutella are not. (Some network administrators would
 consider this a feature.) In the rapidly changing world of the
 Internet, this is a significant disadvantage. It's a particular
 disadvantage for Java programmers because it limits the effectiveness
 of custom protocols. In Java, it's easy and often useful to create a
 new protocol that is optimized for your application. However, no proxy
 server will ever understand these one-of-a-kind protocols.
 Consequently, some developers have taken to tunneling their protocols
 through HTTP, most notably with SOAP. However, this has a significant
 negative impact on security. The firewall is normally there for a
 reason, not just to annoy Java programmers.
Applets that run in web browsers use the proxy server settings
 of the web browser itself, generally set in a dialog box (possibly
 hidden several levels deep in the preferences) like the one in Figure 2-4. Standalone Java
 applications can indicate the proxy server to use by setting the
 socksProxyHost and socksProxyPort properties (if you're using a
 SOCKS proxy server), or http.proxySet, http.proxyHost, http.proxyPort, https.proxySet, https.proxyHost, https.proxyPort, ftpProxySet, ftpProxyHost, ftpProxyPort, gopherProxySet, gopherProxyHost, and gopherProxyPort system properties (if you're
 using protocol-specific proxies). You can set system properties from
 the command line using the -D flag,
 like this:
 java -DsocksProxyHost=
 socks.cloud9.net
 -DsocksProxyPort=
 1080
 MyClass
You can use any other convenient means to set these system
 properties, such as including them in the appletviewer.properties file, like
 this:
ftpProxySet=true
ftpProxyHost=ftp.proxy.cloud9.net
ftpProxyPort=1000
gopherProxySet=true
gopherProxyHost=gopher.proxy.cloud9.net
gopherProxyPort=9800
http.proxySet=true
http.proxyHost=web.proxy.cloud9.net
http.proxyPort=8000
https.proxySet=true
https.proxyHost=web.proxy.cloud9.net
https.proxyPort=8001
[image: Netscape Navigator proxy server settings]

Figure 2-4. Netscape Navigator proxy server settings

[1] Addresses with the last byte either .0 or .255 are reserved
 and should never actually be assigned to hosts.

The Client/Server Model

Most modern network programming is based on a
 client/server model. A client/server application typically stores large
 quantities of data on an expensive, high-powered server while most of
 the program logic and the user-interface is handled by client software
 running on relatively cheap personal computers. In most cases, a server
 primarily sends data while a client primarily receives it, but it is
 rare for one program to send or receive exclusively. A more reliable
 distinction is that a client initiates a conversation while a server
 waits for clients to start conversations with it. Figure 2-5 illustrates both
 possibilities. In some cases, the same program may be both a client and
 a server.
[image: A client/server connection]

Figure 2-5. A client/server connection

Some servers process and analyze the data before sending the
 results to the client. Such servers are often referred to as
 "application servers" to distinguish them from the more common file
 servers and database servers. A file or database server will retrieve
 information and send it to a client, but it won't process that
 information. In contrast, an application server might look at an order
 entry database and give the clients reports about monthly sales trends.
 An application server is not a server that serves files that happen to
 be applications.
You are already familiar with many examples of client/server
 systems. In 2004, the most popular client/server system on the Internet
 is the Web. Web servers like Apache respond to requests from web clients
 like Firefox. Data is stored on the web server and is sent out to the
 clients that request it. Aside from the initial request for a page,
 almost all data is transferred from the server to the client, not from
 the client to the server. Web servers that use CGI programs double as
 application and file servers. FTP is an older service that fits the
 client/server model. FTP uses different application protocols and
 different software, but is still split into FTP servers that send files
 and FTP clients that receive files. People often use FTP to upload files
 from the client to the server, so it's harder to say that the data
 transfer is primarily in one direction, but it is still true that an FTP
 client initiates the connection and the FTP server responds.
Not all applications fit easily into a client/server model. For
 instance, in networked games, it seems likely that both players will
 send data back and forth roughly equally (at least in a fair game).
 These sorts of connections are called peer-to-peer.
 The telephone system is the classic example of a peer-to-peer network.
 Each phone can either call another phone or be called by another phone.
 You don't have to buy one phone to send calls and another to receive
 them.
Java does not have explicit peer-to-peer communication in its core
 networking API (though Sun has implemented it in a separate open source
 project called JXTA). However, applications can easily offer
 peer-to-peer communications in several ways, most commonly by acting as
 both a server and a client. Alternately, the peers can communicate with
 each other through an intermediate server program that forwards data
 from one peer to the other peers. This is especially useful for applets
 with a security manager that restricts them from talking directly to
 each other.

Internet Standards

This book discusses several application-layer Internet
 protocols, most notably HTTP. However, this is not a book about those
 protocols and it tries not to say more than the minimum you need to
 know. If you need detailed information about any protocol, the
 definitive source is the standards document for the protocol.
While there are many standards organizations in the world, the two
 that produce most of the standards relevant to network programming and
 protocols are the Internet Engineering Task Force (IETF) and the World Wide Web Consortium (W3C). The IETF is a relatively
 informal, democratic body open to participation by any interested party.
 Its standards are based on "rough consensus and running code" and tend
 to follow rather than lead implementations. IETF standards include
 TCP/IP, MIME, and SMTP. The W3C, by contrast, is a vendor organization,
 controlled by dues-paying member corporations, that explicitly excludes
 participation by individuals. For the most part, the W3C tries to define
 standards in advance of implementation. W3C standards include HTTP,
 HTML, and XML.
IETF RFCs

IETF standards and near-standards are published as Internet
 drafts and requests for comments (RFCs). RFCs and Internet drafts
 range from informational documents of general interest to detailed
 specifications of standard Internet protocols like FTP. RFCs that
 document a standard or a proposed standard are published only with the
 approval of the Internet Engineering Steering Group (IESG) of the IETF.
 All IETF approved standards are RFCs, but not all RFCs are IETF
 standards. RFCs are available from many locations on the Internet,
 including http://www.faqs.org/rfc/ and http://www.ietf.org/rfc.html. For the most part RFCs,
 particularly standards-oriented RFCs, are very technical, turgid, and
 nearly incomprehensible. Nonetheless, they are often the only complete
 and reliable source of information about a particular protocol.
Most proposals for a standard begin when a person or group gets
 an idea and builds a prototype. The prototype is incredibly important.
 Before something can become an IETF standard, it must actually exist
 and work. This requirement ensures that IETF standards are at least
 feasible, unlike the standards promulgated by some other
 organizations. If the prototype becomes popular outside its original
 developers and if other organizations begin implementing their own
 versions of the protocol, a working group
 may be formed under the auspices of the IETF. This
 working group attempts to document the protocol in an
 Internet-Draft. Internet-Drafts are working
 documents and change frequently to reflect experience with the
 protocol. The experimental implementations and the Internet-Draft
 evolve in rough synchronization, until eventually the working group
 agrees that the protocol is ready to become a formal standard. At this
 point, the proposed specification is submitted to the IESG.
The proposal goes through six states or maturity levels as it
 follows the standardization track:
	Experimental

	Proposed standard

	Draft standard

	Standard

	Informational

	Historic

For some time after the proposal is submitted, it is considered
 experimental. The experimental stage does not
 imply that the protocol is not solid or that it is not widely used;
 unfortunately, the standards process usually lags behind de
 facto acceptance of the standard. If the IESG likes the
 experimental standard or it is in widespread use, the IESG will assign
 it an RFC number and publish it as an experimental RFC, generally
 after various changes.
If the experimental standard holds up well in further real world
 testing, the IESG may advance it to the status of proposed
 standard . A proposed standard is fairly loose, and is based on
 the experimental work of possibly as little as one organization.
 Changes may still be made to a protocol in this stage.
Once the bugs appear to have been worked out of a proposed
 standard and there are at least two independent implementations, the
 IESG may recommend that a proposed standard be promoted to a
 draft standard . A draft standard will probably not change too much
 before eventual standardization unless major flaws are found. The
 primary purpose of a draft standard is to clean up the RFC that
 documents the protocol and make sure the documentation conforms to
 actual practice, rather than to change the standard itself.
When a protocol completes this, it becomes an official Internet
 standard. It is assigned an STD number and is
 published as an STD in addition to an RFC. The absolute minimum time
 for a standard to be approved as such is 10 months, but in practice,
 the process almost always takes much longer. The commercial success of
 the Internet hasn't helped, since standards must now be worked out in
 the presence of marketers, vulture capitalists, lawyers, NSA spooks,
 and others with vested interests in seeing particular technologies
 succeed or fail. Therefore, many of the "standards" that this book
 references are in either the experimental, proposed, or draft stage.
 As of publication, there are over 3,800 RFCs. Less than one hundred of
 these have become STDs, and some of those that have are now obsolete.
 RFCs relevant to this book are detailed in Table 2-2.
Some RFCs that do not become standards are considered
 informational,. These include RFCs that specify
 protocols that are widely used but weren't developed within the normal
 Internet standards track, and haven't been through the formal
 standardization process. For example, NFS, originally developed by
 Sun, is described in the informational RFC 1813. Other informational
 RFCs provide useful information (like users' guides), but don't
 document a protocol. For example, RFC 1635, How to Use
 Anonymous FTP, is an informational RFC.
Finally, changing technology and increasing experience renders
 some protocols and their associated RFCs obsolete. These are
 classified as historic . Historic protocols include IMAP3 (replaced by IMAP4),
 POP2 (replaced by POP3), and Remote Procedure Call Version 1 (replaced
 by Remote Procedure Call Version 2).
In addition to its maturity level, a protocol has a requirement
 level. The possible requirement levels are:
	Not recommended
	Should not be implemented by anyone.

	Limited use
	May have to be implemented in certain unusual situations
 but won't be needed by most hosts. Mainly these are experimental
 protocols.

	Elective
	Can be implemented by anyone who wants to use the
 protocol. For example, RFC 2045, Multipurpose Internet
 Mail Extensions, is a Draft Elective Standard.

	Recommended
	Should be implemented by Internet hosts that don't have a
 specific reason not to implement it. Most protocols that you are
 familiar with (like TCP and UDP, SMTP for email, Telnet for
 remote login, etc.) are recommended.

	Required
	Must be implemented by all Internet hosts. There are very
 few required protocols. IP itself is one (RFC 791), but even
 protocols as important as TCP or UDP are only recommended. A
 standard is only required if it is absolutely essential to the
 functioning of a host on the Internet.

Table 2-2 lists the
 RFCs and STDs that provide formal documentation for the protocols
 discussed in this book.
Table 2-2. Selected Internet RFCs
	RFC
	Title
	Maturity level
	Requirement level
	Description

	RFC 3300
 STD 1
	Internet Official Protocol
 Standards
	Standard
	Required
	Describes the standardization process and the
 current status of the different Internet
 protocols.

	RFC 1122
 RFC 1123
 STD
 3
	Host Requirements
	Standard
	Required
	Documents the protocols that must be supported by
 all Internet hosts at different layers (data link layer, IP
 layer, transport layer, and application layer).

	RFC 791
 RFC 919
 RFC
 922
 RFC 950
 STD 5
	Internet Protocol
	Standard
	Required
	The IP internet layer protocol.

	RFC 768
 STD 6
	User Datagram Protocol
	Standard
	Recommended
	An unreliable, connectionless transport layer
 protocol.

	RFC 792
 STD 5
	Internet Control Message Protocol
 (ICMP)
	Standard
	Required
	An internet layer protocol that uses raw IP
 datagrams but is not supported by Java. Its most familiar use
 is the ping
 program.

	RFC 793
 STD 7
	Transmission Control Protocol
	Standard
	Recommended
	A reliable, connection-oriented, streaming
 transport layer protocol.

	RFC 2821
	Simple Mail Transfer Protocol
	Proposed standard
	Recommended
	The application layer protocol by which one host
 transfers email to another host. This standard doesn't say
 anything about email user interfaces; it covers the mechanism
 for passing email from one computer to another.

	RFC 822
 STD 11
	Format of Electronic Mail Messages
	Standard
	Recommended
	The basic syntax for ASCII text email messages.
 MIME is designed to extend this to support binary data while
 ensuring that the messages transferred still conform to this
 standard.

	RFC 854
 RFC 855
 STD
 8
	Telnet Protocol
	Standard
	Recommended
	An application-layer remote login service for
 command-line environments based around an abstract network
 virtual terminal (NVT) and TCP.

	RFC 862
 STD 20
	Echo Protocol
	Standard
	Recommended
	An application-layer protocol that echoes back
 all data it receives over both TCP and UDP; useful as a
 debugging tool.

	RFC 863
 STD 21
	Discard Protocol
	Standard
	Elective
	An application layer protocol that receives
 packets of data over both TCP and UDP and sends no response to
 the client; useful as a debugging tool.

	RFC 864
 STD 22
	Character Generator Protocol
	Standard
	Elective
	An application layer protocol that sends an
 indefinite sequence of ASCII characters to any client that
 connects over either TCP or UDP; also useful as a debugging
 tool.

	RFC 865
 STD 23
	Quote of the Day
	Standard
	Elective
	An application layer protocol that returns a
 quotation to any user who connects over either TCP or UDP and
 then closes the connection.

	RFC 867
 STD 25
	Daytime Protocol
	Standard
	Elective
	An application layer protocol that sends a
 human-readable ASCII string indicating the current date and
 time at the server to any client that connects over TCP or
 UDP. This contrasts with the various NTP and Time Server
 protocols, which do not return data that can be easily read by
 humans.

	RFC 868
 STD 26
	Time Protocol
	Standard
	Elective
	An application layer protocol that sends the time
 in seconds since midnight, January 1, 1900 to a client
 connecting over TCP or UDP. The time is sent as a
 machine-readable, 32-bit signed integer. The standard is
 incomplete in that it does not specify how the integer is
 encoded in 32 bits, but in practice a two's complement,
 big-endian integer is used.

	RFC 959
 STD 9
	File Transfer Protocol
	Standard
	Recommended
	An optionally authenticated, two-socket
 application layer protocol for file transfer that uses
 TCP.

	RFC 977
	Network News Transfer Protocol
	Proposed standard
	Elective
	The application layer protocol by which Usenet
 news is transferred from machine to machine over TCP; used by
 both news clients talking to news servers and news servers
 talking to each other.

	RFC 1034
 RFC 1035
 STD
 13
	Domain Name System
	Standard
	Recommended
	The collection of distributed software by which
 hostnames that human beings can remember, like www.oreilly.com, are
 translated into numbers that computers can understand, like
 198.112.208.11.
 This STD defines how domain name servers on different hosts
 communicate with each other using UDP.

	RFC 1112
	Host Extensions for IP
 Multicasting
	Standard
	Recommended
	The internet layer methods by which conforming
 systems can direct a single packet of data to multiple hosts.
 This is called multicasting; Java's support for multicasting
 is discussed in Chapter
 14.

	RFC 1153
	Digest Message Format for Mail
	Experimental
	Limited use
	A format for combining multiple postings to a
 mailing list into a single message.

	RFC 1288
	Finger Protocol
	Draft standard
	Elective
	An application layer protocol for requesting
 information about a user at a remote site. It can be a
 security risk.

	RFC 1305
	Network Time Protocol (Version 3)
	Draft standard
	Elective
	A more precise application layer protocol for
 synchronizing clocks between systems that attempts to account
 for network latency.

	RFC 1738
	Uniform Resource Locators
	Proposed standard
	Elective
	Full URLs like http://www.amnesty.org/ and
 ftp://ftp.ibiblio.org/pub/multimedia/chinese-music/Dream_Of_Red_Mansion/HLM04
 .Handkerchief.au.

	RFC 1808
	Relative Uniform Resource Locators
	Proposed standard
	Elective
	Partial URLs like
 /javafaq/books/ and
 ../examples/07/index.html used as values
 of the HREF attribute of an
 HTML A element.

	RFC 1939
 STD 53
	Post Office Protocol, Version 3
	Standard
	Elective
	An application-layer protocol used by
 sporadically connected email clients such as Eudora to
 retrieve mail from a server over TCP.

	RFC 1945
	Hypertext Transfer Protocol (HTTP
 1.0)
	Informational
	N/A
	Version 1.0 of the application layer protocol
 used by web browsers talking to web servers over TCP;
 developed by the W3C rather than the IETF.

	RFC 2045
 RFC 2046
 RFC
 2047
	Multipurpose Internet Mail
 Extensions
	Draft standard
	Elective
	A means of encoding binary data and non-ASCII
 text for transmission through Internet email and other
 ASCII-oriented protocols.

	RFC 2068
	Hypertext Transfer Protocol (HTTP
 1.1)
	Proposed standard
	Elective
	Version 1.1 of the application layer protocol
 used by web browsers talking to web servers over
 TCP.

	RFC 2141
	Uniform Resource Names (URN)
 Syntax
	Proposed standard
	Elective
	Similar to URLs but intended to refer to actual
 resources in a persistent fashion rather than the transient
 location of those resources.

	RFC 2373
	IP Version 6 Addressing
 Architecture
	Proposed standard
	Elective
	The format and meaning of IPv6
 addresses.

	RFC 2396
	Uniform Resource Identifiers (URI): Generic
 Syntax
	Proposed standard
	Elective
	Similar to URLs but cut a broader path. For
 instance, ISBN numbers may be URIs even if the book cannot be
 retrieved over the Internet.

	RFC 3501
	Internet Message Access Protocol Version
 4rev1
	Proposed standard
	Elective
	A protocol for remotely accessing a mailbox
 stored on a server including downloading messages, deleting
 messages, and moving messages into and out of different
 folders.

The IETF has traditionally worked behind the scenes, codifying
 and standardizing existing practice. Although its activities are
 completely open to the public, it's traditionally been very
 low-profile. There simply aren't that many people who get excited
 about the details of network arcana like the Internet Gateway Message
 Protocol (IGMP). The participants in the process have mostly been
 engineers and computer scientists, including many from academia as
 well as the corporate world. Consequently, despite often vociferous
 debates about ideal implementations, most serious IETF efforts have
 produced reasonable standards.
Unfortunately, that can't be said of the IETF's efforts to
 produce web (as opposed to Internet) standards. In particular, the
 IETF's early effort to standardize HTML was a colossal failure. The
 refusal of Netscape and other key vendors to participate or even
 acknowledge the process was a crucial problem. That HTML was simple
 enough and high-profile enough to attract the attention of assorted
 market-droids and random flamers didn't help matters either. Thus, in
 October 1994 the World Wide Web Consortium was formed as a
 vendor-controlled body that might be able to avoid the pitfalls that
 plagued the IETF's efforts to standardize HTML and HTTP.

W3C Recommendations

Although the W3C standardization process is similar to
 the IETF process (a series of working drafts hashed out on mailing
 lists resulting in an eventual specification), the W3C is a
 fundamentally different organization. Whereas the IETF is open to
 participation by anyone, only corporations and other organizations may
 become members of the W3C. Individuals are specifically excluded.
 Furthermore, although nonprofit organizations like the World Wide Web
 Artists Consortium (WWWAC) may join the W3C, only the employees of
 these organizations may participate in W3C activities. Their volunteer
 members are not welcome. Specific individual experts are occasionally
 invited to participate on a particular working group even though they
 are not employees of a W3C member company. However, the number of such
 individuals is quite small relative to the number of interested
 experts in the broader community. Membership in the W3C costs $50,000
 a year ($5,000 a year for nonprofits) with a minimum 3-year
 commitment. Membership in the IETF costs $0 a year with no commitment
 beyond a willingness to participate. And although many people
 participate in developing W3C standards, each standard is ultimately
 approved or vetoed by one individual, W3C director Tim Berners-Lee.
 IETF standards are approved by a consensus of the people who worked on
 the standard. Clearly, the IETF is a much more democratic (some would
 say anarchic) and open organization than the W3C.
Despite the W3C's strong bias toward the corporate members that
 pay its bills, it has so far managed to do a better job of navigating
 the politically tricky waters of Web standardization than the IETF. It
 has produced several HTML standards, as well as a variety of others
 such as HTTP, PICS, XML, CSS, MathML, and more. The W3C has had
 considerably less success in convincing vendors like Netscape and
 Microsoft to fully and consistently implement its standards.
The W3C has five basic levels of standards:
	Note
	A note is generally one of two things: either an
 unsolicited submission by a W3C member (similar to an IETF
 Internet draft) or random musings by W3C staff or related
 parties that do not actually describe a full proposal (similar
 to an IETF informational RFC). Notes will not necessarily lead
 to the formation of a working group or a W3C
 recommendation.

	Working drafts
	A working draft is a reflection of the current thinking of
 some (not necessarily all) members of a working group. It should
 eventually lead to a proposed recommendation, but by the time it
 does so it may have changed substantially.

	Candidate recommendation
	A candidate recommendation indicates that the working
 draft has reached consensus on all major issues and is ready for
 third-party comment and implementations. If the implementations
 do not uncover any obstructions, the spec can be promoted to a
 proposed recommendation.

	Proposed recommendation
	A proposed recommendation is mostly complete and unlikely
 to undergo more than minor editorial changes. The main purpose
 of a proposed recommendation is to work out bugs in the
 specification document rather than in the underlying technology
 being documented.

	Recommendation
	A recommendation is the highest level of W3C standard.
 However, the W3C is very careful not to actually call this a
 "standard" for fear of running afoul of antitrust statutes. The
 W3C describes a recommendation as a "work that represents
 consensus within W3C and has the Director's stamp of approval.
 W3C considers that the ideas or technology specified by a
 Recommendation are appropriate for widespread deployment and
 promote W3C's mission."

The W3C has not been around long enough to develop a need for a
 historical or informational standard status. Another difference the
 IETF and the W3C is that the W3C process rarely fails to elevate a
 standard to full recommendation status once work has actively
 commenced—that is, once a working group has been formed. This
 contrasts markedly with the IETF, which has more than a thousand
 proposed and draft standards, but only a few dozen actual
 standards.
PR Standards
In recent years, companies seeking a little free press
 or perhaps a temporary boost to their stock price have abused both
 the W3C and IETF standards processes. The IETF will accept a
 submission from anyone, and the W3C will accept a submission from
 any W3C member. The IETF calls these submissions "Internet drafts"
 and publishes them for six months before deleting them. The W3C
 refers to such submissions as "acknowledged submissions" and
 publishes them indefinitely. However, neither organization actually
 promises to do more than acknowledge receipt of these documents. In
 particular, they do not promise to form a working group or begin the
 standardization process. Nonetheless, press releases invariably
 misrepresent the submission of such a document as a far more
 significant event than it actually is. PR reps can generally count
 on suckering at least a few clueless reporters who aren't up to
 speed on the intimate details of the standardization process.
 However, you should recognize these ploys for what they are.

Chapter 3. Basic Web Concepts

Java can do a lot more than create flashy web pages.
 Nonetheless, many of your programs will be applets on web pages, servlets
 running on the server, or web services that need to talk to other web
 servers and clients. Therefore, it's important to have a solid
 understanding of the interaction between web servers and web
 browsers.
The Hypertext Transfer Protocol (HTTP) is a standard that
 defines how a web client talks to a server and how data is transferred
 from the server back to the client. The architecture and design of the
 HTTP protocol is Representational State Transfer (REST). HTTP can be used
 to transfer data in essentially any format, from TIFF pictures to
 Microsoft Word documents to DBase files. However, far and away the most
 common format for data transferred over the Web and in some sense the
 Web's native format is the Hypertext Markup Language (HTML). HTML is a simple standard
 for describing the semantic value of textual data. You can say "this is a
 header", "this is a list item", "this deserves emphasis", and so on, but
 you can't specify how headers, lists, and other items are formatted:
 formatting is up to the browser. HTML is a "hypertext markup language"
 because it includes a way to specify links to other documents identified
 by URLs. A URL is a way to unambiguously identify the location of a
 resource on the Internet. To understand network programming, you'll need
 to understand URLs, HTML, and HTTP in somewhat more detail than the
 average web page designer.
URIs

A Uniform Resource Identifier (URI) is a string of
 characters in a particular syntax that identifies a resource. The
 resource identified may be a file on a server, but it may also be an
 email address, a news message, a book, a person's name, an Internet
 host, the current stock price of Sun Microsystems, or something else. An
 absolute URI is made up of a scheme for the URI and a scheme-specific
 part, separated by a colon, like this:
 scheme:scheme-specific-part
The syntax of the scheme-specific part depends on the scheme being
 used. Current schemes include:
	data
	Base64-encoded data included directly in a link; see RFC
 2397

	file
	A file on a local disk

	ftp
	An FTP server

	http
	A World Wide Web server using the Hypertext Transfer
 Protocol

	gopher
	A Gopher server

	mailto
	An email address

	news
	A Usenet newsgroup

	telnet
	A connection to a Telnet-based service

	urn
	A Uniform Resource Name

In addition, Java makes heavy use of nonstandard custom schemes
 such as rmi, jndi, and
 doc for various purposes. We'll look at the
 mechanism behind this in Chapter
 16, when we discuss protocol handlers.
There is no specific syntax that applies to the scheme-specific
 parts of all URIs. However, many have a hierarchical form, like
 this:
//authority/path?query
The authority part of the URI names the
 authority responsible for resolvin g the rest of the URI. For instance,
 the URI http://www.ietf.org/rfc/rfc2396.txt has
 the scheme http and the authority www.ietf.org. This means the server at
 www.ietf.org is responsible for
 mapping the path /rfc/rfc2396.txt to a resource.
 This URI does not have a query part. The URI http://www.powells.com/cgi-bin/biblio?inkey=62-1565928709-0
 has the scheme http, the authority www.powells.com, the path /biblio, and the query inkey=62-1565928709-0. The URI
 urn:isbn:156592870 has the scheme
 urn but doesn't follow the hierarchical
 //authority/path?query form for scheme-specific
 parts.
Although most current examples of URIs use an Internet host as an
 authority, future schemes may not. However, if the authority is an
 Internet host, optional usernames and ports may also be provided to make
 the authority more specific. For example, the URI
 ftp://mp3:mp3@ci43198-a.ashvil1.nc.home.com:33/VanHalen-Jump.mp3
 has the authority
 mp3:mp3@ci43198-a.ashvil1.nc.home.com:33. This
 authority has the username mp3, the password
 mp3, the host
 ci43198-a.ashvil1.nc.home.com, and the port
 33. It has the scheme ftp and
 the path /VanHalen-Jump.mp3. (In most cases,
 including the password in the URI is a big security hole unless, as
 here, you really do want everyone in the universe to know the
 password.)
The path (which includes its initial /) is a
 string that the authority can use to determine which resource is
 identified. Different authorities may interpret the same path to refer
 to different resources. For instance, the path
 /index.html means one thing when the authority is
 www.landoverbaptist.org and
 something very different when the authority is www.churchofsatan.com. The
 path may be hierarchical, in which case the individual parts are
 separated by forward slashes, and the . and ..
 operators are used to navigate the hierarchy. These are derived from the
 pathname syntax on the Unix operating systems where the Web and URLs
 were invented. They conveniently map to a filesystem stored on a Unix
 web server. However, there is no guarantee that the components of any
 particular path actually correspond to files or directories on any
 particular filesystem. For example, in the URI http://www.amazon.com/exec/obidos/ISBN%3D1565924851/cafeaulaitA/002-3777605-3043449,
 all the pieces of the hierarchy are just used to pull information out of
 a database that's never stored in a filesystem.
 ISBN%3D1565924851 selects the particular book from
 the database by its ISBN number, cafeaulaitA
 specifies who gets the referral fee if a purchase is made from this
 link, and 002-3777605-3043449 is a session key used
 to track the visitor's path through the site.
Some URIs aren't at all hierarchical, at least in the filesystem
 sense. For example,
 snews://secnews.netscape.com/netscape.devs-java has
 a path of /netscape.devs-java. Although there's
 some hierarchy to the newsgroup names indicated by the . between
 netscape and
 netscape.devs-java, it's not visible as part of the
 URI.
The scheme part is composed of lowercase letters, digits, and the
 plus sign, period, and hyphen. The other three parts of a typical URI
 (authority, path, and query) should each be composed of the ASCII
 alphanumeric characters; that is, the letters A-Z, a-z, and the digits
 0-9. In addition, the punctuation characters - _ . ! ~ * ' may also be
 used. All other characters, including non-ASCII alphanumerics such as á
 and , should be escaped by a percent sign (%) followed by the
 hexadecimal code for the character. For instance, á would be encoded as
 %E1. A URL so transformed is said to have been
 "x-www-form-urlencoded".
This process assumes that the character set is the Latin 1. The
 URI and URL specifications don't actually say what character set should
 be used, which means most software tends to use the local default
 character set. Thus, URLs containing non-ASCII characters aren't very
 interoperable across different platforms and languages. With the Web
 becoming more international and less English daily, this situation has
 become increasingly problematic. Work is ongoing to define
 Internationalized Resource Identifiers (IRIs) that can use the full
 range of Unicode. At the time of this writing, the IRI draft
 specification indicates that non-ASCII characters should be encoded by
 first converting them to UTF-8, then percent-escaping each byte of the
 UTF-8, as specified above. For instance, the Greek letter is Unicode
 code point 3C0. In UTF-8, this letter is encoded as the three bytes E0,
 A7, 80. Thus in a URL it would be encoded as %E0%A7%80.
Punctuation characters such as / and @ must also be encoded with
 percent escapes if they are used in any role other than what's specified
 for them in the scheme-specific part of a particular URL. For example,
 the forward slashes in the URI http://www.cafeaulait.org/books/javaio/ do not need to be
 encoded as %2F because they serve to delimit the
 hierarchy as specified for the http URI scheme.
 However, if a filename includes a / character—for instance, if the last
 directory were named Java I/O instead of
 javaio to more closely match the name of the
 book—the URI would have to be written as http://www.cafeaulait.org/books/Java%20I%2FO/. This is
 not as farfetched as it might sound to Unix or Windows users. Mac
 filenames frequently include a forward slash. Filenames on many
 platforms often contain characters that need to be encoded, including @,
 $, +, =, and many more.
URNs

There are two types of URIs: Uniform Resource Locators (URLs)
 and Uniform Resource Names (URNs). A URL is a pointer to a
 particular resource on the Internet at a particular location. For
 example, http://www.oreilly.com/catalog/javanp3/
 is one of several URLs for the book Java Network
 Programming. A URN is a name for a particular resource but
 without reference to a particular location. For instance,
 urn:isbn:1565928709 is a URN referring to the
 same book. As this example shows, URNs, unlike URLs, are not limited
 to Internet resources.
The goal of URNs is to handle resources that are mirrored in
 many different locations or that have moved from one site to another;
 they identify the resource itself, not the place where the resource
 lives. For instance, when given a URN for a particular piece of
 software, an FTP program should get the file from the nearest mirror
 site. Given a URN for a book, a browser might reserve the book at the
 local library or order a copy from a bookstore.
A URN has the general form:
 urn:namespace:resource_name
The namespace is the name of a
 collection of certain kinds of resources maintained by some authority.
 The resource_name is the name of a resource
 within that collection. For instance, the URN
 urn:ISBN:1565924851 identifies a resource in the
 ISBN namespace with the identifier
 1565924851. Of all the books published, this one
 selects the first edition of Java I/O.
The exact syntax of resource names depends on the namespace. The
 ISBN namespace expects to see strings composed of 10 or 13 characters,
 all of which are digits—with the single exception that the last
 character may be the letter X (either upper- or
 lowercase) instead. Furthermore, ISBNs may contain hyphens that are
 ignored when comparing. Other namespaces will use very different
 syntaxes for resource names. The IANA is responsible for handing out
 namespaces to different organizations, as described in RFC 3406.
 Basically, you have to submit an Internet draft to the IETF and
 publish an announcement on the urn-nid mailing list for public comment
 and discussion before formal standardization.

URLs

A URL identifies the location of a resource on the
 Internet. It specifies the protocol used to access a server (e.g.,
 FTP, HTTP), the name of the server, and the location of a file on that
 server. A typical URL looks like http://www.ibiblio.org/javafaq/javatutorial.html. This
 specifies that there is a file called
 javatutorial.html in a directory called
 javafaq on the server
 www.ibiblio.org, and that this file can be
 accessed via the HTTP protocol. The syntax of a URL is:
 protocol://username@hostname:port/path/filename?query#fragment
Here the protocol is another word for what was called the scheme
 of the URI. (Scheme is the word used in the URI
 RFC. Protocol is the word used in the Java
 documentation.) In a URL, the protocol part can be
 file, ftp,
 http, https,
 gopher, news,
 telnet, wais, or various
 other strings (though not urn).
The hostname part of a URL is the name of
 the server that provides the resource you want, such as
 www.oreilly.com or
 utopia.poly.edu. It can also be the server's IP
 address, such as 204.148.40.9 or 128.238.3.21. The
 username is an optional username for the server. The
 port number is also optional. It's not necessary
 if the service is running on its default port (port 80 for HTTP servers).
The path points to a particular directory on the specified
 server. The path is relative to the document root of the server, not
 necessarily to the root of the filesystem on the server. As a rule,
 servers that are open to the public do not show their entire
 filesystem to clients. Rather, they show only the contents of a
 specified directory. This directory is called the document root, and
 all paths and filenames are relative to it. Thus, on a Unix server,
 all files that are available to the public might be in
 /var/public/html, but to somebody connecting from
 a remote machine, this directory looks like the root of the
 filesystem.
The filename points to a particular file in the directory
 specified by the path. It is often omitted—in which case, it is left
 to the server's discretion what file, if any, to send. Many servers
 send an index file for that directory, often called
 index.html or Welcome.html.
 Some send a list of the files and folders in the directory, as shown
 in Figure 3-1. Others may
 send a 403 Forbidden error message, as shown in Figure 3-2.
[image: A web server configured to send a directory list when no index file exists]

Figure 3-1. A web server configured to send a directory list when no
 index file exists

[image: A web server configured to send a 403 error when no index file exists]

Figure 3-2. A web server configured to send a 403 error when no index
 file exists

The query string provides additional arguments for the server.
 It's commonly used only in http URLs, where it
 contains form data for input to programs running on the server.
Finally, the fragment references a particular
 part of the remote resource. If the remote resource is HTML, the
 fragment identifier names an anchor in the HTML document. If the
 remote resource is XML, the fragment identifier is an XPointer. Some
 documents refer to the fragment part of the URL as a "section"; Java
 documents rather unaccountably refer to the fragment identifier as a
 "Ref". A named anchor is created in an HTML document with a tag, like
 this:
Comments
This tag identifies a particular point in a document. To refer
 to this point, a URL includes not only the document's filename but the
 named anchor separated from the rest of the URL by a #:
http://www.cafeaulait.org/javafaq.html#xtocid1902914
Tip
Technically, a string that contains a fragment identifier is a
 URL reference, not a URL. Java, however, does not distinguish
 between URLs and URL references.

Relative URLs

A URL tells the web browser a lot about a document: the
 protocol used to retrieve the document, the name of the host where the
 document lives, and the path to that document on the host. Most of
 this information is likely to be the same for other URLs that are
 referenced in the document. Therefore, rather than requiring each URL
 to be specified in its entirety, a URL may inherit the protocol,
 hostname, and path of its parent document (i.e., the document in which
 it appears). URLs that aren't complete but inherit pieces from their
 parent are called relative URLs. In contrast, a
 completely specified URL is called an absolute
 URL. In a relative URL, any pieces that are missing are
 assumed to be the same as the corresponding pieces from the URL of the
 document in which the URL is found. For example, suppose that while
 browsing http://www.ibiblio.org/javafaq/javatutorial.html you
 click on this hyperlink:

The browser cuts javatutorial.html off the
 end of http://www.ibiblio.org/javafaq/javatutorial.html to get
 http://www.ibiblio.org/javafaq/. Then it
 attaches javafaq.html onto the end of http://www.ibiblio.org/javafaq/ to get http://www.ibiblio.org/javafaq/javafaq.html. Finally,
 it loads that document.
If the relative link begins with a /, then it is relative to the document root
 instead of relative to the current file. Thus, if you click on the
 following link while browsing http://www.ibiblio.org/javafaq/javatutorial.html:

the browser would throw away
 /javafaq/javatutorial.html and attach
 /boutell/faq/www_faq.html to the end of http://www.ibiblio.org to get http://www.ibiblio.org/boutell/faq/www_faq.html.
Relative URLs have a number of advantages. First—and least
 important—they save a little typing. More importantly, relative URLs
 allow a single document tree to be served by multiple protocols: for
 instance, both FTP and HTTP. The HTTP might be used for direct
 surfing, while the FTP could be used for mirroring the site. Most
 importantly of all, relative URLs allow entire trees of documents to
 be moved or copied from one site to another without breaking all the
 internal links.

HTML, SGML, and XML

 HTML is the primary format used for Web documents. As I
 said earlier, HTML is a simple standard for describing the semantic
 content of textual data. The idea of describing a text's semantics
 rather than its appearance comes from an older standard called the
 Standard Generalized Markup Language (SGML). Standard HTML
 is an instance of SGML. SGML was invented in the mid-1970s by Charles
 Goldfarb, Edward Mosher, and Raymond Lorie at IBM. SGML is now an
 International Standards Organization (ISO) standard, specifically ISO
 8879:1986.
SGML and, by inheritance, HTML are based on the notion of design
 by meaning rather than design by appearance. You don't say that you want
 some text printed in 18-point type; you say that it is a top-level
 heading (<H1> in HTML).
 Likewise, you don't say that a word should be placed in italics. Rather,
 you say it should be emphasized (in HTML). It is left to the browser
 to determine how to best display headings or emphasized text.
The tags used to mark up the text are case-insensitive. Thus,
 is the same as
 is the same as
 is the same as
 . Some tags have a
 matching end-tag to define a region of text. An end-tag is the same as
 the start-tag, except that the opening angle bracket is followed by a
 /. For example: this text is strong; this text is emphasized. The entire text from
 the beginning of the start-tag to the end of the end-tag is called an
 element . Thus, this text
 is strong is a STRONG element.
HTML elements may nest but they should not overlap. The first line
 in the following example is standard-conforming. The second line is not,
 though many browsers accept it nonetheless:
Jack and Jill went up the hill
to fetch a pail of water
Some elements have additional attributes that are encoded as
 name-value pairs on the start-tag. The <H1> tag and most other paragraph-level
 tags may have an ALIGN attribute that
 says whether the header should be centered, left-aligned, or
 right-aligned. For example:
<H1 ALIGN=CENTER> This is a centered H1 heading </H1>
The value of an attribute may be enclosed in double or single
 quotes, like this:
<H1 ALIGN="CENTER"> This is a centered H1 heading </H1>
<H2 ALIGN='LEFT'> This is a left-aligned H2 heading </H2>
Quotes are required only if the value contains embedded spaces.
 When processing HTML, you need to be prepared for attribute values that
 do and don't have quotes.
There have been several versions of HTML over the years. The
 current standard is HTML 4.0, most of which is supported by current web
 browsers, with occasional exceptions. Furthermore, several companies,
 notably Netscape, Microsoft, and Sun, have added nonstandard extensions
 to HTML. These include blinking text, inline movies, frames, and, most
 importantly for this book, applets. Some of these extensions—for
 example, the <APPLET> tag—are
 allowed but deprecated in HTML 4.0. Others, such as Netscape's notorious
 <BLINK>, come out of left field
 and have no place in a semantically-oriented language like HTML.
HTML 4.0 may be the end of the line, aside from minor fixes. The
 W3C has decreed that HTML is getting too bulky to layer more features on
 top of. Instead, new development will focus on XML, a semantic language that allows page authors to
 create the elements they need rather than relying on a few fixed
 elements such as P and LI. For example, if you're writing a web page
 with a price list, you would likely have an SKU element, a PRICE element, a MANUFACTURER element, a PRODUCT element, and so forth. That might look
 something like this:
<PRODUCT MANUFACTURER="IBM">
 <NAME>Lotus Smart Suite</NAME>
 <VERSION>9.8</VERSION>
 <PLATFORM>Windows</PLATFORM>
 <PRICE CURRENCY="US">299.95</PRICE>
 <SKU>D05WGML</SKU>
</PRODUCT>
This looks a lot like HTML, in much the same way that Java looks
 like C. There are elements and attributes. Tags are set off by < and >. Attributes are enclosed in quotation
 marks, and so forth. However, instead of being limited to a finite set
 of tags, you can create all the new and unique tags you need. Since no
 browser can know in advance all the different elements that may appear,
 a stylesheet is used to describe how each of the
 items should be displayed.
XML has another advantage over HTML that may not be obvious from
 this simple example. HTML can be quite sloppy. Elements are opened but
 not closed. Attribute values may or may not be enclosed in quotes. The
 quotes may or may not be present. XML tightens all this up. It lays out
 very strict requirements for the syntax of a well-formed XML document,
 and it requires that browsers reject all malformed documents. Browsers
 may not attempt to fix the problem and make a best-faith effort to
 display what they think the author meant. They must simply report the
 error. Furthermore, an XML document may have a Document Type Definition
 (DTD), which can impose additional constraints on valid documents. For
 example, a DTD may require that every PRODUCT element contain exactly one NAME element. This has a number of advantages,
 but the key one here is that XML documents are far easier to parse than
 HTML documents. As a programmer, you will find it much easier to work
 with XML than HTML.
XML can be used both for pure XML pages and for embedding new
 kinds of content in HTML and XHTML. For example, the Mathematical Markup
 Language, MathML, is an XML application for including mathematical
 equations in web pages. SMIL, the Synchronized Multimedia Integration
 Language, is an XML application for including timed multimedia such as
 slide shows and subtitled videos on web pages. More recently, the W3C
 has released several versions of XHTML. This language uses the familiar
 HTML vocabulary (p for paragraphs,
 tr for table rows, img for pictures, and so forth) but requires
 the document to follow XML's stricter rules: all attribute values must
 be quoted; every start-tag must have a matching end-tag; elements can
 nest but cannot overlap; etc. For a lot more information about XML, see
 XML in a Nutshell by Elliotte Rusty Harold and W.
 Scott Means (O'Reilly).

HTTP

HTTP is the standard protocol for communication between
 web browsers and web servers. HTTP specifies how a client and server
 establish a connection, how the client requests data from the server,
 how the server responds to that request, and finally, how the connection
 is closed. HTTP connections use the TCP/IP protocol for data transfer.
 For each request from client to server, there is a sequence of four
 steps:
	Making the connection
	The client establishes a TCP connection to the server on
 port 80, by default; other ports may be specified in the
 URL.

	Making a request
	The client sends a message to the server requesting the page
 at a specified URL. The format of this request is typically
 something like:
GET /index.html HTTP/1.0
GET specifies the
 operation being requested. The operation requested here is for the
 server to return a representation of a resource. /index.html is a relative URL that
 identifies the resource requested from the server. This resource
 is assumed to reside on the machine that receives the request, so
 there is no need to prefix it with http://www.thismachine.com/.HTTP/1.0 is the version of the protocol
 that the client understands. The request is terminated with two
 carriage return/linefeed pairs (\r\n\r\n in Java parlance), regardless
 of how lines are terminated on the client or server
 platform.
Although the GET line is
 all that is required, a client request can include other
 information as well. This takes the following form:
 Keyword: Value
The most common such keyword is Accept, which tells the server what
 kinds of data the client can handle (though servers often ignore
 this). For example, the following line says that the client can
 handle four MIME media types, corresponding to HTML documents,
 plain text, and JPEG and GIF images:
Accept: text/html, text/plain, image/gif, image/jpeg
User-Agent is another
 common keyword that lets the server know what browser is being
 used, allowing the server to send files optimized for the
 particular browser type. The line below says that the request
 comes from Version 2.4 of the Lynx browser:
User-Agent: Lynx/2.4 libwww/2.1.4
All but the oldest first-generation browsers also include a
 Host field specifying the
 server's name, which allows web servers to distinguish between
 different named hosts served from the same IP address. Here's an
 example:
Host: www.cafeaulait.org
Finally, the request is terminated with a blank line—that
 is, two carriage return/linefeed pairs, \r\n\r\n. A complete request might look
 like this:
GET /index.html HTTP/1.0
Accept: text/html, text/plain, image/gif, image/jpeg
User-Agent: Lynx/2.4 libwww/2.1.4
Host: www.cafeaulait.org
In addition to GET, there
 are several other request types. HEAD retrieves only the header for the
 file, not the actual data. This is commonly used to check the
 modification date of a file, to see whether a copy stored in the
 local cache is still valid. POST sends form data to the server,
 PUT uploads a resource to the
 server, and DELETE removes a
 resource from the server.

	The response
	The server sends a response to the client. The response
 begins with a response code, followed by a header full of
 metadata, a blank line, and the requested document or an error
 message. Assuming the requested document is found, a typical
 response looks like this:
HTTP/1.1 200 OK
Date: Mon, 15 Sep 2003 21:06:50 GMT
Server: Apache/2.0.40 (Red Hat Linux)
Last-Modified: Tue, 15 Apr 2003 17:28:57 GMT
Connection: close
Content-Type: text/html; charset=ISO-8859-1
Content-length: 107

<html>
<head>
<title>
A Sample HTML file
</title>
</head>
<body>
The rest of the document goes here
</body>
</html>
The first line indicates the protocol the server is using
 (HTTP/1.1), followed by a
 response code. 200 OK is the most common response code,
 indicating that the request was successful. Table 3-1 is a complete
 list of the response codes used by HTTP 1.0; HTTP 1.1 adds many
 more to this list. The other header lines identify the date the
 request was made in the server's time frame, the server software
 (Apache 2.0.40), the date this document was last modified, a
 promise that the server will close the connection when it's
 finished sending, the MIME content type, and the length of the
 document delivered (not counting this header)—in this case, 107
 bytes.

	Closing the connection
	Either the client or the server or both close the
 connection. Thus, a separate network connection is used for each
 request. If the client reconnects, the server retains no memory of
 the previous connection or its results. A protocol that retains no
 memory of past requests is called stateless;
 in contrast, a stateful protocol such as FTP
 can process many requests before the connection is closed. The
 lack of state is both a strength and a weakness of HTTP.

Table 3-1. HTTP 1.0 response codes
	Response code
	Meaning

	2xx Successful
	Response codes between 200 and 299 indicate that
 the request was received, understood, and
 accepted.

	200 OK
	This is the most common response code. If the
 request used GET or POST, the requested data is contained
 in the response along with the usual headers. If the request
 used HEAD, only the header
 information is included.

	201 Created
	The server has created a data file at a URL
 specified in the body of the response. The web browser should
 now attempt to load that URL. This is sent only in response to
 POST requests.

	202 Accepted
	This rather uncommon response indicates that a
 request (generally from POST)
 is being processed, but the processing is not yet complete so no
 response can be returned. The server should return an HTML page
 that explains the situation to the user, provides an estimate of
 when the request is likely to be completed, and, ideally, has a
 link to a status monitor of some kind.

	204 No Content
	The server has successfully processed the request
 but has no information to send back to the client. This is
 usually the result of a poorly written form-processing program
 that accepts data but does not return a response to the user
 indicating that it has finished.

	3xx Redirection
	Response codes from 300 to 399 indicate that the
 web browser needs to go to a different page.

	300 Multiple Choices
	The page requested is available from one or more
 locations. The body of the response includes a list of locations
 from which the user or web browser can pick the most appropriate
 one. If the server prefers one of these locations, the URL of
 this choice is included in a Location header, which web browsers
 can use to load the preferred page.

	301 Moved Permanently
	The page has moved to a new URL. The web browser
 should automatically load the page at this URL and update any
 bookmarks that point to the old URL.

	302 Moved Temporarily
	This unusual response code indicates that a page is
 temporarily at a new URL but that the document's location will
 change again in the foreseeable future, so bookmarks should not
 be updated.

	304 Not Modified
	The client has performed a GET request but used the If-Modified-Since header to indicate
 that it wants the document only if it has been recently updated.
 This status code is returned because the document has not been
 updated. The web browser will now load the page from a
 cache.

	4xx Client Error
	Response codes from 400 to 499 indicate that the
 client has erred in some fashion, although the error may as
 easily be the result of an unreliable network connection as of a
 buggy or nonconforming web browser. The browser should stop
 sending data to the server as soon as it receives a 4xx
 response. Unless it is responding to a HEAD request, the server should
 explain the error status in the body of its
 response.

	400 Bad Request
	The client request to the server used improper
 syntax. This is rather unusual, although it is likely to happen
 if you're writing and debugging a client.

	401 Unauthorized
	Authorization, generally username and password
 controlled, is required to access this page. Either the username
 and password have not yet been presented or the username and
 password are invalid.

	403 Forbidden
	The server understood the request but is
 deliberately refusing to process it. Authorization will not
 help. One reason this occurs is that the client asks for a
 directory listing but the server is not configured to provide
 it, as shown in Figure
 3-1.

	404 Not Found
	This most common error response indicates that the
 server cannot find the requested page. It may indicate a bad
 link, a page that has moved with no forwarding address, a
 mistyped URL, or something similar.

	5xx Server Error
	Response codes from 500 to 599 indicate that
 something has gone wrong with the server, and the server cannot
 fix the problem.

	500 Internal Server Error
	An unexpected condition occurred that the server
 does not know how to handle.

	501 Not Implemented
	The server does not have the feature that is needed
 to fulfill this request. A server that cannot handle POST requests might send this response
 to a client that tried to POST form data to it.

	502 Bad Gateway
	This response is applicable only to servers that
 act as proxies or gateways. It indicates that the proxy received
 an invalid response from a server it was connecting to in an
 effort to fulfill the request.

	503 Service Unavailable
	The server is temporarily unable to handle the
 request, perhaps as a result of overloading or
 maintenance.

HTTP 1.1 more than doubles the number of responses. However, a
 response code from 200 to 299 always indicates success, a response code
 from 300 to 399 always indicates redirection, one from 400 to 499 always
 indicates a client error, and one from 500 to 599 indicates a server
 error.
HTTP 1.0 is documented in the informational RFC 1945; it is not an
 official Internet standard because it was primarily developed outside
 the IETF by early browser and server vendors. HTTP 1.1 is a proposed
 standard being developed by the W3C and the HTTP working group of the
 IETF. It provides for much more flexible and powerful communication
 between the client and the server. It's also a lot more scalable. It's
 documented in RFC 2616. HTTP 1.0 is the basic version of the protocol.
 All current web servers and browsers understand it. HTTP 1.1 adds
 numerous features to HTTP 1.0, but doesn't change the underlying design
 or architecture in any significant way. For the purposes of this book,
 it will usually be sufficient to understand HTTP 1.0.
The primary improvement in HTTP 1.1 is connection
 reuse. HTTP 1.0 opens a new connection for every request. In
 practice, the time taken to open and close all the connections in a
 typical web session can outweigh the time taken to transmit the data,
 especially for sessions with many small documents. HTTP 1.1 allows a
 browser to send many different requests over a single connection; the
 connection remains open until it is explicitly closed. The requests and
 responses are all asynchronous. A browser doesn't need to wait for a
 response to its first request before sending a second or a third.
 However, it remains tied to the basic pattern of a client request
 followed by a server response. Each request and response has the same
 basic form: a header line, an HTTP header containing metadata, a blank
 line, and then the data itself.
There are a lot of other, smaller improvements in HTTP 1.1.
 Requests include a Host header field
 so that one web server can easily serve different sites at different
 URLs. Servers and browsers can exchange compressed files and particular
 byte ranges of a document, both of which decrease network traffic. And
 HTTP 1.1 is designed to work much better with proxy servers. HTTP 1.1 is
 a superset of HTTP 1.0, so HTTP 1.1 web servers have no trouble
 interacting with older browsers that only speak HTTP 1.0, and vice
 versa.

MIME Media Types

MIME is an open standard for sending multipart, multimedia
 data through Internet email. The data may be binary, or it may use
 multiple ASCII and non-ASCII character sets. Although MIME was
 originally intended just for email, it has become a widely used
 technique to describe a file's contents so that client software can tell
 the difference between different kinds of data. For example, a web
 browser uses MIME to tell whether a file is a GIF image or a printable
 PostScript file.
Tip
Officially, MIME stands for Multipurpose Internet Mail
 Extensions, which is the expansion of the acronym used in RFC 2045.
 However, you will hear other versions—most frequently Multipart
 Internet Mail Extensions and Multimedia Internet Mail
 Extensions.

MIME supports more than 100 predefined types of content. Content
 types are classified at two levels: a type and a subtype. The type shows
 very generally what kind of data is contained: is it a picture, text, or
 movie? The subtype identifies the specific type of data: GIF image, JPEG
 image, TIFF image. For example, HTML's content type is text/html; the type is text, and the subtype is html. The content type for a GIF image is
 image/gif; the type is image, and the subtype is gif. Table 3-2 lists the more common
 defined content types. On most systems, a simple text file maintains a
 mapping between MIME types and the application used to process that type
 of data; on Unix, this file is called mime.types.
 The most current list of registered MIME types is available from http://www.iana.org/assignments/media-types/. For more on
 MIME, see the comp.mail.mime FAQ at http://www.uni-giessen.de/faq/archiv/mail.mime-faq.part1-9/.
Web servers use MIME to identify the kind of data they're sending.
 Web clients use MIME to identify the kind of data they're willing to
 accept. Most web servers and clients understand at least two MIME text
 content types, text/html and text/plain, and two image formats, image/gif and image/jpeg. More recent browsers also
 understand application/xml and
 several other image formats. Java relies on MIME types to pick the
 appropriate content handler for a particular stream of data.
Table 3-2. Predefined MIME content types
	Type
	Subtype
	Description

	text
	 	The document represents printable
 text.

	 	calendar
	Calendaring and scheduling information in the
 iCalendar format; see RFC 2445.

	 	css
	A Cascading Style Sheet used for HTML and
 XML.

	 	directory
	Address book information such as name, phone
 number, and email address; used by Netscape vCards; defined in
 RFCs 2425 and 2426.

	 	enriched
	A very simple HTML-like language for adding basic
 font and paragraph-level formatting such as bold and italic to
 email; used by Eudora; defined in RFC 1896.

	 	html
	Hypertext Markup Language as used by web
 browsers.

	 	plain
	This is supposed to imply raw ASCII text. However,
 some web servers use text/plain as the default MIME type
 for any file they can't recognize. Therefore, anything and
 everything, most notably .class byte code files, can get
 identified as a text/plain
 file.

	 	richtext
	An HTML-like markup for encoding formatting into
 pure ASCII text. It's never really caught on, in large part
 because of the popularity of HTML.

	 	rtf
	An incompletely defined Microsoft format for word
 processing files.

	 	sgml
	The Standard Generalized Markup Language; ISO
 standard 8879:1986.

	 	tab-separated-values
	The interchange format used by many spreadsheets
 and databases; records are separated by linebreaks and fields by
 tabs.

	 	xml
	The W3C standard Extensible Markup Language. For
 various technical reasons, application/xml should be used
 instead, but often isn't.

	multipart
	 	Multipart MIME messages encode several different
 files into one message.

	 	mixed
	Several message parts intended for sequential
 viewing.

	 	alternative
	The same message in multiple formats so a client
 may choose the most convenient one.

	 	digest
	A popular format for merging many email messages
 into a single digest; used by many mailing lists and some FAQ
 lists.

	 	parallel
	Several parts intended for simultaneous
 viewing.

	 	byteranges
	Several separately contiguous byte ranges; used in
 HTTP 1.1.

	 	encrypted
	One part for the body of the message and one part
 for the information necessary to decode the
 message.

	 	signed
	One part for the body of the message and one part
 for the digital signature.

	 	related
	Compound documents formed by aggregating several
 smaller parts.

	 	form-data
	Form responses.

	message
	 	An email message.

	 	external-body
	Just the headers of the email message; the
 message's body is not included but exists at some other location
 and is referenced, perhaps by a URL.

	 	http
	An HTTP 1.1 request from a web client to a web
 server.

	 	news
	A news article.

	 	partial
	Part of a longer email message that has been split
 into multiple parts to allow transmission through email
 gateways.

	 	rfc822
	A standard email message including
 headers.

	image
	 	Two-dimensional pictures.

	 	cgm
	A Computer Graphics Metafile format image. CGM is
 ISO standard 8632:1992 for device-independent vector graphics
 and bitmap images.

	 	g3fax
	The standard for bitmapped fax
 images.

	 	gif
	A Graphics Interchange Format image.

	 	jpeg
	The Joint Photographic Experts Group file format
 for bitmapped images with lossy compression.

	 	png
	A Portable Network Graphics Format image. The
 format was developed at the W3C as a modern replacement for GIF
 that supports 24-bit color and is not encumbered by
 patents.

	 	tiff
	The Tagged Image File format from
 Adobe.

	audio
	 	Sound.

	 	basic
	8-bit ISDN -law encoded audio with a single channel
 and a sample rate of eight kilohertz. This is the format used by
 .au and .snd files and supported by the
 java.applet.AudioClip
 class.

	video
	 	Video.

	 	mpeg
	The Motion Picture Experts Group format for video
 data with lossy compression.

	 	quicktime
	Apple's proprietary QuickTime movie format. Before
 being included in a MIME message, QuickTime files must be
 "flattened".

	model
	 	3-D images.

	 	vrml
	A Virtual Reality Modeling Language file, a format
 for 3-D data on the Web.

	 	iges
	The Initial Graphics Exchange Specification for
 interchanging documents between different CAD
 programs.

	 	mesh
	The mesh structures used in finite element and
 finite difference methods.

	application
	 	Binary data specific to some
 application.

	 	octet-stream
	Unspecified binary data, which is usually saved
 into a file for the user. This MIME type is sometimes used to
 serve .class byte code
 files.

	 	java
	A nonstandard subtype sometimes used to serve
 .class byte code
 files.

	 	postscript
	Adobe PostScript.

	 	dca-rft
	IBM's Document Content Architecture-Richly
 Formatted Text.

	 	mac-BinHex40
	A means of encoding the two forks of a Macintosh
 document in a single ASCII file.

	 	pdf
	An Adobe Acrobat file.

	 	zip
	A zip compressed file.

	 	macwriteii
	A MacWrite II word-processing
 document.

	 	msword
	A Microsoft Word document.

	 	xml+xhtml
	An XHTML document

	 	xml
	An Extensible Markup Language document.

A MIME-compliant program is not required to understand all these
 different types of data; it just needs to recognize what it can and
 cannot handle. Many programs—Netscape Navigator, for example—use various
 helper programs to display types of content they themselves don't
 understand.
MIME allows you to define additional nonstandard subtypes by using
 the prefix x-. For example, the
 content type application/x-tex has
 the MIME type application and the
 nonstandard subtype x-tex for a TeX
 document. These x-types are not guaranteed to be understood by any
 program other than the one that created them. Indeed, two programs may
 use the same x-type to mean two completely different things, or
 different programs may use different x-types to mean the same thing.
 However, many nonstandard types have come into common use; some of the
 more common ones are listed in Table 3-3.
Table 3-3. X-types
	Type
	X-subtype
	Description

	application
	 	Subtypes of an application; the name of the subtype
 is usually a file format name or an application
 name.

	 	x-aiff
	SGI's AIFF audio data format.

	 	x-bitmap
	An X Windows bitmap image.

	 	x-gzip
	Data compressed in the GNU gzip
 format.

	 	x-dvi
	A TeX DVI document.

	 	x-framemaker
	A FrameMaker document.

	 	x-latex
	A LaTeX document.

	 	x-macBinHex40
	Identical to application/mac-BinHex40, but older
 software may use this x-type instead.

	 	x-mif
	A FrameMaker MIF document.

	 	x-sd
	A session directory protocol announcement, used to
 announce MBONE events.

	 	x-shar
	A shell archive; the Unix equivalent of a Windows
 or Macintosh self-extracting archive. Software shouldn't be
 configured to unpack shell archives automatically, because a
 shell archive can call any program the user who runs it has the
 rights to call.

	 	x-tar
	A tar archive.

	 	x-gtar
	A GNU tar archive.

	 	x-tcl
	A tool command language (TCL) program. You should
 never configure your web browser or email program to
 automatically run programs you download from the web or receive
 in email messages.

	 	x-tex
	A TeX document.

	 	x-texinfo
	A GNU texinfo document.

	 	x-troff
	A troff document.

	 	x-troff-man
	A troff document written with the man macros.

	 	x-troff-me
	A troff document that should be processed using the
 me macros.

	 	x-troff-ms
	A troff document that should be processed using the
 ms macros.

	 	x-wais-source
	A WAIS source.

	 	x-www-form-urlencoded
	A string that has been encoded like a URL, with +
 replacing spaces and % escapes replacing non-alphanumeric
 characters that aren't separators.

	audio
	 	
	 	x-aiff
	The same as application/x-aiff: an AIFF audio
 file.

	 	x-mpeg
	The MP3 sound format.

	 	x-mpeg.mp3
	The MP3 sound format.

	 	x-wav
	The Windows WAV sound format.

	image
	 	
	 	x-fits
	The FITS image format used primarily by
 astronomers.

	 	x-macpict
	A Macintosh PICT image.

	 	x-pict
	A Macintosh PICT image.

	 	x-macpaint
	A MacPaint image.

	 	x-pbm
	A portable bitmap image.

	 	x-portable-bitmap
	A portable bitmap image.

	 	x-pgm
	A PGM image.

	video
	 	
	 	x-msvideo
	A Microsoft AVI Video for Windows.

	 	x-sgi-movie
	A Silicon Graphics movie.

Server-Side Programs

These days many web pages are not served from static files
 on the hard drive. Instead, the server generates them dynamically to
 meet user requests. The content may be pulled from a database or
 generated algorithmically by a program. Indeed, the actual page
 delivered to the client may contain data combined from several different
 sources. In Java, such server-side programs are often written using
 servlets or Java Server Pages (JSP). They can also be written with other
 languages, such as C and Perl, or other frameworks, such as ASP and PHP.
 The concern in this book is not so much with how these programs are
 written as with how your programs communicate with them. One advantage
 to HTTP is that it really doesn't matter how the other side of the
 connection is written, as long as it speaks the same basic HTTP
 protocol.
The simplest server-side programs run without any input from the
 user. From the viewpoint of the client, these programs are accessed like
 any other web page and aren't of much concern to this book. The
 difference between a web page produced by a program that takes no input
 and a web page written in static HTML is all on the server side. When
 writing clients, you don't need to know or care whether the web server
 is feeding you a file or the output of some program it ran. Your
 interface to the server is the same in either case.
A slightly more complex server-side program processes user input
 from HTML forms. A web form is essentially just a way of
 collecting input from the user, dividing it into neat pieces, and
 passing those pieces to some program on the server. A client written in
 Java can perform the same function, either by asking the user for input
 in its own GUI or by providing its own unique information.
HTTP provides a standard, well understood and well supported means
 for Java applets and applications to talk to remote systems; therefore,
 I will cover how to use Java to both receive and send data to the
 server. There are other ways for Java programs to talk to servers,
 including Remote Method Invocation (RMI) and SOAP. However, RMI is slow and SOAP is quite complex. By way of
 contrast, HTTP is mature, robust, better supported across multiple
 platforms and web servers, and better understood in the web development
 community.
Example 3-1 and Figure 3-3 show a simple form with
 two fields that collects a name and an email address. The values the
 user enters in the form are sent back to the server when the user
 presses the "Submit Query" button. The program to run when the form data
 is received is /cgi/reg.pl; the program is
 specified in the ACTION attribute of
 the FORM element. The URL in this
 parameter is usually a relative URL, as it is in this example.
Example 3-1. A simple form with input fields for a name and an email
 address
<HTML>
<HEAD>
<TITLE>Sample Form</TITLE>
</HEAD>
<BODY>

<FORM METHOD=GET ACTION="/cgi/reg.pl">
<PRE>
Please enter your name: <INPUT NAME="username" SIZE=40>
Please enter your email address: <INPUT NAME="email" SIZE=40>
</PRE>
<INPUT TYPE="SUBMIT">
</FORM>
</BODY>
</HTML>

[image: A simple form]

Figure 3-3. A simple form

The web browser reads the data the user types and encodes it in a
 simple fashion. The name of each field is separated from its value by
 the equals sign (=). Different fields are separated from each other by
 an ampersand (&). Each field name and value is
 x-www-form-url-encoded; that is, any non-ASCII or reserved characters
 are replaced by a percent sign followed by hexadecimal digits giving the
 value for that character in some character set. Spaces are a special
 case because they're so common. Instead of being encoded as %20, they
 become the + sign. The plus sign itself is encoded as %2b. For example,
 the data from the form in Figure
 3-3 is encoded as:
username=Elliotte+Harold&email=elharo%40macfaq.com
This is called the query string .
 There are two methods by which the query string can be
 sent to the server: GET and POST. If the form specifies the GET method, the browser attaches the query string to the URL
 it sends to the server. Forms that specify POST send the query string on an output
 stream. The form in Example
 3-1 uses GET to communicate
 with the server, so it connects to the server and sends the following
 command:
GET /cgi/reg.pl?username=Elliotte+Harold&email=elharo%40macfaq.com HTTP/1.0
The server uses the path component of the URL to determine which
 program should handle this request. It passes the query string's set of
 name-value pairs to that program, which normally takes responsibility
 for replying to the client.
With the POST method, the web browser sends the usual headers and
 follows them with a blank line (two successive carriage return/linefeed
 pairs) and then sends the query string. If the form in Example 3-1 used POST, it would send this to the server:
POST /cgi-bin/register.pl HTTP 1.0
Content-type: application/x-www-form-urlencoded
Content-length: 65

username=Elliotte+Harold&email=elharo%40metalab.unc.edu
There are many different form tags in HTML that produce pop-up
 menus, radio buttons, and more. However, although these input widgets
 appear different to the user, the format of data they send to the server
 is the same. Each form element provides a name and an encoded string
 value.
Because GET requests include
 all necessary information in the URL, they can be bookmarked, linked to,
 spidered, googled, and so forth. The results of a POST request cannot. This is deliberate.
 GET is intended for noncommital
 actions, like browsing a static web page. POST is intended for actions that commit to
 something. For example, adding items to a shopping cart should be done
 with GET, because this action doesn't
 commit; you can still abandon the cart. However, placing the order
 should be done with POST because that
 action makes a commitment. This is why browsers ask you if you're sure
 when you go back to a page that uses POST (as shown in Figure 3-4). Reposting data may buy
 two copies of a book and charge your credit card twice.
[image: Repost confirmation]

Figure 3-4. Repost confirmation

In practice, POST is vastly
 overused on the web today. Any safe operation that does not commit the
 user to anything should use GET
 rather than POST. Only operations
 that commit the user should use POST.

Chapter 4. Streams

 A large part of what network programs do is simple input and
 output: moving bytes from one system to another. Bytes are bytes; to a
 large extent, reading data a server sends you is not all that different
 from reading a file. Sending text to a client is not that different from
 writing a file. However, input and output (I/O) in Java is organized
 differently than it is in most other languages, such as Fortran, C, and
 C++. Consequently, we'll take a few pages to summarize Java's unique
 approach to I/O.
I/O in Java is built on streams.
 Input streams read data; output streams write data. Different stream classes, like
 java.io.FileInputStream and sun.net.TelnetOutputStream, read and write
 particular sources of data. However, all output streams have the same
 basic methods to write data and all input streams use the same basic
 methods to read data. After a stream is created, you can often ignore the
 details of exactly what it is you're reading or writing.
Filter streams can be chained to either an input stream or
 an output stream. Filters can modify the data as it's read or written—for
 instance, by encrypting or compressing it—or they can simply provide
 additional methods for converting the data that's read or written into
 other formats. For instance, the java.io.DataOutputStream class provides a method
 that converts an int to four bytes and
 writes those bytes onto its underlying output stream.
Readers and writers can be chained to input and output streams to allow
 programs to read and write text (that is, characters) rather than bytes.
 Used properly, readers and writers can handle a wide variety of character
 encodings, including multibyte character sets such as SJIS and
 UTF-8.
Streams are synchronous; that is, when a program (really, a
 thread) asks a stream to read or write a piece of data, it waits for the
 data to be read or written before it does anything else. Java 1.4 and
 later also support non-blocking I/O using channels and buffers.
 Non-blocking I/O is a little more complicated, but much faster in some
 high-volume applications, such as web servers. Normally, the basic stream
 model is all you need and all you should use for clients. Since channels
 and buffers depend on streams, we'll start with streams and clients and
 later discuss non-blocking I/O for use with servers in Chapter 12.
Output Streams

 Java's basic output class is java.io.OutputStream:
public abstract class OutputStream
This class provides the fundamental methods needed to write data.
 These are:
public abstract void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length)
 throws IOException
public void flush() throws IOException
public void close() throws IOException
Subclasses of OutputStream use
 these methods to write data onto particular media. For instance, a
 FileOutputStream uses these methods
 to write data into a file. A TelnetOutputStream uses these methods to write
 data onto a network connection. A ByteArrayOutputStream uses these methods to
 write data into an expandable byte array. But whichever medium you're
 writing to, you mostly use only these same five methods. Sometimes you
 may not even know exactly what kind of stream you're writing onto. For
 instance, you won't find TelnetOutputStream in the Java class library
 documentation. It's deliberately hidden inside the sun packages. It's returned by various methods
 in various classes in java.net, like
 the getOutputStream() method of
 java.net.Socket. However, these
 methods are declared to return only OutputStream, not the more specific subclass
 TelnetOutputStream. That's the power
 of polymorphism. If you know how to use the superclass, you know how to
 use all the subclasses, too.
OutputStream's fundamental
 method is write(int b). This method takes an integer from 0 to 255
 as an argument and writes the corresponding byte to the output stream.
 This method is declared abstract because subclasses need to change it to
 handle their particular medium. For instance, a ByteArrayOutputStream can implement this
 method with pure Java code that copies the byte into its array. However,
 a FileOutputStream will need to use
 native code that understands how to write data in files on the host
 platform.
Take note that although this method takes an int as an argument, it actually writes an
 unsigned byte. Java doesn't have an unsigned byte data type, so an
 int has to be used here instead. The
 only real difference between an unsigned byte and a signed byte is the
 interpretation. They're both made up of eight bits, and when you write
 an int onto a network connection
 using write(int b), only eight bits are placed on the wire. If
 an int outside the range 0-255 is
 passed to write(int b), the least significant byte of the number
 is written and the remaining three bytes are ignored. (This is the
 effect of casting an int to a
 byte.) On rare occasions, however,
 you may find a buggy third-party class that does something different,
 such as throwing an IllegalArgumentException or always writing
 255, so it's best not to rely on this behavior, if possible.
For example, the character generator protocol defines a server
 that sends out ASCII text. The most popular variation of this protocol
 sends 72-character lines containing printable ASCII characters. (The
 printable ASCII characters are those between 33 and 126 inclusive that
 exclude the various whitespace and control characters.) The first line
 contains characters 33 through 104, sorted. The second line contains
 characters 34 through 105. The third line contains characters 35 through
 106. This continues through line 29, which contains characters 55
 through 126. At that point, the characters wrap around so that line 30
 contains characters 56 through 126 followed by character 33 again. Lines
 are terminated with a carriage return (ASCII 13) and a linefeed (ASCII
 10). The output looks like this:
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij
$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk
%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm
'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmn
Since ASCII is a 7-bit character set, each character is sent as a
 single byte. Consequently, this protocol is straightforward to implement
 using the basic write() methods, as
 the next code fragment demonstrates:
public static void generateCharacters(OutputStream out)
 throws IOException {

 int firstPrintableCharacter = 33;
 int numberOfPrintableCharacters = 94;
 int numberOfCharactersPerLine = 72;

 int start = firstPrintableCharacter;
 while (true) { /* infinite loop */
 for (int i = start; i < start+numberOfCharactersPerLine; i++) {
 out.write((
 (i-firstPrintableCharacter) % numberOfPrintableCharacters)
 + firstPrintableCharacter);
 }
 out.write('\r'); // carriage return
 out.write('\n'); // linefeed
 start = ((start+1) - firstPrintableCharacter)
 % numberOfPrintableCharacters + firstPrintableCharacter;
 }
The character generator server class (the exact details of which
 will have to wait until we discuss server sockets in Chapter 10) passes an OutputStream named out to the generateCharacters() method. Bytes are written onto out one at a time. These bytes are given as
 integers in a rotating sequence from 33 to 126. Most of the arithmetic
 here is to make the loop rotate in that range. After each 72 character
 chunk is written, a carriage return and a linefeed are written onto the
 output stream. The next start character is calculated and the loop
 repeats. The entire method is declared to throw IOException. That's important because the
 character generator server will terminate only when the client closes
 the connection. The Java code will see this as an IOException.
Writing a single byte at a time is often inefficient. For example,
 every TCP segment that goes out your Ethernet card contains at least 40
 bytes of overhead for routing and error correction. If each byte is sent
 by itself, you may be stuffing the network with 41 times more data than
 you think you are! Consequently, most TCP/IP implementations buffer data to some extent. That is, they accumulate bytes
 in memory and send them to their eventual destination only when a
 certain number have accumulated or a certain amount of time has passed.
 However, if you have more than one byte ready to go, it's not a bad idea
 to send them all at once. Using write(byte[] data) or write(byte[]
 data, int offset, int
 length) is normally much faster than writing all the
 components of the data array one at a
 time. For instance, here's an implementation of the generateCharacters() method that sends a line at a time by packing a complete
 line into a byte array:
public static void generateCharacters(OutputStream out)
 throws IOException {

 int firstPrintableCharacter = 33;
 int numberOfPrintableCharacters = 94;
 int numberOfCharactersPerLine = 72;
 int start = firstPrintableCharacter;
 byte[] line = new byte[numberOfCharactersPerLine+2];
 // the +2 is for the carriage return and linefeed

 while (true) { /* infinite loop */
 for (int i = start; i < start+numberOfCharactersPerLine; i++) {
 line[i-start] = (byte) ((i-firstPrintableCharacter)
 % numberOfPrintableCharacters + firstPrintableCharacter);
 }
 line[72] = (byte) '\r'; // carriage return
 line[73] = (byte) '\n'; // line feed
 out.write(line);
 start = ((start+1)-firstPrintableCharacter)
 % numberOfPrintableCharacters + firstPrintableCharacter;
 }

}
The algorithm for calculating which bytes to write when is the
 same as for the previous implementation. The crucial difference is that
 the bytes are packed into a byte array before being written onto the
 network. Also, notice that the int
 result of the calculation must be cast to a byte before being stored in the array. This
 wasn't necessary in the previous implementation because the single byte
 write() method is declared to take an
 int as an argument.
 Streams can also be buffered in software, directly in the
 Java code as well as in the network hardware. Typically, this is
 accomplished by chaining a BufferedOutputStream or a BufferedWriter to the underlying stream, a
 technique we'll explore shortly. Consequently, if you are done writing
 data, it's important to flush the output stream. For example, suppose
 you've written a 300-byte request to an HTTP 1.1 server that uses HTTP
 Keep-Alive. You generally want to wait for a response before sending any
 more data. However, if the output stream has a 1,024-byte buffer, the
 stream may be waiting for more data to arrive before it sends the data
 out of its buffer. No more data will be written onto the stream until
 the server response arrives, but the response is never going to arrive
 because the request hasn't been sent yet! The buffered stream won't send
 the data to the server until it gets more data from the underlying
 stream, but the underlying stream won't send more data until it gets
 data from the server, which won't send data until it gets the data
 that's stuck in the buffer! Figure
 4-1 illustrates this Catch-22. The flush() method breaks the deadlock by forcing the buffered stream
 to send its data even if the buffer isn't yet full.
[image: Data can get lost if you don't flush your streams]

Figure 4-1. Data can get lost if you don't flush your streams

It's important to flush your streams whether you think you need to
 or not. Depending on how you got hold of a reference to the stream, you
 may or may not know whether it's buffered. (For instance, System.out is buffered whether you want it to
 be or not.) If flushing isn't necessary for a particular stream, it's a
 very low cost operation. However, if it is necessary, it's very
 necessary. Failing to flush when you need to can lead to
 unpredictable, unrepeatable program hangs that are extremely hard to
 diagnose if you don't have a good idea of what the problem is in the
 first place. As a corollary to all this, you should flush all streams
 immediately before you close them. Otherwise, data left in the buffer
 when the stream is closed may get lost.
Finally, when you're done with a stream, close it by
 invoking its close() method. This
 releases any resources associated with the stream, such as file handles
 or ports. Once an output stream has been closed, further writes to it
 throw IOExceptions. However, some
 kinds of streams may still allow you to do things with the object. For
 instance, a closed ByteArrayOutputStream can still be converted
 to an actual byte array and a closed DigestOutputStream can still return its
 digest.

Input Streams

 Java's basic input class is java.io.InputStream:
public abstract class InputStream
This class provides the fundamental methods needed to read data as
 raw bytes. These are:
public abstract int read() throws IOException
public int read(byte[] input) throws IOException
public int read(byte[] input, int offset, int length) throws IOException
public long skip(long n) throws IOException
public int available() throws IOException
public void close() throws IOException
Concrete subclasses of InputStream use these methods to read data
 from particular media. For instance, a FileInputStream reads data from a file. A
 TelnetInputStream reads data from a
 network connection. A ByteArrayInputStream reads data from an array
 of bytes. But whichever source you're reading, you mostly use only these
 same six methods. Sometimes you don't know exactly what kind of stream
 you're reading from. For instance, TelnetInputStream is an undocumented class
 hidden inside the sun.net package.
 Instances of it are returned by various methods in the java.net package: for example, the openStream() method of java.net.URL. However, these methods are
 declared to return only InputStream,
 not the more specific subclass TelnetInputStream. That's polymorphism at work
 once again. The instance of the subclass can be used transparently as an
 instance of its superclass. No specific knowledge of the subclass is
 required.
The basic method of InputStream
 is the noargs read() method. This method reads a single byte of data from the
 input stream's source and returns it as an int from 0 to 255. End of stream is signified
 by returning -1. The read() method
 waits and blocks execution of any code that follows it until a byte of
 data is available and ready to be read. Input and output can be slow, so
 if your program is doing anything else of importance, try to put I/O in
 its own thread.
The read() method is declared
 abstract because subclasses need to change it to handle their particular
 medium. For instance, a ByteArrayInputStream can implement this method
 with pure Java code that copies the byte from its array. However, a
 TelnetInputStream needs to use a
 native library that understands how to read data from the network
 interface on the host platform.
The following code fragment reads 10 bytes from the InputStream in and stores them in the byte array input. However, if end of stream is detected,
 the loop is terminated early:
byte[] input = new byte[10];
for (int i = 0; i < input.length; i++) {
 int b = in.read();
 if (b == -1) break;
 input[i] = (byte) b;
}
Although read() only reads a
 byte, it returns an int. Thus, a cast
 is necessary before storing the result in the byte array. Of course,
 this produces a signed byte from -128 to 127 instead of the unsigned
 byte from 0 to 255 returned by the read(
) method. However, as long as you're clear about which one
 you're working with, this is not a major problem. You can convert a
 signed byte to an unsigned byte like this:
int i = b >= 0 ? b : 256 + b;
Reading a byte at a time is as inefficient as writing data one
 byte at a time. Consequently, there are two overloaded read() methods that fill a specified array
 with multiple bytes of data read from the stream, read(byte[] input) and read(byte[] input, int
 offset, int length). The first method attempts to fill the
 specified array input. The second
 attempts to fill the specified subarray of input, starting at offset and continuing for length bytes.
Notice I said these methods attempt to fill
 the array, not that they necessarily succeed. An attempt may fail in
 several ways. For instance, it's not unheard of that while your program
 is reading data from a remote web server over a PPP dialup link, a bug
 in a switch at a phone company central office will disconnect you and
 several thousand of your neighbors from the rest of the world. This
 would cause an IOException. More
 commonly, however, a read attempt won't completely fail but won't
 completely succeed, either. Some of the requested bytes may be read, but
 not all of them. For example, you may try to read 1,024 bytes from a
 network connection, when only 512 have actually arrived from the server;
 the rest are still in transit. They'll arrive eventually, but they
 aren't available at this moment. To account for this, the multibyte read
 methods return the number of bytes actually read. For example, consider
 this code fragment:
byte[] input = new byte[1024];
int bytesRead = in.read(input);
It attempts to read 1,024 bytes from the InputStream in into the array input. However, if only 512 bytes are
 available, that's all that will be read, and bytesRead will be set to 512. To guarantee
 that all the bytes you want are actually read, place the read in a loop
 that reads repeatedly until the array is filled. For example:
int bytesRead = 0;
int bytesToRead = 1024;
byte[] input = new byte[bytesToRead];
while (bytesRead < bytesToRead) {
 bytesRead += in.read(input, bytesRead, bytesToRead - bytesRead);
}
This technique is especially crucial for network streams. Chances are that if a file is available
 at all, all the bytes of a file are also available. However, since
 networks move much more slowly than CPUs, it is very easy for a program
 to empty a network buffer before all the data has arrived. In fact, if
 one of these two methods tries to read from a temporarily empty but open
 network buffer, it will generally return 0, indicating that no data is
 available but the stream is not yet closed. This is often preferable to
 the behavior of the single-byte read(
) method, which blocks the running thread in the same
 circumstances.
All three read() methods
 return -1 to signal the end of the stream. If the stream ends while
 there's still data that hasn't been read, the multibyte read() methods return the data until the
 buffer has been emptied. The next call to any of the read() methods will return -1. The -1 is
 never placed in the array. The array only contains actual data. The
 previous code fragment had a bug because it didn't consider the
 possibility that all 1,024 bytes might never arrive (as opposed to not
 being immediately available). Fixing that bug requires testing the
 return value of read() before adding
 it to bytesRead. For example:
int bytesRead=0;
int bytesToRead=1024;
byte[] input = new byte[bytesToRead];
while (bytesRead < bytesToRead) {
 int result = in.read(input, bytesRead, bytesToRead - bytesRead);
 if (result == -1) break;
 bytesRead += result;
}
If you do not want to wait until all the bytes you need are
 immediately available, you can use the available() method to determine how many bytes can be read without
 blocking. This returns the minimum number of bytes you can read. You may
 in fact be able to read more, but you will be able to read at least as
 many bytes as available() suggests.
 For example:
int bytesAvailable = in.available();
byte[] input = new byte[bytesAvailable];
int bytesRead = in.read(input, 0, bytesAvailable);
// continue with rest of program immediately...
In this case, you can assert that bytesRead is exactly equal to bytesAvailable. You cannot, however, assert
 that bytesRead is greater than zero.
 It is possible that no bytes were available. On end of stream, available() returns 0. Generally, read(byte[] input, int
 offset, int length) returns -1 on end of stream; but if
 length is 0, then it does not notice
 the end of stream and returns 0 instead.
On rare occasions, you may want to skip over data without reading
 it. The skip() method accomplishes this task. It's less useful on
 network connections than when reading from files. Network connections
 are sequential and normally quite slow, so it's not significantly more
 time-consuming to read data than to skip over it. Files are random
 access so that skipping can be implemented simply by repositioning a
 file pointer rather than processing each byte to be skipped.
As with output streams, once your program has finished with an
 input stream, it should close it by invoking its close() method. This releases any resources
 associated with the stream, such as file handles or ports. Once an input
 stream has been closed, further reads from it throw IOExceptions. However, some kinds of streams
 may still allow you to do things with the object. For instance, you
 generally won't want to get the message digest from a java.security.DigestInputStream until after
 the data has been read and the stream closed.
Marking and Resetting

 The InputStream class
 also has three less commonly used methods that allow programs to back
 up and reread data they've already read. These are:
public void mark(int readAheadLimit)
public void reset() throws IOException
public boolean markSupported()
In order to reread data, mark the current position in the stream
 with the mark() method. At a later
 point, you can reset the stream to the marked position using the
 reset() method. Subsequent reads
 then return data starting from the marked position. However, you may
 not be able to reset as far back as you like. The number of bytes you
 can read from the mark and still reset is determined by the readAheadLimit argument to mark(). If you try to reset too far back,
 an IOException is thrown.
 Furthermore, there can be only one mark in a stream at any given time.
 Marking a second location erases the first mark.
Marking and resetting are usually implemented by storing every
 byte read from the marked position on in an internal buffer. However,
 not all input streams support this. Before trying to use marking and
 resetting, check to see whether the markSupported() method returns true. If it
 does, the stream supports marking and resetting. Otherwise, mark() will do nothing and reset() will throw an IOException.
Tip
In my opinion, this demonstrates very poor design. In
 practice, more streams don't support marking
 and resetting than do. Attaching functionality
 to an abstract superclass that is not available to many, probably
 most, subclasses is a very poor idea. It would be better to place
 these three methods in a separate interface that could be
 implemented by those classes that provided this functionality. The
 disadvantage of this approach is that you couldn't then invoke these
 methods on an arbitrary input stream of unknown type, but in
 practice, you can't do that anyway because not all streams support
 marking and resetting. Providing a method such as markSupported() to check for
 functionality at runtime is a more traditional, non-object-oriented
 solution to the problem. An object-oriented approach would embed
 this in the type system through interfaces and classes so that it
 could all be checked at compile time.

The only two input stream classes in java.io that always support marking are
 BufferedInputStream and ByteArrayInputStream. However, other input
 streams such as TelnetInputStream
 may support marking if they're chained to a buffered input stream
 first.

Filter Streams

InputStream and OutputStream are
 fairly raw classes. They read and write bytes singly or in groups, but
 that's all. Deciding what those bytes mean—whether they're integers or
 IEEE 754 floating point numbers or Unicode text—is completely up to the
 programmer and the code. However, there are certain extremely common
 data formats that can benefit from a solid implementation in the class
 library. For example, many integers passed as parts of network protocols
 are 32-bit big-endian integers. Much text sent over the Web is either
 7-bit ASCII, 8-bit Latin-1, or multi-byte UTF-8. Many files transferred
 by FTP are stored in the zip format. Java provides a number of filter
 classes you can attach to raw streams to translate the raw bytes to and
 from these and other formats.
The filters come in two versions: the filter streams and the
 readers and writers. The filter streams still work primarily with raw
 data as bytes: for instance, by compressing the data or interpreting it
 as binary numbers. The readers and writers handle the special case of
 text in a variety of encodings such as UTF-8 and ISO 8859-1. Filter
 streams are placed on top of raw streams such as a TelnetInputStream or a FileOutputStream or other filter streams.
 Readers and writers can be layered on top of raw streams, filter
 streams, or other readers and writers. However, filter streams cannot be
 placed on top of a reader or a writer, so we'll start with filter
 streams and address readers and writers in the next section.
 Filters are organized in a chain, as shown in Figure 4-2. Each link in the chain
 receives data from the previous filter or stream and passes the data
 along to the next link in the chain. In this example, a compressed,
 encrypted text file arrives from the local network interface, where
 native code presents it to the undocumented TelnetInputStream. A BufferedInputStream buffers the data to speed
 up the entire process. A CipherInputStream decrypts the data. A
 GZIPInputStream decompresses the
 deciphered data. An InputStreamReader
 converts the decompressed data to Unicode text. Finally, the text is
 read into the application and processed.
[image: The flow of data through a chain of filters]

Figure 4-2. The flow of data through a chain of filters

 Every filter output stream has the same write(), close(
), and flush() methods as
 java.io.OutputStream. Every filter
 input stream has the same read(),
 close(), and available() methods as java.io.InputStream. In some cases, such as
 BufferedInputStream and BufferedOutputStream, these may be the only
 methods they have. The filtering is purely internal and does not expose
 any new public interface. However, in most cases, the filter stream adds
 public methods with additional purposes. Sometimes these are intended to
 be used in addition to the usual read() and write(
) methods, like the unread(
) method of PushbackInputStream. At other times, they
 almost completely replace the original interface. For example, it's
 relatively rare to use the write()
 method of PrintStream instead of one
 of its print() and println() methods.
Chaining Filters Together

 Filters are connected to streams by their constructors.
 For example, the following code fragment buffers input from the file
 data.txt. First, a FileInputStream object fin is created by passing the name of the
 file as an argument to the FileInputStream constructor. Then, a
 BufferedInputStream object bin is created by passing fin as an argument to the BufferedInputStream constructor:
FileInputStream fin = new FileInputStream("data.txt");
BufferedInputStream bin = new BufferedInputStream(fin);
From this point forward, it's possible to use the read() methods of both fin and bin to read data from the file
 data.txt. However, intermixing calls to different
 streams connected to the same source may violate several implicit
 contracts of the filter streams. Most of the time, you should only use
 the last filter in the chain to do the actual reading or writing. One
 way to write your code so that it's at least harder to introduce this
 sort of bug is to deliberately lose the reference to the underlying
 input stream. For example:
InputStream in = new FileInputStream("data.txt");
in = new BufferedInputStream(in);
After these two lines execute, there's no longer any way to
 access the underlying file input stream, so you can't accidentally
 read from it and corrupt the buffer. This example works because it's
 not necessary to distinguish between the methods of InputStream and those of BufferedInputStream. BufferedInputStream is simply used
 polymorphically as an instance of InputStream in the first place. In cases
 where it is necessary to use the additional methods of the filter
 stream not declared in the superclass, you may be able to construct
 one stream directly inside another. For example:
DataOutputStream dout = new DataOutputStream(new BufferedOutputStream(
 new FileOutputStream("data.txt")));
Although these statements can get a little long, it's easy to
 split the statement across several lines, like this:
DataOutputStream dout = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream("data.txt")
)
);
Connection is permanent. Filters cannot be disconnected from a
 stream.
There are times when you may need to use the methods of multiple
 filters in a chain. For instance, if you're reading a Unicode text
 file, you may want to read the byte order mark in the first three
 bytes to determine whether the file is encoded as big-endian UCS-2,
 little-endian UCS-2, or UTF-8, and then select the matching Reader filter for the encoding. Or, if
 you're connecting to a web server, you may want to read the header the
 server sends to find the Content-encoding and then use that content
 encoding to pick the right Reader
 filter to read the body of the response. Or perhaps you want to send
 floating point numbers across a network connection using a DataOutputStream and then retrieve a
 MessageDigest from the DigestOutputStream that the DataOutputStream is chained to. In all these
 cases, you need to save and use references to each of the underlying
 streams. However, under no circumstances should you ever read from or
 write to anything other than the last filter in the chain.

Buffered Streams

 The BufferedOutputStream class stores written data in a buffer (a protected byte
 array field named buf) until the
 buffer is full or the stream is flushed. Then it writes the data onto
 the underlying output stream all at once. A single write of many bytes
 is almost always much faster than many small writes that add up to the
 same thing. This is especially true of network connections because
 each TCP segment or UDP packet carries a finite amount of overhead,
 generally about 40 bytes' worth. This means that sending 1 kilobyte of
 data 1 byte at a time actually requires sending 40 kilobytes over the
 wire, whereas sending it all at once only requires sending a little
 more than 1K of data. Most network cards and TCP implementations
 provide some level of buffering themselves, so the real numbers aren't
 quite this dramatic. Nonetheless, buffering network output is
 generally a huge performance win.
The BufferedInputStream
 class also has a protected byte array named buf that serves as a buffer. When one of the
 stream's read() methods is called,
 it first tries to get the requested data from the buffer. Only when
 the buffer runs out of data does the stream read from the underlying
 source. At this point, it reads as much data as it can from the source
 into the buffer, whether it needs all the data immediately or not.
 Data that isn't used immediately will be available for later
 invocations of read(). When reading
 files from a local disk, it's almost as fast to read several hundred
 bytes of data from the underlying stream as it is to read one byte of
 data. Therefore, buffering can substantially improve performance. The
 gain is less obvious on network connections where the bottleneck is
 often the speed at which the network can deliver data rather than the
 speed at which the network interface delivers data to the program or
 the speed at which the program runs. Nonetheless, buffering input
 rarely hurts and will become more important over time as network
 speeds increase.
BufferedInputStream has two
 constructors, as does BufferedOutputStream:
public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int bufferSize)
public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int bufferSize)
The first argument is the underlying stream from which
 unbuffered data will be read or to which buffered data will be
 written. The second argument, if present, specifies the number of
 bytes in the buffer. Otherwise, the buffer size is set to 2,048 bytes
 for an input stream and 512 bytes for an output stream. The ideal size
 for a buffer depends on what sort of stream you're buffering. For
 network connections, you want something a little larger than the
 typical packet size. However, this can be hard to predict and varies
 depending on local network connections and protocols. Faster,
 higher-bandwidth networks tend to use larger packets, although eight
 kilobytes is an effective maximum packet size for UDP on most networks
 today, and TCP segments are often no larger than a kilobyte.
BufferedInputStream does not
 declare any new methods of its own. It only overrides methods from
 InputStream. It does support
 marking and resetting.
public int read() throws IOException
public int read(byte[] input, int offset, int length)
 throws IOException
public long skip(long n) throws IOException
public int available() throws IOException
public void mark(int readLimit)
public void reset() throws IOException
public boolean markSupported()
The two multibyte read()
 methods attempt to completely fill the specified array or subarray of
 data by reading from the underlying input stream as many times as
 necessary. They return only when the array or subarray has been
 completely filled, the end of stream is reached, or the underlying
 stream would block on further reads. Most input streams (including
 buffered input streams in Java 1.1 and 1.0) do not behave like this.
 They read from the underlying stream or data source only once before
 returning.
BufferedOutputStream also
 does not declare any new methods of its own. It overrides three
 methods from OutputStream:
public void write(int b) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public void flush() throws IOException
You call these methods exactly as you would in any output
 stream. The difference is that each write places data in the buffer
 rather than directly on the underlying output stream. Consequently, it
 is essential to flush the stream when you reach a point at which the
 data needs to be sent.

PrintStream

The PrintStream class is the first filter output stream most
 programmers encounter because System.out is a PrintStream. However, other output streams
 can also be chained to print streams, using these two
 constructors:
public PrintStream(OutputStream out)
public PrintStream(OutputStream out, boolean autoFlush)
By default, print streams should be explicitly flushed. However,
 if the autoFlush argument is
 true, the stream will be flushed
 every time a byte array or linefeed is written or a println() method is invoked.
As well as the usual write(
), flush(), and close() methods, PrintStream has 9 overloaded print() methods and 10 overloaded println() methods:
public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(char[] text)
public void print(String s)
public void print(Object o)
public void println()
public void println(boolean b)
public void println(char c)
public void println(int i)
public void println(long l)
public void println(float f)
public void println(double d)
public void println(char[] text)
public void println(String s)
public void println(Object o)
Each print() method converts
 its argument to a string in a predictable fashion and writes the
 string onto the underlying output stream using the default encoding.
 The println() methods do the same
 thing, but they also append a platform-dependent line separator
 character to the end of the line they write. This is a linefeed
 (\n) on Unix (including Mac OS X),
 a carriage return (\r) on Mac OS 9,
 and a carriage return/linefeed pair (\r\n) on Windows.
Warning
PrintStream is
 evil and network programmers should avoid it like the
 plague!

The first problem is that the output from println() is
 platform-dependent. Depending on what system runs your code, lines may
 sometimes be broken with a linefeed, a carriage return, or a carriage
 return/linefeed pair. This doesn't cause problems when writing to the
 console, but it's a disaster for writing network clients and servers
 that must follow a precise protocol. Most network protocols such as
 HTTP and Gnutela specify that lines should be terminated with a
 carriage return/linefeed pair. Using println(
) makes it easy to write a program that works on Windows but
 fails on Unix and the Mac. While many servers and clients are liberal
 in what they accept and can handle incorrect line terminators, there
 are occasional exceptions. In particular, in conjunction with the bug
 in readLine() discussed shortly, a
 client running on Mac OS 9 that uses println(
) may hang both the server and the client. To some extent,
 this could be fixed by using only print(
) and ignoring println().
 However, PrintStream has other
 problems.
The second problem is that PrintStream assumes the default encoding of
 the platform on which it's running. However, this encoding may not be
 what the server or client expects. For example, a web browser
 receiving XML files will expect them to be encoded in UTF-8 or UTF-16
 unless the server tells it otherwise. However, a web server that uses
 PrintStream may well send the files
 encoded in CP1252 from a U.S.-localized Windows system or SJIS from a
 Japanese-localized system, whether the client expects or understands
 those encodings or not. PrintStream
 doesn't provide any mechanism for changing the default encoding. This
 problem can be patched over by using the related PrintWriter class instead. But the problems
 continue.
The third problem is that PrintStream eats all exceptions. This makes
 PrintStream suitable for textbook
 programs such as HelloWorld, since simple console output can be taught
 without burdening students with first learning about exception
 handling and all that implies. However, network connections are much
 less reliable than the console. Connections routinely fail because of
 network congestion, phone company misfeasance, remote systems
 crashing, and many other reasons. Network programs must be prepared to
 deal with unexpected interruptions in the flow of data. The way to do
 this is by handling exceptions. However, PrintStream catches any exceptions thrown by
 the underlying output stream. Notice that the declaration of the
 standard five OutputStream methods
 in PrintStream does not have the
 usual throws IOException declaration:
public abstract void write(int b)
public void write(byte[] data)
public void write(byte[] data, int offset, int length)
public void flush()
public void close()
Instead, PrintStream relies
 on an outdated and inadequate error flag. If the underlying stream
 throws an exception, this internal error flag is set. The programmer
 is relied upon to check the value of the flag using the checkError() method:
public boolean checkError()
If programmers are to do any error checking at all on a PrintStream, they must explicitly check
 every call. Furthermore, once an error has occurred, there is no way
 to unset the flag so further errors can be detected. Nor is any
 additional information available about the error. In short, the error
 notification provided by PrintStream is wholly inadequate for
 unreliable network connections. At the end of this chapter, we'll
 introduce a class that fixes all these shortcomings.

PushbackInputStream

PushbackInputStream
 is a subclass of FilterInputStream that provides a pushback
 stack so that a program can "unread" bytes onto the input stream. This
 lets programs add data to a running stream. For example, you could
 prefix a stream with a header before passing it to another process
 that needed that header.
The read() and available() methods of PushbackInputStream are invoked exactly as with normal input streams.
 However, they first attempt to read from the pushback buffer before
 reading from the underlying input stream. What this class adds is
 unread() methods that push bytes into the buffer:
public void unread(int b) throws IOException
This method pushes an unsigned byte given as an int between 0 and 255 onto the stream.
 Integers outside this range are truncated to this range as by a cast
 to byte. Assuming nothing else is
 pushed back onto this stream, the next read from the stream will
 return that byte. As multiple bytes are pushed onto the stream by
 repeated invocations of unread(),
 they are stored in a stack and returned in a last-in, first-out order.
 In essence, the buffer is a stack sitting on top of an input stream.
 Only when the stack is empty will the underlying stream be
 read.
There are two more unread()
 methods that push a specified array or subarray onto the
 stream:
public void unread(byte[] input) throws IOException
public void unread(byte[] input, int offset, int length) throws IOException
The arrays are stacked in last-in, first-out order. However,
 bytes popped from the same array will be returned in the order they
 appeared in the array. That is, the zeroth component of the array will
 be read before the first component of the array.
By default, the buffer is only one byte long, and trying to
 unread more than one byte throws an IOException. However, the buffer size can be
 changed by passing a second argument to the constructor:
public PushbackInputStream(InputStream in)
public PushbackInputStream(InputStream in, int size)
Although PushbackInputStream
 and BufferedInputStream both use
 buffers, BufferedInputStream uses
 them for data read from the underlying input stream, while PushbackInputStream uses them for arbitrary
 data, which may or may not have been read from the stream originally.
 Furthermore, PushbackInputStream
 does not allow marking and resetting. The markSupported() method of PushbackInputStream returns false.

Data Streams

 The DataInputStream
 and DataOutputStream classes
 provide methods for reading and writing Java's primitive data types
 and strings in a binary format. The binary formats used are primarily
 intended for exchanging data between two different Java programs
 whether through a network connection, a datafile, a pipe, or some
 other intermediary. What a data output stream writes, a data input
 stream can read. However, it happens that the formats are the same
 ones used for most Internet protocols that exchange binary numbers.
 For instance, the time protocol uses 32-bit big-endian integers, just
 like Java's int data type. The
 controlled-load network element service uses 32-bit IEEE 754 floating
 point numbers, just like Java's float data type. (This is probably
 correlation rather than causation. Both Java and most network
 protocols were designed by Unix programmers, and consequently both
 tend to use the formats common to most Unix systems.) However, this
 isn't true for all network protocols, so check the details of any
 protocol you use. For instance, the Network Time Protocol (NTP)
 represents times as 64-bit unsigned fixed point numbers with the
 integer part in the first 32 bits and the fraction part in the last 32
 bits. This doesn't match any primitive data type in any common
 programming language, although it is fairly straightforward to work
 with—at least as far as is necessary for NTP.
The DataOutputStream
 class offers these 11 methods for writing particular
 Java data types:
public final void writeBoolean(boolean b) throws IOException
public final void writeByte(int b) throws IOException
public final void writeShort(int s) throws IOException
public final void writeChar(int c) throws IOException
public final void writeInt(int i) throws IOException
public final void writeLong(long l) throws IOException
public final void writeFloat(float f) throws IOException
public final void writeDouble(double d) throws IOException
public final void writeChars(String s) throws IOException
public final void writeBytes(String s) throws IOException
public final void writeUTF(String s) throws IOException
All data is written in big-endian format. Integers are written
 in two's complement in the minimum number of bytes possible. Thus, a
 byte is written as one
 two's-complement byte, a short as
 two two's-complement bytes, an int
 as four two's-complement bytes, and a long as eight two's-complement bytes. Floats
 and doubles are written in IEEE 754 form in 4 and 8 bytes,
 respectively. Booleans are written as a single byte with the value 0
 for false and 1 for true. Chars are written as two unsigned
 bytes.
The last three methods are a little trickier. The writeChars() method simply iterates through
 the String argument, writing each
 character in turn as a 2-byte, big-endian Unicode character (a UTF-16
 code point, to be absolutely precise). The writeBytes() method iterates through the
 String argument but writes only the
 least significant byte of each character. Thus, information will be
 lost for any string with characters from outside the Latin-1 character
 set. This method may be useful on some network protocols that specify
 the ASCII encoding, but it should be avoided most of the time.
Neither writeChars() nor
 writeBytes() encodes the length of
 the string in the output stream. As a result, you can't really
 distinguish between raw characters and characters that make up part of
 a string. The writeUTF() method
 does include the length of the string. It encodes the string itself in
 a variant of the UTF-8 encoding of Unicode. Since
 this variant is subtly incompatible with most non-Java software, it
 should be used only for exchanging data with other Java programs that
 use a DataInputStream to read
 strings. For exchanging UTF-8 text with all other software, you should
 use an InputStreamReader with the
 appropriate encoding. (There wouldn't be any confusion if Sun had just
 called this method and its partner writeString() and readString() rather than writeUTF() and readUTF().)
Along with these methods for writing binary numbers and strings,
 DataOutputStream of course has the
 usual write(), flush(), and close() methods any OutputStream class has.
DataInputStream is the complementary class to DataOutputStream. Every format that DataOutputStream writes, DataInputStream can read. In addition,
 DataInputStream has the usual
 read(), available(), skip(), and close(
) methods, as well as methods for reading complete arrays of
 bytes and lines of text.
There are 9 methods to read binary data that match the 11
 methods in DataOutputStream
 (there's no exact complement for writeBytes(
) or writeChars(); these
 are handled by reading the bytes and chars one at a time):
public final boolean readBoolean() throws IOException
public final byte readByte() throws IOException
public final char readChar() throws IOException
public final short readShort() throws IOException
public final int readInt() throws IOException
public final long readLong() throws IOException
public final float readFloat() throws IOException
public final double readDouble() throws IOException
public final String readUTF() throws IOException
In addition, DataInputStream
 provides two methods to read unsigned bytes and unsigned shorts and
 return the equivalent int. Java
 doesn't have either of these data types, but you may encounter them
 when reading binary data written by a C program:
public final int readUnsignedByte() throws IOException
public final int readUnsignedShort() throws IOException
DataInputStream has the usual
 two multibyte read() methods that
 read data into an array or subarray and return the number of bytes
 read. It also has two readFully()
 methods that repeatedly read data from the underlying input stream
 into an array until the requested number of bytes have been read. If
 enough data cannot be read, an IOException is thrown. These methods are
 especially useful when you know in advance exactly how many bytes you
 have to read. This might be the case when you've read the Content-length field out of an HTTP header
 and thus know how many bytes of data there are:
public final int read(byte[] input) throws IOException
public final int read(byte[] input, int offset, int length)
 throws IOException
public final void readFully(byte[] input) throws IOException
public final void readFully(byte[] input, int offset, int length)
 throws IOException
Finally, DataInputStream
 provides the popular readLine() method that reads a line of text
 as delimited by a line terminator and returns a string:
public final String readLine() throws IOException
However, this method should not be used under any circumstances,
 both because it is deprecated and because it is buggy. It's deprecated
 because it doesn't properly convert non-ASCII characters to bytes in
 most circumstances. That task is now handled by the readLine() method of the BufferedReader class. However, that method
 and this one share the same insidious bug: they do not always
 recognize a single carriage return as ending a line. Rather, readLine() recognizes only a linefeed or a
 carriage return/linefeed pair. When a carriage return is detected in
 the stream, readLine() waits to
 see whether the next character is a linefeed before continuing. If it
 is a linefeed, the carriage return and the linefeed are thrown away
 and the line is returned as a String. If it isn't a linefeed, the carriage
 return is thrown away, the line is returned as a String, and the extra character that was
 read becomes part of the next line. However, if the carriage return is
 the last character in the stream (a very likely occurrence if the
 stream originates from a Macintosh or a file created on a Macintosh),
 then readLine() hangs, waiting for
 the last character, which isn't forthcoming.
This problem isn't obvious when reading files because there will
 almost certainly be a next character: -1 for end of stream, if nothing
 else. However, on persistent network connections such as those used
 for FTP and late-model HTTP, a server or client may simply stop
 sending data after the last character and wait for a response without
 actually closing the connection. If you're lucky, the connection may
 eventually time out on one end or the other and you'll get an IOException, although this will probably
 take at least a couple of minutes. If you're not lucky, the program
 will hang indefinitely.
Note that it is not enough for your program to merely be running
 on Windows or Unix to avoid this bug. It must also ensure that it does
 not send or receive text files created on a Macintosh and that it
 never talks to Macintosh clients or servers. These are very strong
 conditions in the heterogeneous world of the Internet. It's much
 simpler to avoid readLine()
 completely.

Compressing Streams

 The java.util.zip
 package contains filter streams that compress and decompress streams
 in zip, gzip, and deflate formats. Along with its better-known uses
 with files, this package allows Java applications to easily exchange
 compressed data across the network. HTTP 1.1 includes support for
 compressed file transfer in which the server compresses and the
 browser decompresses files, in effect trading increasingly cheap CPU
 power for still-expensive network bandwidth. This process is
 completely transparent to the user. Of course, it's not transparent to
 the programmer who has to write the compression and decompression
 code. However, the java.util.zip
 filter streams make it a lot more transparent than it otherwise would
 be.
 There are six stream classes that perform compression
 and decompression; the input streams decompress data and the output
 streams compress it:
public class DeflaterOutputStream extends FilterOutputStream
public class InflaterInputStream extends FilterInputStream
public class GZIPOutputStream extends FilterOutputStream
public class GZIPInputStream extends FilterInputStream
public class ZipOutputStream extends FilterOutputStream
public class ZipInputStream extends FilterInputStream
All of these classes use essentially the same compression
 algorithm. They differ only in various constants and meta-information
 included with the compressed data. In addition, a zip stream may
 contain more than one compressed file.
Compressing and decompressing data with these classes is almost
 trivially easy. You simply chain the filter to the underlying stream
 and read or write it like normal. For example, suppose you want to
 read the compressed file allnames.gz. Simply open
 a FileInputStream to the file and
 chain a GZIPInputStream to it, like
 this:
FileInputStream fin = new FileInputStream("allnames.gz");
GZIPInputStream gzin = new GZIPInputStream(fin);
From this point forward, you can read uncompressed data from
 gzin using the usual read(), skip(
), and available()
 methods. For instance, this code fragment reads and decompresses a
 file named allnames.gz in the current working
 directory:
FileInputStream fin = new FileInputStream("allnames.gz");
GZIPInputStream gzin = new GZIPInputStream(fin);
FileOutputStream fout = new FileOutputStream("allnames");
int b = 0;
while ((b = gzin.read()) != -1) fout.write(b);
gzin.close();
out.flush();
out.close();
In fact, it isn't even necessary to know that gzin is a GZIPInputStream for this to work. A simple
 InputStream type works equally
 well. For example:
InputStream in = new GZIPInputStream(new FileInputStream("allnames.gz"));
DeflaterOutputStream and
 InflaterInputStream are equally
 straightforward. ZipInputStream and
 ZipOutputStream are a little more
 complicated because a zip file is actually an archive that may contain
 multiple entries, each of which must be read separately. Each file in
 a zip archive is represented as a ZipEntry object whose getName() method returns the original name
 of the file. For example, this code fragment decompresses the archive
 shareware.zip in the current working
 directory:
FileInputStream fin = new FileInputStream("shareware.zip");
ZipInputStream zin = new ZipInputStream(fin);
ZipEntry ze = null;
int b = 0;
while ((ze = zin.getNextEntry()) != null) {
 FileOutputStream fout = new FileOutputStream(ze.getName());
 while ((b = zin.read()) != -1) fout.write(b);
 zin.closeEntry();
 fout.flush();
 fout.close();
}
zin.close();

Digest Streams

 The java.util.security package contains two
 filter streams that can calculate a message digest for a stream. They
 are DigestInputStream and DigestOutputStream. A message digest,
 represented in Java by the java.util.security.MessageDigest class, is a
 strong hash code for the stream; that is, it is a large integer
 (typically 20 bytes long in binary format) that can easily be
 calculated from a stream of any length in such a fashion that no
 information about the stream is available from the message digest.
 Message digests can be used for digital signatures and for detecting
 data that has been corrupted in transit across the network.
In practice, the use of message digests in digital signatures is
 more important. Mere data corruption can be detected with much
 simpler, less computationally expensive algorithms. However, the
 digest filter streams are so easy to use that at times it may be worth
 paying the computational price for the corresponding increase in
 programmer productivity. To calculate a digest for an output stream,
 you first construct a MessageDigest
 object that uses a particular algorithm, such as the Secure Hash
 Algorithm (SHA). Pass both the MessageDigest object and the stream you want
 to digest to the DigestOutputStream
 constructor. This chains the digest stream to the underlying output
 stream. Then write data onto the stream as normal, flush it, close it,
 and invoke the getMessageDigest()
 method to retrieve the MessageDigest object. Finally, invoke the
 digest() method on the MessageDigest object to finish calculating
 the actual digest. Here's an example:
MessageDigest sha = MessageDigest.getInstance("SHA");
DigestOutputStream dout = new DigestOutputStream(out, sha);
byte[] buffer = new byte[128];
while (true) {
 int bytesRead = in.read(buffer);
 if (bytesRead < 0) break;
 dout.write(buffer, 0, bytesRead);
}
dout.flush();
dout.close();
byte[] result = dout.getMessageDigest().digest();
Calculating the digest of an input stream you read is equally
 simple. It still isn't quite as transparent as some of the other
 filter streams because you do need to be at least marginally
 conversant with the methods of the MessageDigest class. Nonetheless, it's still
 far easier than writing your own secure hash function and manually
 feeding it each byte you write.
Of course, you also need a way of associating a particular
 message digest with a particular stream. In some circumstances, the
 digest may be sent over the same channel used to send the digested
 data. The sender calculates the digest as it sends data, while the
 receiver calculates the digest as it receives the data. When the
 sender is done, it sends a signal that the receiver recognizes as
 indicating the end of the stream and then sends the digest. The
 receiver receives the digest, checks that the digest received is the
 same as the one calculated locally, and closes the connection. If the
 digests don't match, the receiver may instead ask the sender to send
 the message again. Alternatively, both the digest and the files it
 digests may be stored in the same zip archive. And there are many
 other possibilities. Situations like this generally call for the
 design of a relatively formal custom protocol. However, while the
 protocol may be complicated, the calculation of the digest is
 straightforward, thanks to the DigestInputStream and DigestOutputStream filter classes.

Encrypting Streams

 The CipherInputStream
 and CipherOutputStream classes in
 the javax.crypto package provide
 encryption and decryption services. They are both powered by a
 Cipher engine object that
 encapsulates the algorithm used to perform encryption and decryption.
 By changing the Cipher engine
 object, you change the algorithm that the streams use to encrypt and
 decrypt. Most ciphers also require a key
 to encrypt and decrypt the data. Symmetric or secret
 key ciphers use the same key for both encryption and decryption.
 Asymmetric or public key ciphers use different keys for encryption and
 decryption. The encryption key can be distributed as long as the
 decryption key is kept secret. Keys are specific to the algorithm and
 are represented in Java by instances of the java.security.Key interface. The Cipher object is set in the constructor.
 Like all filter stream constructors, these constructors also take
 another input stream as an argument:
public CipherInputStream(InputStream in, Cipher c)
public CipherOutputStream(OutputStream out, Cipher c)
Tip
For legal reasons CipherInputStream and CipherOutputStream are not bundled with
 the core API in Java 1.3 and earlier. Instead, they are part of a
 standard extension to Java called the Java Cryptography Extension, JCE for short. This is in
 the javax.crypto package. Sun
 provides an implementation of this API (available from http://java.sun.com/products/jce/) and various third
 parties have written independent implementations. Of particular note
 is the Legion of the Bouncy Castle's open source
 implementation, which can be downloaded from http://www.bouncycastle.org/.

To get a properly initialized Cipher object, use the static Cipher.getInstance() factory method. This
 Cipher object must be initialized
 for either encryption or decryption with init() before being passed into one of the
 previous constructors. For example, this code fragment prepares a
 CipherInputStream for decryption
 using the password "two and not a fnord" and the Data Encryption
 Standard (DES) algorithm:
byte[] desKeyData = "two and not a fnord".getBytes();
DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
SecretKey desKey = keyFactory.generateSecret(desKeySpec);
Cipher des = Cipher.getInstance("DES");
des.init(Cipher.DECRYPT_MODE, desKey);
CipherInputStream cin = new CipherInputStream(fin, des);
This fragment uses classes from the java.security, java.security.spec, javax.crypto, and javax.crypto.spec packages. Different
 implementations of the JCE support different groups of encryption
 algorithms. Common algorithms include DES, RSA, and Blowfish. The
 construction of a key is generally algorithm-specific. Consult the
 documentation for your JCE implementation for more details.
CipherInputStream overrides
 most of the normal InputStream
 methods like read() and available(). CipherOutputStream overrides most of the
 usual OutputStream methods like
 write() and flush(). These methods are all invoked much
 as they would be for any other stream. However, as the data is read or
 written, the stream's Cipher object
 either decrypts or encrypts the data. (Assuming your program wants to
 work with unencrypted data—as is commonly the case—a cipher input
 stream will decrypt the data and a cipher output stream will encrypt
 the data.) For example, this code fragment encrypts the file
 secrets.txt using the password "Mary had a little
 spider":
String infile = "secrets.txt";
String outfile = "secrets.des";
String password = "Mary had a little spider";

try {

 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);

 // register the provider that implements the algorithm
 Provider sunJce = new com.sun.crypto.provider.SunJCE();
 Security.addProvider(sunJce);

 // create a key
 char[] pbeKeyData = password.toCharArray();
 PBEKeySpec pbeKeySpec = new PBEKeySpec(pbeKeyData);
 SecretKeyFactory keyFactory =
 SecretKeyFactory.getInstance("PBEWithMD5AndDES");
 SecretKey pbeKey = keyFactory.generateSecret(pbeKeySpec);

 // use Data Encryption Standard
 Cipher pbe = Cipher.getInstance("PBEWithMD5AndDES");
 pbe.init(Cipher.ENCRYPT_MODE, pbeKey);
 CipherOutputStream cout = new CipherOutputStream(fout, pbe);

 byte[] input = new byte[64];
 while (true) {
 int bytesRead = fin.read(input);
 if (bytesRead == -1) break;
 cout.write(input, 0, bytesRead);
 }

 cout.flush();
 cout.close();
 fin.close();

}
catch (Exception ex) {
 System.err.println(ex);
}
I admit that this is more complicated than it needs to be.
 There's a lot of setup work involved in creating the Cipher object that actually performs the
 encryption. Partly, that's because key generation involves quite a bit
 more than a simple password. However, a large part of the complication
 is due to inane U.S. export laws that prevent Sun from fully
 integrating the JCE with the JDK and JRE. To a large extent, the
 complex architecture used here is driven by a need to separate the
 actual encrypting and decrypting code from the cipher stream classes.

Readers and Writers

Many programmers have a bad habit of writing code as if
 all text were ASCII or at least in the native encoding of the platform.
 While some older, simpler network protocols, such as daytime, quote of
 the day, and chargen, do specify ASCII encoding for text, this is not
 true of HTTP and many other more modern protocols, which allow a wide
 variety of localized encodings, such as K0I8-R Cyrillic, Big-5 Chinese,
 and ISO 8859-2 for most Central European languages. Java's native
 character set is the UTF-16 encoding of Unicode. When the encoding is no
 longer ASCII, the assumption that bytes and chars are essentially the
 same things also breaks down. Consequently, Java provides an almost
 complete mirror of the input and output stream class hierarchy designed
 for working with characters instead of bytes.
In this mirror image hierarchy, two abstract superclasses define
 the basic API for reading and writing characters. The java.io.Reader class specifies the API by
 which characters are read. The java.io.Writer class specifies the API by
 which characters are written. Wherever input and output streams use
 bytes, readers and writers use Unicode characters. Concrete subclasses
 of Reader and Writer allow particular sources to be read and
 targets to be written. Filter readers and writers can be attached to
 other readers and writers to provide additional services or
 interfaces.
The most important concrete subclasses of Reader and Writer are the InputStreamReader and the OutputStreamWriter classes. An InputStreamReader contains an underlying input
 stream from which it reads raw bytes. It translates these bytes into
 Unicode characters according to a specified encoding. An OutputStreamWriter receives Unicode characters
 from a running program. It then translates those characters into bytes
 using a specified encoding and writes the bytes onto an underlying
 output stream.
In addition to these two classes, the java.io package provides several raw reader
 and writer classes that read characters without directly requiring an
 underlying input stream, including:
	FileReader

	FileWriter

	StringReader

	StringWriter

	CharArrayReader

	CharArrayWriter

The first two classes in this list work with files and the last
 four work inside Java, so they aren't of great use for network
 programming. However, aside from different constructors, these classes
 have pretty much the same public interface as all other reader and
 writer classes.
Writers

 The Writer class
 mirrors the java.io.OutputStream
 class. It's abstract and has two protected constructors. Like OutputStream, the Writer class is never used directly;
 instead, it is used polymorphically, through one of its subclasses. It
 has five write() methods as well as
 a flush() and a close() method:
protected Writer()
protected Writer(Object lock)
public abstract void write(char[] text, int offset, int length)
 throws IOException
public void write(int c) throws IOException
public void write(char[] text) throws IOException
public void write(String s) throws IOException
public void write(String s, int offset, int length) throws IOException
public abstract void flush() throws IOException
public abstract void close() throws IOException
The write(char[] text, int
 offset, int length) method is the base method in terms
 of which the other four write()
 methods are implemented. A subclass must override at least this method
 as well as flush() and close(), although most override some of the
 other write() methods as well in
 order to provide more efficient implementations. For example, given a
 Writer object w, you can write the string "Network" like
 this:
char[] network = {'N', 'e', 't', 'w', 'o', 'r', 'k'};
w.write(network, 0, network.length);
The same task can be accomplished with these other methods, as
 well:
w.write(network);
for (int i = 0; i < network.length; i++) w.write(network[i]);
w.write("Network");
w.write("Network", 0, 7);
All of these examples are different ways of expressing the same
 thing. Which you use in any given situation is mostly a matter of
 convenience and taste. However, how many and which bytes are written
 by these lines depends on the encoding w uses. If it's using big-endian UTF-16, it
 will write these 14 bytes (shown here in hexadecimal) in this
 order:
00 4E 00 65 00 74 00 77 00 6F 00 72 00 6B
On the other hand, if w uses
 little-endian UTF-16, this sequence of 14 bytes is written:
4E 00 65 00 74 00 77 00 6F 00 72 00 6B 00
If w uses Latin-1, UTF-8, or
 MacRoman, this sequence of seven bytes is written:
4E 65 74 77 6F 72 6B
Other encodings may write still different sequences of bytes.
 The exact output depends on the encoding.
Writers may be buffered, either directly by being chained to a
 BufferedWriter or indirectly
 because their underlying output stream is buffered. To force a write
 to be committed to the output medium, invoke the flush() method:
w.flush();
The close() method behaves
 similarly to the close() method of
 OutputStream. close() flushes the writer, then closes the
 underlying output stream and releases any resources associated with
 it:
public abstract void close() throws IOException
After a writer has been closed, further writes throw IOExceptions.

OutputStreamWriter

OutputStreamWriter is the most important concrete subclass of Writer. An OutputStreamWriter receives characters from
 a Java program. It converts these into bytes according to a specified
 encoding and writes them onto an underlying output stream. Its
 constructor specifies the output stream to write to and the encoding
 to use:
public OutputStreamWriter(OutputStream out, String encoding)
 throws UnsupportedEncodingException
public OutputStreamWriter(OutputStream out)
Valid encodings are listed in the documentation for Sun's
 native2ascii tool included with the JDK and available from http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html.
 If no encoding is specified, the default encoding for the platform is
 used. (In the United States, the default encoding is ISO Latin-1 on
 Solaris and Windows, MacRoman on the Mac.) For example, this code
 fragment writes the string
[image:] in the Cp1253 Windows Greek encoding:
OutputStreamWriter w = new OutputStreamWriter(
 new FileOutputStream("OdysseyB.txt"), "Cp1253");
w.write("[image:]");
Other than the constructors, OutputStreamWriter has only the usual
 Writer methods (which are used
 exactly as they are for any Writer
 class) and one method to return the encoding of the object:
public String getEncoding()

Readers

 The Reader class
 mirrors the java.io.InputStream
 class. It's abstract with two protected constructors. Like InputStream and Writer, the Reader class is never used directly, only
 through one of its subclasses. It has three read() methods, as
 well as skip(), close(), ready(
), mark(), reset(), and markSupported() methods:
protected Reader()
protected Reader(Object lock)
public abstract int read(char[] text, int offset, int length)
 throws IOException
public int read() throws IOException
public int read(char[] text) throws IOException
public long skip(long n) throws IOException
public boolean ready()
public boolean markSupported()
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException
public abstract void close() throws IOException
The read(char[] text, int
 offset, int length) method is the fundamental method
 through which the other two read()
 methods are implemented. A subclass must override at least this method
 as well as close(), although most
 will override some of the other read(
) methods as well in order to provide more efficient
 implementations.
Most of these methods are easily understood by analogy with
 their InputStream counterparts. The
 read() method returns a single
 Unicode character as an int with a
 value from 0 to 65,535 or -1 on end of stream. The read(char[] text) method tries to fill the array
 text with characters and returns
 the actual number of characters read or -1 on end of stream. The
 read(char[] text, int
 offset, int length) method attempts to read length characters into the subarray of
 text beginning at offset and continuing for length characters. It also returns the
 actual number of characters read or -1 on end of stream. The skip(long n) method skips n characters. The mark() and reset(
) methods allow some readers to reset back to a marked
 position in the character sequence. The markSupported() method tells you whether
 the reader supports marking and resetting. The close() method closes the reader and any
 underlying input stream so that further attempts to read from it throw
 IOExceptions.
The exception to the rule of similarity is ready(), which has the same general purpose
 as available() but not quite the
 same semantics, even modulo the byte-to-char conversion. Whereas
 available() returns an int specifying a minimum number of bytes
 that may be read without blocking, ready(
) only returns a boolean
 indicating whether the reader may be read without blocking. The
 problem is that some character encodings, such as UTF-8, use different
 numbers of bytes for different characters. Thus, it's hard to tell how
 many characters are waiting in the network or filesystem buffer
 without actually reading them out of the buffer.
InputStreamReader is the most
 important concrete subclass of Reader. An InputStreamReader reads bytes from an
 underlying input stream such as a FileInputStream or TelnetInputStream. It converts these into
 characters according to a specified encoding and returns them. The
 constructor specifies the input stream to read from and the encoding
 to use:
public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)
 throws UnsupportedEncodingException
If no encoding is specified, the default encoding for the
 platform is used. If an unknown encoding is specified, then an
 UnsupportedEncodingException is
 thrown.
For example, this method reads an input stream and converts it
 all to one Unicode string using the MacCyrillic encoding:
public static String getMacCyrillicString(InputStream in)
 throws IOException {

 InputStreamReader r = new InputStreamReader(in, "MacCyrillic");
 StringBuffer sb = new StringBuffer();
 int c;
 while ((c = r.read()) != -1) sb.append((char) c);
 r.close();
 return sb.toString();

}

Filter Readers and Writers

The InputStreamReader
 and OutputStreamWriter classes act
 as decorators on top of input and output streams that change the
 interface from a byte-oriented interface to a character-oriented
 interface. Once this is done, additional character-oriented filters
 can be layered on top of the reader or writer using the java.io.FilterReader and java.io.FilterWriter classes. As with filter
 streams, there are a variety of subclasses that perform specific
 filtering, including:
	BufferedReader

	BufferedWriter

	LineNumberReader

	PushbackReader

	PrintWriter

Buffered readers and writers

The BufferedReader
 and BufferedWriter
 classes are the character-based equivalents of the byte-oriented
 BufferedInputStream and BufferedOutputStream classes. Where
 BufferedInputStream and BufferedOutputStream use an internal array
 of bytes as a buffer, BufferedReader and BufferedWriter use an internal array of
 chars.
When a program reads from a BufferedReader, text is taken from the
 buffer rather than directly from the underlying input stream or
 other text source. When the buffer empties, it is filled again with
 as much text as possible, even if not all of it is immediately
 needed, making future reads much faster. When a program writes to a
 BufferedWriter, the text is
 placed in the buffer. The text is moved to the underlying output
 stream or other target only when the buffer fills up or when the
 writer is explicitly flushed, which can make writes much faster than
 would otherwise be the case.
BufferedReader and BufferedWriter have the usual methods
 associated with readers and writers, like read(), ready(
), write(), and
 close(). They each have two
 constructors that chain the BufferedReader or BufferedWriter to an underlying reader or
 writer and set the size of the buffer. If the size is not set, the
 default size of 8,192 characters is used:
public BufferedReader(Reader in, int bufferSize)
public BufferedReader(Reader in)
public BufferedWriter(Writer out)
public BufferedWriter(Writer out, int bufferSize)
For example, the earlier getMacCyrillicString() example was less
 than efficient because it read characters one at a time. Since
 MacCyrillic is a 1-byte character set, it also read bytes one at a
 time. However, it's straightforward to make it run faster by
 chaining a BufferedReader to the
 InputStreamReader, like
 this:
public static String getMacCyrillicString(InputStream in)
 throws IOException {

 Reader r = new InputStreamReader(in, "MacCyrillic");
 r = new BufferedReader(r, 1024);
 StringBuffer sb = new StringBuffer();
 int c;
 while ((c = r.read()) != -1) sb.append((char) c);
 r.close();
 return sb.toString();

}
All that was needed to buffer this method was one additional
 line of code. None of the rest of the algorithm had to change, since
 the only InputStreamReader
 methods used were the read() and
 close() methods declared in the
 Reader superclass and shared by
 all Reader subclasses, including
 BufferedReader.
The BufferedReader class
 also has a readLine() method
 that reads a single line of text and returns it as a string:
public String readLine() throws IOException
This method is supposed to replace the deprecated readLine() method in DataInputStream, and it has mostly the
 same behavior as that method. The big difference is that by chaining
 a BufferedReader to an InputStreamReader, you can correctly read
 lines in character sets other than the default encoding for the
 platform. Unfortunately, this method shares the same bugs as the
 readLine() method in DataInputStream, discussed earlier in this
 chapter. That is, readline()
 tends to hang its thread when reading streams where lines end in
 carriage returns, as is commonly the case when the streams derive
 from a Macintosh or a Macintosh text file. Consequently, you should
 scrupulously avoid this method in network programs.
It's not all that difficult, however, to write a safe version
 of this class that correctly implements the readLine() method. Example 4-1 is such a SafeBufferedReader class. It has exactly the same public interface as
 BufferedReader; it just has a
 slightly different private implementation. I'll use this class in
 future chapters in situations where it's extremely convenient to
 have a readLine() method.
Example 4-1. The SafeBufferedReader class
package com.macfaq.io;

import java.io.*;

public class SafeBufferedReader extends BufferedReader {

 public SafeBufferedReader(Reader in) {
 this(in, 1024);
 }

 public SafeBufferedReader(Reader in, int bufferSize) {
 super(in, bufferSize);
 }

 private boolean lookingForLineFeed = false;

 public String readLine() throws IOException {
 StringBuffer sb = new StringBuffer("");
 while (true) {
 int c = this.read();
 if (c == -1) { // end of stream
 if (sb.length() == 0) return null;
 return sb.toString();
 }
 else if (c == '\n') {
 if (lookingForLineFeed) {
 lookingForLineFeed = false;
 continue;
 }
 else {
 return sb.toString();
 }
 }
 else if (c == '\r') {
 lookingForLineFeed = true;
 return sb.toString();
 }
 else {
 lookingForLineFeed = false;
 sb.append((char) c);
 }
 }
 }

}

The BufferedWriter() class
 adds one new method not included in its superclass, called newLine(), also geared toward writing
 lines:
public void newLine() throws IOException
This method inserts a platform-dependent line-separator string
 into the output. The line.separator system property determines
 exactly what the string is: probably a linefeed on Unix and Mac OS
 X, a carriage return on Mac OS 9, and a carriage return/linefeed
 pair on Windows. Since network protocols generally specify the
 required line-terminator, you should not use this method for network
 programming. Instead, explicitly write the line-terminator the
 protocol requires.

LineNumberReader

LineNumberReader is a subclass of BufferedReader that keeps track of the
 current line number. This can be retrieved at any time with the
 getLineNumber() method:
public int getLineNumber()
By default, the first line number is 0. However, the number of
 the current line and all subsequent lines can be changed with the
 setLineNumber() method:
public void setLineNumber(int lineNumber)
This method adjusts only the line numbers that getLineNumber() reports. It does not
 change the point at which the stream is read.
The LineNumberReader's
 readLine() method shares the
 same bug as BufferedReader and
 DataInputStream's, and is not
 suitable for network programming. However, the line numbers are also
 tracked if you use only the regular read(
) methods, and these do not share that bug. Besides these
 methods and the usual Reader
 methods, LineNumberReader has
 only these two constructors:
public LineNumberReader(Reader in)
public LineNumberReader(Reader in, int bufferSize)
Since LineNumberReader is a
 subclass of BufferedReader, it
 has an internal character buffer whose size can be set with the
 second constructor. The default size is 8,192 characters.

PushbackReader

The PushbackReader
 class is the mirror image of the PushbackInputStream class. As usual, the
 main difference is that it pushes back chars rather than bytes. It
 provides three unread() methods
 that push characters onto the reader's input buffer:
public void unread(int c) throws IOException
public void unread(char[] text) throws IOException
public void unread(char[] text, int offset, int length)
 throws IOException
The first unread() method
 pushes a single character onto the reader. The second pushes an
 array of characters. The third pushes the specified subarray of
 characters, starting with text[offset] and continuing through
 text[offset+length-1].
By default, the size of the pushback buffer is only one
 character. However, the size can be adjusted in the second
 constructor:
public PushbackReader(Reader in)
public PushbackReader(Reader in, int bufferSize)
Trying to unread more characters than the buffer will hold
 throws an IOException.

PrintWriter

The PrintWriter class is a replacement for Java 1.0's PrintStream class that properly handles
 multibyte character sets and international text. Sun originally
 planned to deprecate PrintStream
 in favor of PrintWriter but
 backed off when it realized this step would invalidate too much
 existing code, especially code that depended on System.out. Nonetheless, new code should
 use PrintWriter instead of
 PrintStream.
Aside from the constructors, the PrintWriter class has an almost identical
 collection of methods to PrintStream. These include:
public PrintWriter(Writer out)
public PrintWriter(Writer out, boolean autoFlush)
public PrintWriter(OutputStream out)
public PrintWriter(OutputStream out, boolean autoFlush)
public void flush()
public void close()
public boolean checkError()
protected void setError()
public void write(int c)
public void write(char[] text, int offset, int length)
public void write(char[] text)
public void write(String s, int offset, int length)
public void write(String s)
public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(char[] text)
public void print(String s)
public void print(Object o)
public void println()
public void println(boolean b)
public void println(char c)
public void println(int i)
public void println(long l)
public void println(float f)
public void println(double d)
public void println(char[] text)
public void println(String s)
public void println(Object o)
Most of these methods behave the same for PrintWriter as they do for PrintStream. The exceptions are the four
 write() methods, which write
 characters rather than bytes; also, if the underlying writer
 properly handles character set conversion, so do all the methods of
 the PrintWriter. This is an
 improvement over the noninternationalizable PrintStream class, but it's still not good
 enough for network programming. PrintWriter still has the problems of
 platform dependency and minimal error reporting that plague PrintStream.
It isn't hard to write a PrintWriter class that does work for
 network programming. You simply have to require the programmer to
 specify a line separator and let the IOExceptions fall where they may. Example 4-2 demonstrates. Notice
 that all the constructors require an explicit line-separator string
 to be provided.
Example 4-2. SafePrintWriter
/*
 * @(#)SafePrintWriter.java 1.0 04/06/28
 *
 * Placed in the public domain
 * No rights reserved.
 */
package com.macfaq.io;

import java.io.*;

/**
 * @version 1.1, 2004-06-28
 * @author Elliotte Rusty Harold
 * @since Java Network Programming, 2nd edition
 */
public class SafePrintWriter extends Writer {

 protected Writer out;

 private boolean autoFlush = false;
 private String lineSeparator;
 private boolean closed = false;

 public SafePrintWriter(Writer out, String lineSeparator) {
 this(out, false, lineSeparator);
 }

 public SafePrintWriter(Writer out, char lineSeparator) {
 this(out, false, String.valueOf(lineSeparator));
 }

 public SafePrintWriter(Writer out, boolean autoFlush, String lineSeparator) {
 super(out);
 this.out = out;
 this.autoFlush = autoFlush;
 if (lineSeparator == null) {
 throw new NullPointerException("Null line separator");
 }
 this.lineSeparator = lineSeparator;
 }

 public SafePrintWriter(OutputStream out, boolean autoFlush,
 String encoding, String lineSeparator)
 throws UnsupportedEncodingException {
 this(new OutputStreamWriter(out, encoding), autoFlush, lineSeparator);
 }

 public void flush() throws IOException {

 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.flush();
 }

 }

 public void close() throws IOException {

 try {
 this.flush();
 }
 catch (IOException ex) {
 }

 synchronized (lock) {
 out.close();
 this.closed = true;
 }

 }

 public void write(int c) throws IOException {

 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.write(c);
 }

 }

 public void write(char[] text, int offset, int length) throws IOException {
 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.write(text, offset, length);
 }
 }

 public void write(char[] text) throws IOException {

 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.write(text, 0, text.length);
 }

 }

 public void write(String s, int offset, int length) throws IOException {

 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.write(s, offset, length);
 }

 }

 public void print(boolean b) throws IOException {
 if (b) this.write("true");
 else this.write("false");
 }

 public void println(boolean b) throws IOException {
 if (b) this.write("true");
 else this.write("false");
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(char c) throws IOException {
 this.write(String.valueOf(c));
 }

 public void println(char c) throws IOException {
 this.write(String.valueOf(c));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(int i) throws IOException {
 this.write(String.valueOf(i));
 }

 public void println(int i) throws IOException {
 this.write(String.valueOf(i));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(long l) throws IOException {
 this.write(String.valueOf(l));
 }

 public void println(long l) throws IOException {
 this.write(String.valueOf(l));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(float f) throws IOException {
 this.write(String.valueOf(f));
 }

 public void println(float f) throws IOException {
 this.write(String.valueOf(f));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(double d) throws IOException {
 this.write(String.valueOf(d));
 }

 public void println(double d) throws IOException {
 this.write(String.valueOf(d));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(char[] text) throws IOException {
 this.write(text);
 }

 public void println(char[] text) throws IOException {
 this.write(text);
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(String s) throws IOException {
 if (s == null) this.write("null");
 else this.write(s);
 }

 public void println(String s) throws IOException {
 if (s == null) this.write("null");
 else this.write(s);
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(Object o) throws IOException {
 if (o == null) this.write("null");
 else this.write(o.toString());
 }

 public void println(Object o) throws IOException {
 if (o == null) this.write("null");
 else this.write(o.toString());
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void println() throws IOException {
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

}

This class actually extends Writer rather than FilterWriter, unlike PrintWriter. It could extend FilterWriter instead; however, this would
 save only one field and one line of code, since this class needs to
 override every single method in FilterWriter (close(), flush(
), and all three write(
) methods). The reason for this is twofold. First, the
 PrintWriter class has to be much
 more careful about synchronization than the FilterWriter class. Second, some of the
 classes that may be used as an underlying Writer for this class, notably CharArrayWriter, do not implement the
 proper semantics for close() and
 allow further writes to take place even after the writer is closed.
 Consequently, programmers have to handle the checks for whether the
 stream is closed in this class rather than relying on the underlying
 Writer out to do it for them.
Tip
This chapter has been a whirlwind tour of the java.io package, covering the bare
 minimum you need to know to write network programs. For a more
 detailed and comprehensive look with many more examples, check out
 my other book in this series, Java I/O
 (O'Reilly).

Chapter 5. Threads

Back in the good old days of the Net, circa the early 1990s,
 we didn't have the Web and HTTP and graphical browsers. Instead, we had
 Usenet news and FTP and command-line interfaces, and we liked it that way!
 But as good as the good old days were, there were some problems. For
 instance, when we were downloading kilobytes of free software from a
 popular FTP site over our 2,400 bps modems using Kermit, we would often
 encounter error messages like this one:
% ftp eunl.java.sun.com
Connected to eunl.javasoft.com.
220 softwarenl FTP server (wu-2.4.2-academ[BETA- 16]+opie-2.32(1) 981105)
 ready.
Name (eunl.java.sun.com:elharo): anonymous
530-
530- Server is busy. Please try again later or try one of our other
530- ftp servers at ftp.java.sun.com. Thank you.
530-
530 User anonymous access denied.
Login failed.
In fact, in the days when the Internet had only a few million users
 instead of a few hundred million, we were far more likely to come across
 an overloaded and congested site than we are today. The problem was that
 both the FTP servers bundled with most Unixes and the third-party FTP
 servers, such as wu-ftpd, forked a new process for
 each connection. 100 simultaneous users meant 100 additional processes to
 handle. Since processes are fairly heavyweight items, too many could
 rapidly bring a server to its knees. The problem wasn't that the machines
 weren't powerful enough or the network fast enough; it was that the FTP
 servers were (and many still are) poorly implemented. Many more
 simultaneous users could be served if a new process wasn't needed for each
 connection.
Early web servers suffered from this problem as well, although the
 problem was masked a little by the transitory nature of HTTP connections.
 Since web pages and their embedded images tend to be small (at least
 compared to the software archives commonly retrieved by FTP) and since web
 browsers "hang up" the connection after each file is retrieved instead of
 staying connected for minutes or hours at a time, web users don't put
 nearly as much load on a server as FTP users do. However, web server
 performance still degrades as usage grows. The fundamental problem is that
 while it's easy to write code that handles each incoming connection and
 each new task as a separate process (at least on Unix), this solution
 doesn't scale. By the time a server is attempting to handle a thousand or
 more simultaneous connections, performance slows to a crawl.
There are at least two solutions to this problem. The first is to
 reuse processes rather than spawning new ones. When the server
 starts up, a fixed number of processes (say, 300) are spawned to handle
 requests. Incoming requests are placed in a queue. Each process removes
 one request from the queue, services the request, then returns to the
 queue to get the next request. There are still 300 separate processes
 running, but because all the overhead of building up and tearing down the
 processes is avoided, these 300 processes can now do the work of
 1,000. These numbers are rough estimates. Your
 exact mileage may vary, especially if your server hasn't yet reached the
 volume where scalability issues come into play. Still, whatever mileage
 you get out of spawning new processes, you should be able to do much
 better by reusing old processes.
The second solution to this problem is to use lightweight threads to
 handle connections instead of heavyweight processes. Whereas each separate
 process has its own block of memory, threads are easier on resources
 because they share memory. Using threads instead of processes can buy you
 another factor of three in server performance. By combining this with a
 pool of reusable threads (as opposed to a pool of reusable processes),
 your server can run nine times faster, all on the same hardware and
 network connection! While it's still the case that most Java virtual
 machines keel over somewhere between 700 and 2,000 simultaneous threads,
 the impact of running many different threads on the server hardware is
 relatively minimal since they all run within one process. Furthermore, by
 using a thread pool instead of spawning new threads for each connection, a
 server can use fewer than a hundred threads to handle thousands of
 connections per minute.
Unfortunately, this increased performance doesn't come for free.
 There's a cost in program complexity. In particular, multithreaded servers
 (and other multithreaded programs) require programmers to address concerns
 that aren't issues for single-threaded programs, particularly issues of
 safety and liveness. Because different threads share the same memory, it's
 entirely possible for one thread to stomp all over the variables and data
 structures used by another thread. This is similar to the way one program
 running on a non-memory-protected operating system such as Mac OS 9 or
 Windows 95 can crash the entire system. Consequently, different threads
 have to be extremely careful about which resources they use when.
 Generally, each thread must agree to use certain resources only when it's
 sure those resources can't change or that it has exclusive access to them.
 However, it's also possible for two threads to be too careful, each
 waiting for exclusive access to resources it will never get. This can lead
 to deadlock, in which two threads are each waiting for resources the other
 possesses. Neither thread can proceed without the resources that the other
 thread has reserved, but neither is willing to give up the resources it
 has already.
Tip
There is a third solution to the problem, which in many cases is
 the most efficient of all, although it's only available in Java 1.4 and
 later. Selectors enable one thread to query a group of sockets to find
 out which ones are ready to be read from or written to, and then process
 the ready sockets sequentially. In this case, the I/O has to be designed
 around channels and buffers rather than streams. We'll discuss this in
 Chapter 12, which demonstrates
 selector-based solutions to the problems solved in this chapter with
 threads.

Running Threads

A thread with a little t is a separate,
 independent path of execution in the virtual machine. A Thread with a capital T
 is an instance of the java.lang.Thread class. There is a one-to-one relationship between threads
 executing in the virtual machine and Thread objects constructed by the virtual
 machine. Most of the time it's obvious from the context which one is
 meant if the difference is really important. To start a new thread
 running in the virtual machine, you construct an instance of the
 Thread class and invoke its start() method, like this:
Thread t = new Thread();
t.start();
Of course, this thread isn't very interesting because it doesn't
 have anything to do. To give a thread something to do, you either
 subclass the Thread class and
 override its run() method, or
 implement the Runnable interface and
 pass the Runnable object to the
 Thread constructor. I generally
 prefer the second option since it separates the task that the thread
 performs from the thread itself more cleanly, but you will see both
 techniques used in this book and elsewhere. In both cases, the key is
 the run() method, which has this signature:
public void run()
You're going to put all the work the thread does in this one
 method. This method may invoke other methods; it may construct other
 objects; it may even spawn other threads. However, the thread starts
 here and it stops here. When the run() method completes, the thread dies. In
 essence, the run() method is to a
 thread what the main() method is to
 a traditional nonthreaded program. A single-threaded program exits when
 the main() method returns. A
 multithreaded program exits when both the main(
) method and the run()
 methods of all nondaemon threads return. (Daemon threads perform
 background tasks such as garbage collection and don't prevent the
 virtual machine from exiting.)
Subclassing Thread

For example, suppose you want to write a program that
 calculates the Secure Hash Algorithm (SHA) digest for many files. To a
 large extent, this program is I/O-bound; that is, its speed is limited
 by the amount of time it takes to read the files from the disk. If you
 write it as a standard program that processes the files in series, the
 program's going to spend a lot of time waiting for the hard drive to
 return the data. This is characteristic of a lot of network programs:
 they have a tendency to execute faster than the network can supply
 input. Consequently, they spend a lot of time blocked. This is time
 that other threads could use, either to process other input sources or
 to do something that doesn't rely on slow input. (Not all threaded
 programs share this characteristic. Sometimes, even if none of the
 threads have a lot of spare time to allot to other threads, it's
 simply easier to design a program by breaking it into multiple threads
 that perform independent operations.) Example 5-1 is a subclass of
 Thread whose run() method calculates an SHA message
 digest for a specified file.
Example 5-1. DigestThread
import java.io.*;
import java.security.*;

public class DigestThread extends Thread {

 private File input;

 public DigestThread(File input) {
 this.input = input;
 }

 public void run() {
 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 StringBuffer result = new StringBuffer(input.toString());
 result.append(": ");
 for (int i = 0; i < digest.length; i++) {
 result.append(digest[i] + " ");
 }
 System.out.println(result);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 catch (NoSuchAlgorithmException ex) {
 System.err.println(ex);
 }

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 File f = new File(args[i]);
 Thread t = new DigestThread(f);
 t.start();
 }

 }

}

The main() method reads
 filenames from the command-line and starts a new DigestThread for each one. The work of the
 thread is actually performed in the run(
) method. Here, a DigestInputStream reads the file. Then the
 resulting digest is printed on System.out. Notice that the entire output
 from this thread is first built in a local StringBuffer variable result. This is then printed on the console
 with one method invocation. The more obvious path of printing the
 pieces one at a time using System.out.print(
) is not taken. There's a reason for that, which we'll
 discuss soon.
Since the signature of the run(
) method is fixed, you can't pass arguments to it or return
 values from it. Consequently, you need different ways to pass
 information into the thread and get information out of it. The
 simplest way to pass information in is to pass arguments to the
 constructor, which set fields in the Thread subclass, as done here.
Getting information out of a thread back into the original
 calling thread is trickier because of the asynchronous nature of
 threads. Example 5-1
 sidesteps that problem by never passing any information back to the
 calling thread and simply printing the results on System.out. Most of the time, however,
 you'll want to pass the information to other parts of the program. You
 can store the result of the calculation in a field and provide a
 getter method to return the value of that field. However, how do you
 know when the calculation of that value is complete? What do you
 return if somebody calls the getter method before the value has been
 calculated? This is quite tricky, and we'll discuss it more later in
 this chapter.
If you subclass Thread, you should override run() and nothing else!
 The various other methods of the Thread class, start(), stop(
), interrupt(), join(), sleep(
), and so on, all have very specific semantics and
 interactions with the virtual machine that are difficult to reproduce
 in your own code. You should override run(
) and provide additional constructors and other methods as
 necessary, but you should not replace any of the other standard
 Thread methods.

Implementing the Runnable Interface

 One way to avoid overriding the standard Thread methods is not to subclass Thread. Instead, write the task you want the
 thread to perform as an instance of the Runnable interface. This interface declares
 the run() method, exactly the same
 as the Thread class:
public void run()
Other than this method, which any class implementing this
 interface must provide, you are completely free to create any other
 methods with any other names you choose, all without any possibility
 of unintentionally interfering with the behavior of the thread. This
 also allows you to place the thread's task in a subclass of some other
 class, such as Applet or HTTPServlet. To start a thread that performs
 the Runnable's task, pass the
 Runnable object to the Thread constructor. For example:
Thread t = new Thread(myRunnableObject);
t.start();
It's easy to recast most problems that subclass Thread into Runnable forms. Example 5-2 demonstrates by
 rewriting Example 5-1 to use
 the Runnable interface rather than
 subclassing Thread. Aside from the
 name change, the only modifications that are necessary are changing
 extends Thread to implements Runnable and passing a DigestRunnable object to the Thread constructor in the main() method. The essential logic of the
 program is unchanged.
Example 5-2. DigestRunnable
import java.io.*;
import java.security.*;

public class DigestRunnable implements Runnable {

 private File input;

 public DigestRunnable(File input) {
 this.input = input;
 }

 public void run() {
 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 StringBuffer result = new StringBuffer(input.toString());
 result.append(": ");
 for (int i = 0; i < digest.length; i++) {
 result.append(digest[i] + " ");
 }
 System.out.println(result);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 catch (NoSuchAlgorithmException ex) {
 System.err.println(ex);
 }

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 File f = new File(args[i]);
 DigestRunnable dr = new DigestRunnable(f);
 Thread t = new Thread(dr);
 t.start();
 }

 }

}

There's no strong reason to prefer implementing Runnable to extending Thread or vice versa in the general case. In
 a few special cases, such as Example 5-14 later in this
 chapter, it may be useful to invoke some instance methods of the
 Thread class from within the
 constructor for each Thread object.
 This requires using a subclass. In some specific cases, it may be
 necessary to place the run()
 method in a class that extends another class, such as Applet, in which case the Runnable interface is essential. Finally,
 some object-oriented purists argue that the task that a thread
 undertakes is not really a kind of Thread, and therefore should be placed in a
 separate class or interface such as Runnable rather than in a subclass of
 Thread. I half agree with them,
 although I don't think the argument is as strong as it's sometimes
 made out to be. Consequently, I'll mostly use the Runnable interface in this book, but you
 should feel free to do whatever seems most convenient.

Returning Information from a Thread

One of the hardest things for programmers accustomed to
 traditional, single- threaded procedural models to grasp when moving to
 a multithreaded environment is how to return information from a thread.
 Getting information out of a finished thread is one of the most commonly
 misunderstood aspects of multithreaded programming. The run() method and the start() method don't return any values. For
 example, suppose that instead of simply printing out the SHA digest, as
 in Example 5-1 and Example 5-2, the digest thread needs
 to return the digest to the main thread of execution. Most people's
 first reaction is to store the result in a field and provide a getter
 method, as shown in Example
 5-3 and Example 5-4.
 Example 5-3 is a Thread subclass that calculates a digest for a
 specified file. Example 5-4 is
 a simple command-line user interface that receives filenames and spawns
 threads to calculate digests for them.
Example 5-3. A thread that uses an accessor method to return the
 result
import java.io.*;
import java.security.*;

public class ReturnDigest extends Thread {

 private File input;
 private byte[] digest;

 public ReturnDigest(File input) {
 this.input = input;
 }

 public void run() {
 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 digest = sha.digest();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 catch (NoSuchAlgorithmException ex) {
 System.err.println(ex);
 }

 }

 public byte[] getDigest() {
 return digest;
 }

}

Example 5-4. A main program that uses the accessor method to get the output
 of the thread
import java.io.*;

public class ReturnDigestUserInterface {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 // Calculate the digest
 File f = new File(args[i]);
 ReturnDigest dr = new ReturnDigest(f);
 dr.start();

 // Now print the result
 StringBuffer result = new StringBuffer(f.toString());
 result.append(": ");
 byte[] digest = dr.getDigest();
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);

 }

 }

}

The ReturnDigest class stores
 the result of the calculation in the private field digest, which is
 accessed via getDigest(). The
 main() method in ReturnDigestUserInterface loops through a list
 of files from the command line. It starts a new ReturnDigest thread for each file and then
 tries to retrieve the result using getDigest(
). However, when you run this program, the result may not be
 what you expect:
D:\JAVA\JNP3\examples\05>java ReturnDigestUserInterface *.java
Exception in thread "main" java.lang.NullPointerException
 at ReturnDigestUserInterface.main(ReturnDigestUserInterface.java,
 Compiled Code)
The problem is that the main program gets the digest and uses it
 before the thread has had a chance to initialize it. Although this flow
 of control would work in a single-threaded program in which dr.start() simply invoked the run() method in the same thread, that's not
 what happens here. The calculations that dr.start() kicks off may or may not finish
 before the main() method reaches the
 call to dr.getDigest(). If they
 haven't finished, dr.getDigest()
 returns null, and the first attempt
 to access digest throws a NullPointerException.
Race Conditions

 One possibility is to move the call to dr.getDigest() later in the main() method, like this:
public static void main(String[] args) {

 ReturnDigest[] digests = new ReturnDigest[args.length];

 for (int i = 0; i < args.length; i++) {

 // Calculate the digest
 File f = new File(args[i]);
 digests[i] = new ReturnDigest(f);
 digests[i].start();

 }

 for (int i = 0; i < args.length; i++) {

 // Now print the result
 StringBuffer result = new StringBuffer(args[i]);
 result.append(": ");
 byte[] digest = digests[i].getDigest();
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);

 }

}
If you're lucky, this will work and you'll get the expected
 output, like this:
D:\JAVA\JNP3\examples\05>java ReturnDigest2 *.java
BadDigestRunnable.java: 73 -77 -74 111 -75 -14 70 13 -27 -28 32 68 -126
43 -27 55 -119 26 -77 6
BadDigestThread.java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82 39
-4 8 -38 119 96 -37 -99
DigestRunnable.java: 61 116 -102 -120 97 90 53 37 -14 111 -60 -86 -112
124 -54 111 114 -42 -36 -111
DigestThread.java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82 39
-4 8 -38 119 96 -37 -99
But let me emphasize that point about being lucky. You may not
 get this output. In fact, you may still get a NullPointerException. Whether this code
 works is completely dependent on whether every one of the ReturnDigest threads finishes before its
 getDigest() method is called. If
 the first for loop is too fast and
 the second for loop is entered
 before the threads spawned by the first loop start finishing, we're
 back where we started:
D:\JAVA\JNP3\examples\05>java ReturnDigest2 ReturnDigest.java
Exception in thread "main" java.lang.NullPointerException
 at ReturnDigest2.main(ReturnDigest2.java, Compiled Code)
Whether you get the correct results or this exception depends on
 many factors, including how many threads the program spawns, the
 relative speeds of the CPU and disk on the system where this is run,
 and the algorithm the Java virtual machine uses to allot time to
 different threads. This is called a race
 condition. Getting the correct result depends on the
 relative speeds of different threads, and you can't control those! We
 need a better way to guarantee that the getDigest() method isn't called until the
 digest is ready.

Polling

 The solution most novices adopt is to make the getter
 method return a flag value (or perhaps throw an exception) until the
 result field is set. Then the main thread periodically polls the
 getter method to see whether it's returning something other than the
 flag value. In this example, that would mean repeatedly testing
 whether the digest is null and using it only if it isn't. For
 example:
public static void main(String[] args) {

 ReturnDigest[] digests = new ReturnDigest[args.length];

 for (int i = 0; i < args.length; i++) {

 // Calculate the digest
 File f = new File(args[i]);
 digests[i] = new ReturnDigest(f);
 digests[i].start();

 }

 for (int i = 0; i < args.length; i++) {
 while (true) {
 // Now print the result
 byte[] digest = digests[i].getDigest();
 if (digest != null) {
 StringBuffer result = new StringBuffer(args[i]);
 result.append(": ");
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);
 break;
 }
 }
 }

}
This solution works. It gives the correct answers in the correct
 order and it works irrespective of how fast the individual threads run
 relative to each other. However, it's doing a lot more work than it
 needs to.

Callbacks

 In fact, there's a much simpler, more efficient way to
 handle the problem. The infinite loop that repeatedly polls each
 ReturnDigest object to see whether
 it's finished can be eliminated. The trick is that rather than having
 the main program repeatedly ask each ReturnDigest thread whether it's finished
 (like a five-year-old repeatedly asking, "Are we there yet?" on a long
 car trip, and almost as annoying), we let the thread tell the main
 program when it's finished. It does this by invoking a method in the
 main class that started it. This is called a
 callback because the thread calls its creator
 back when it's done. This way, the main program can go to sleep while
 waiting for the threads to finish and not steal time from the running
 threads.
When the thread's run()
 method is nearly done, the last thing it does is invoke a known method
 in the main program with the result. Rather than the main program
 asking each thread for the answer, each thread tells the main program
 the answer. For instance, Example
 5-5 shows a CallbackDigest
 class that is much the same as before. However, at the
 end of the run() method, it passes
 off the digest to the static
 CallbackDigestUserInterface.receiveDigest(
) method in the class that originally started the
 thread.
Example 5-5. CallbackDigest
import java.io.*;
import java.security.*;

public class CallbackDigest implements Runnable {

 private File input;

 public CallbackDigest(File input) {
 this.input = input;
 }

 public void run() {

 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 CallbackDigestUserInterface.receiveDigest(digest,
 input.getName());
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 catch (NoSuchAlgorithmException ex) {
 System.err.println(ex);
 }

 }

}

The CallbackDigestUserInterface class shown in Example 5-6 provides the main() method. However, unlike the main() methods in the other variations of
 this program in this chapter, this one only starts the threads for the
 files named on the command line. It does not attempt to actually read,
 print out, or in any other way work with the results of the
 calculation. Those functions are handled by a separate method,
 receiveDigest(). receiveDigest() is not invoked by the
 main() method or by any method
 that can be reached by following the flow of control from the main() method. Instead, it is invoked by
 each thread separately. In effect, receiveDigest() runs inside the digesting
 threads rather than inside the main thread of execution.
Example 5-6. CallbackDigestUserInterface
import java.io.*;

public class CallbackDigestUserInterface {

 public static void receiveDigest(byte[] digest, String name) {

 StringBuffer result = new StringBuffer(name);
 result.append(": ");
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 // Calculate the digest
 File f = new File(args[i]);
 CallbackDigest cb = new CallbackDigest(f);
 Thread t = new Thread(cb);
 t.start();
 }

 }

}

Example 5-5 and Example 5-6 use static methods for
 the callback so that CallbackDigest
 only needs to know the name of the method in CallbackDigestUserInterface to call.
 However, it's not much harder (and it's considerably more common) to
 call back to an instance method. In this case, the class making the
 callback must have a reference to the object it's calling back.
 Generally, this reference is provided as an argument to the thread's
 constructor. When the run() method
 is nearly done, the last thing it does is invoke the instance method
 on the callback object to pass along the result. For instance, Example 5-7 shows a CallbackDigest class that is much the same
 as before. However, it now has one additional field, a InstanceCallbackDigestUserInterface object
 called callback. At the end of the
 run() method, the digest is passed to callback's receiveDigest() method. The InstanceCallbackDigestUserInterface object
 itself is set in the constructor.
Example 5-7. InstanceCallbackDigest
import java.io.*;
import java.security.*;

public class InstanceCallbackDigest implements Runnable {

 private File input;
 private InstanceCallbackDigestUserInterface callback;

 public InstanceCallbackDigest(File input,
 InstanceCallbackDigestUserInterface callback) {
 this.input = input;
 this.callback = callback;
 }

 public void run() {

 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 callback.receiveDigest(digest);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 catch (NoSuchAlgorithmException ex) {
 System.err.println(ex);
 }

 }

}

The InstanceCallbackDigestUserInterface
 class shown in Example 5-8 holds the main() method as well as the receiveDigest() method used to handle an
 incoming digest. Example 5-8
 just prints out the digest, but a more expansive class could do other
 things as well, such as storing the digest in a field, using it to
 start another thread, or performing further calculations on it.
Example 5-8. InstanceCallbackDigestUserInterface
import java.io.*;

public class InstanceCallbackDigestUserInterface {

 private File input;
 private byte[] digest;

 public InstanceCallbackDigestUserInterface(File input) {
 this.input = input;
 }

 public void calculateDigest() {
 InstanceCallbackDigest cb = new InstanceCallbackDigest(input, this);
 Thread t = new Thread(cb);
 t.start();
 }

 void receiveDigest(byte[] digest) {
 this.digest = digest;
 System.out.println(this);
 }

 public String toString() {
 String result = input.getName() + ": ";
 if (digest != null) {
 for (int i = 0; i < digest.length; i++) {
 result += digest[i] + " ";
 }
 }
 else {
 result += "digest not available";
 }
 return result;
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 // Calculate the digest
 File f = new File(args[i]);
 InstanceCallbackDigestUserInterface d
 = new InstanceCallbackDigestUserInterface(f);
 d.calculateDigest();
 }

 }

}

Using instance methods instead of static methods for callbacks
 is a little more complicated but has a number of advantages. First,
 each instance of the main class (InstanceCallbackDigestUserInterface, in this
 example) maps to exactly one file and can keep track of information
 about that file in a natural way without needing extra data
 structures. Furthermore, the instance can easily recalculate the
 digest for a particular file, if necessary. In practice, this scheme
 proves a lot more flexible. However, there is one caveat. Notice the
 addition of the calculateDigest()
 method to start the thread. You might logically think that this
 belongs in a constructor. However, starting threads in a constructor is dangerous, especially
 threads that will call back to the originating object. There's a race
 condition here that may allow the new thread to call back before the
 constructor is finished and the object is fully initialized. It's
 unlikely in this case, because starting the new thread is the last
 thing this constructor does. Nonetheless, it's at least theoretically
 possible. Therefore, it's good form to avoid launching threads from
 constructors.
The first advantage of the callback scheme over the polling scheme is that it
 doesn't waste so many CPU cycles. But a much more important advantage
 is that callbacks are more flexible and can handle more complicated
 situations involving many more threads, objects, and classes. For
 instance, if more than one object is interested in the result of the
 thread's calculation, the thread can keep a list of objects to call
 back. Particular objects can register their interest by invoking a
 method in the Thread or Runnable class to add themselves to the
 list. If instances of more than one class are interested in the
 result, a new interface can be
 defined that all these classes implement. The interface would declare the callback
 methods. If you're experiencing déjà vu right now, that's probably
 because you have seen this scheme before. This is
 exactly how events are handled in Swing, the AWT,
 and JavaBeans. The AWT runs in a separate thread from the rest of the
 program; components and beans inform you of events by calling back to
 methods declared in particular interfaces, such as ActionListener and PropertyChangeListener. Your listener
 objects register their interests in events fired by particular
 components using methods in the Component class, such as addActionListener() and addPropertyChangeListener(). Inside the
 component, the registered listeners are stored in a linked list built
 out of java.awt.AWTEventMulticaster
 objects. It's easy to duplicate this pattern in your own classes.
 Example 5-9 shows one very
 simple possible interface class called DigestListener that declares the digestCalculated() method.
Example 5-9. DigestListener interface
public interface DigestListener {

 public void digestCalculated(byte[] digest);

}

Example 5-10 shows
 the Runnable class that calculates
 the digest. Several new methods and fields are added for registering
 and deregistering listeners. For convenience and simplicity, a
 java.util.Vector manages the list.
 The run() method no longer
 directly calls back the object that created it. Instead, it
 communicates with the private sendDigest(
) method, which sends the digest to all registered
 listeners. The run() method
 neither knows nor cares who's listening to it. This class no longer
 knows anything about the user interface class. It has been completely
 decoupled from the classes that may invoke it. This is one of the
 strengths of this approach.
Example 5-10. The ListCallbackDigest class
import java.io.*;
import java.security.*;
import java.util.*;

public class ListCallbackDigest implements Runnable {

 private File input;
 List listenerList = new Vector();

 public ListCallbackDigest(File input) {
 this.input = input;
 }

 public synchronized void addDigestListener(DigestListener l) {
 listenerList.add(l);
 }

 public synchronized void removeDigestListener(DigestListener l) {
 listenerList.remove(l);
 }

 private synchronized void sendDigest(byte[] digest) {

 ListIterator iterator = listenerList.listIterator();
 while (iterator.hasNext()) {
 DigestListener dl = (DigestListener) iterator.next();
 dl.digestCalculated(digest);
 }

 }

 public void run() {

 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 this.sendDigest(digest);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 catch (NoSuchAlgorithmException ex) {
 System.err.println(ex);
 }

 }

}

Finally, Example 5-11
 is a main program that implements the DigestListener interface and exercises the
 ListCallbackDigest class by
 calculating digests for all the files named on the command line.
 However, this is no longer the only possible main program. There are
 now many more possible ways the digest thread could be used.
Example 5-11. ListCallbackDigestUserInterface interface
import java.io.*;

public class ListCallbackDigestUserInterface implements DigestListener {

 private File input;
 private byte[] digest;

 public ListCallbackDigestUserInterface(File input) {
 this.input = input;
 }

 public void calculateDigest() {
 ListCallbackDigest cb = new ListCallbackDigest(input);
 cb.addDigestListener(this);
 Thread t = new Thread(cb);
 t.start();
 }

 public void digestCalculated(byte[] digest) {
 this.digest = digest;
 System.out.println(this);
 }

 public String toString() {
 String result = input.getName() + ": ";
 if (digest != null) {
 for (int i = 0; i < digest.length; i++) {
 result += digest[i] + " ";
 }
 }
 else {
 result += "digest not available";
 }
 return result;
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 // Calculate the digest
 File f = new File(args[i]);
 ListCallbackDigestUserInterface d
 = new ListCallbackDigestUserInterface(f);
 d.calculateDigest();
 }

 }

}

Synchronization

 My shelves are overflowing with books, including many
 duplicate books, out-of-date books, and books I haven't looked at for 10
 years and probably never will again. Over the years, these books have
 cost me tens of thousands of dollars, maybe more, to acquire. By
 contrast, two blocks down the street from my apartment, you'll find the
 Central Brooklyn Public Library. Its shelves are also overflowing with
 books; and over its 150 years, it's spent millions on its collection.
 But the difference is that its books are shared among all the residents
 of Brooklyn, and consequently the books have very high turnover. Most
 books in the collection are used several times a year. Although the
 public library spends a lot more money buying and storing books than I
 do, the cost per page read is much lower at the library than for my
 personal shelves. That's the advantage of a shared resource.
Of course, there are disadvantages to shared resources, too. If I
 need a book from the library, I have to walk over there. I have to find
 the book I'm looking for on the shelves. I have to stand in line to
 check the book out, or else I have to use it right there in the library
 rather than bringing it home with me. Sometimes, somebody else has
 checked the book out, and I have to fill out a reservation slip
 requesting that the book be saved for me when it's returned. And I can't
 write notes in the margins, highlight paragraphs, or tear pages out to
 paste on my bulletin board. (Well, I can, but if I do, it significantly
 reduces the usefulness of the book for future borrowers; and if the
 library catches me, I may lose my borrowing privileges.) There's a
 significant time and convenience penalty associated with borrowing a
 book from the library rather than purchasing my own copy, but it does
 save me money and storage space.
A thread is like a borrower at a library; the thread borrows
 from a central pool of resources. Threads make programs more efficient
 by sharing memory, file handles, sockets, and other resources. As long
 as two threads don't want to use the same resource at the same time, a
 multithreaded program is much more efficient than the multiprocess
 alternative, in which each process has to keep its own copy of every
 resource. The downside of a multithreaded program is that if two threads
 want the same resource at the same time, one of them will have to wait
 for the other to finish. If one of them doesn't wait, the resource may
 get corrupted. Let's look at a specific example. Consider the run() method of Example 5-1 and Example 5-2. As previously
 mentioned, the method builds the result as a String, and then prints the String on the console using one call to
 System.out.println(). The output
 looks like this:
DigestThread.java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82 39
-4 8 -38 119 96 -37 -99
DigestRunnable.java: 61 116 -102 -120 97 90 53 37 -14 111 -60 -86 -112
124 -54 111 114 -42 -36 -111
DigestThread.class: -62 -99 -39 -19 109 10 -91 25 -54 -128 -101 17 13
-66 119 25 -114 62 -21 121
DigestRunnable.class: 73 15 7 -122 96 66 -107 -45 69 -36 86 -43 103
-104 25 -128 -97 60 14 -76
Four threads run in parallel to produce this output. Each writes
 one line to the console. The order in which the lines are written is
 unpredictable because thread scheduling is unpredictable, but each line
 is written as a unified whole. Suppose, however, we used this variation
 of the run() method, which, rather
 than storing intermediate parts of the result in the String variable result, simply prints them on the console as
 they become available:
public void run() {

 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 System.out.print(input + ": ");
 for (int i = 0; i < digest.length; i++) {
 System.out.print(digest[i] + " ");
 }
 System.out.println();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 catch (NoSuchAlgorithmException ex) {
 System.err.println(ex);
 }

}
When you run the program on the same input, the output looks
 something like this:
DigestRunnable.class: 73 15 7 -122 96 66 -107 -45 69 -36 86 -43 103 -104 25
-128 DigestRunnable.java: DigestThread.class: DigestThread.java:
61 -62 69 116 -99 101 -102 -39 80 -120 -19 -94 97 109 -98 90 -97 10 -113 53
60 -91 29 37 14 25 -52 -14 -76 -54 -124 111
-128 -121 -60 -101 -38 -86 17 -82 -112 13 39 124 -66 -4 -54 119 8 111 25 -38
114 -114 119 -42 62 96 -36 -21 -37 -111 121 -99
The digests of the different files are all mixed up! There's no
 telling which number belongs to which digest. Clearly, this is a
 problem.
The reason this mix-up occurs is that System.out is shared between the four
 different threads. When one thread starts writing to the console through
 several System.out.print()
 statements, it may not finish all its writes before another thread
 breaks in and starts writing its output. The exact order in which one
 thread preempts the other threads is indeterminate. You'll probably see
 slightly different output every time you run this program.
We need a way to assign exclusive access to a shared resource to
 one thread for a specific series of statements. In this example, that
 shared resource is System.out, and
 the statements that need exclusive access are:
System.out.print(input + ": ");
for (int i = 0; i < digest.length; i++) {
 System.out.print(digest[i] + " ");
}
System.out.println();
Synchronized Blocks

 Java's means of assigning exclusive access to an object
 is the synchronized keyword. To indicate that these five lines of code
 should be executed together, wrap them in a synchronized block that synchronizes on the
 System.out object, like
 this:
synchronized (System.out) {
 System.out.print(input + ": ");
 for (int i = 0; i < digest.length; i++) {
 System.out.print(digest[i] + " ");
 }
 System.out.println();
}
Once one thread starts printing out the values, all other
 threads will have to stop and wait for it to finish before they can
 print out their values. Synchronization is only a partial lock on an
 object. Other methods can use the synchronized object if they do so
 blindly, without attempting to synchronize on the object. For
 instance, in this case, there's nothing to prevent an unrelated thread
 from printing on System.out if it
 doesn't also try to synchronize on System.out. Java provides no means to stop
 all other threads from using a shared resource. It can only prevent
 other threads that synchronize on the same object from using the
 shared resource.
Tip
In fact, the PrintStream
 class internally synchronizes most methods on the PrintStream object, System.out in this example. In other
 words, every other thread that calls System.out.println() will be synchronized
 on System.out and will have to
 wait for this code to finish. PrintStream is unique in this respect.
 Most other OutputStream
 subclasses do not synchronize themselves.

Synchronization must be considered any time multiple threads
 share resources. These threads may be instances of the same Thread subclass or use the same Runnable class, or they may be instances of
 completely different classes. The key is the resources they share, not
 what classes they are. In Java, all resources are represented by
 objects that are instances of particular classes. Synchronization
 becomes an issue only when two threads both possess references to the
 same object. In the previous example, the problem was that several
 threads had access to the same PrintStream object, System.out. In this case, it was a static
 class variable that led to the conflict. However, instance variables
 can also have problems.
For example, suppose your web server keeps a log file. The log
 file may be represented by a class like the one shown in Example 5-12. This class itself
 doesn't use multiple threads. However, if the web server uses multiple
 threads to handle incoming connections, then each of those threads
 will need access to the same log file and consequently to the same
 LogFile object.
Example 5-12. LogFile
import java.io.*;
import java.util.*;

public class LogFile {

 private Writer out;

 public LogFile(File f) throws IOException {
 FileWriter fw = new FileWriter(f);
 this.out = new BufferedWriter(fw);
 }

 public void writeEntry(String message) throws IOException {
 Date d = new Date();
 out.write(d.toString());
 out.write('\t');
 out.write(message);
 out.write("\r\n");
 }

 public void close() throws IOException {
 out.flush();
 out.close();
 }

 protected void finalize() {
 try {
 this.close();
 }
 catch (IOException ex) {
 }
 }

}

In this class, the writeEntry() method finds the current date and time, then writes
 into the underlying file using four separate invocations of out.write(). A problem occurs if two or
 more threads each have a reference to the same LogFile object and one of those threads
 interrupts another in the process of writing the data. One thread may
 write the date and a tab, then the next thread might write three
 complete entries; then, the first thread could write the message, a
 carriage return, and a linefeed. The solution, once again, is
 synchronization. However, here there are two good choices for which
 object to synchronize on. The first choice is to synchronize on the
 Writer object out. For example:
 public void writeEntry(String message) throws IOException {

 synchronized (out) {
 Date d = new Date();
 out.write(d.toString());
 out.write('\t');
 out.write(message);
 out.write("\r\n");
 }

 }
This works because all the threads that use this LogFile object also use the same out object that's part of that LogFile. It doesn't matter that out is private. Although it is used by the
 other threads and objects, it's referenced only within the LogFile class. Furthermore, although we're
 synchronizing here on the out
 object, it's the writeEntry()
 method that needs to be protected from interruption. The Writer classes all have their own internal
 synchronization, which protects one thread from interfering with a
 write() method in another thread.
 (This is not true of input and output streams, with the exception of
 PrintStream. It is possible for a
 write to an output stream to be interrupted by another thread.) Each
 Writer class has a lock field that specifies the object on
 which writes to that writer synchronize.
The second possibility is to synchronize on the LogFile object itself. This is simple enough
 to arrange with the this keyword.
 For example:
 public void writeEntry(String message) throws IOException {

 synchronized (this) {
 Date d = new Date();
 out.write(d.toString());
 out.write('\t');
 out.write(message);
 out.write("\r\n");
 }

 }

Synchronized Methods

 Since synchronizing the entire method body on the object
 itself is such a common thing to do, Java provides a shortcut. You can
 synchronize an entire method on the current object (the this reference) by adding the synchronized modifier to the method
 declaration. For example:
 public synchronized void writeEntry(String message)
 throws IOException {

 Date d = new Date();
 out.write(d.toString());
 out.write('\t');
 out.write(message);
 out.write("\r\n");

 }
Simply adding the synchronized modifier to all methods is not
 a catchall solution for synchronization problems. For one thing, it
 exacts a severe performance penalty in many VMs (though more recent
 VMs have improved greatly in this respect), potentially slowing down
 your code by a factor of three or more. Second, it dramatically
 increases the chances of deadlock. Third, and most importantly, it's
 not always the object itself you need to protect from simultaneous
 modification or access, and synchronizing on the instance of the
 method's class may not protect the object you really need to protect.
 For instance, in this example, what we're really trying to prevent is
 two threads simultaneously writing onto out. If some other class had a reference to
 out completely unrelated to the
 LogFile, this attempt would fail.
 However, in this example, synchronizing on the LogFile object is sufficient because
 out is a private instance variable.
 Since we never expose a reference to this object, there's no way for
 any other object to invoke its methods except through the LogFile class. Therefore, synchronizing on
 the LogFile object has the same
 effect as synchronizing on out.

Alternatives to Synchronization

 Synchronization is not always the best solution to the
 problem of inconsistent behavior caused by thread scheduling. There
 are a number of techniques that avoid the need for synchronization
 entirely. The first is to use local variables instead of fields
 wherever possible. Local variables do not have synchronization
 problems. Every time a method is entered, the virtual machine creates
 a completely new set of local variables for the method. These
 variables are invisible from outside the method and are destroyed when
 the method exits. As a result, it's impossible for one local variable
 to be used in two different threads. Every thread has its own separate
 set of local variables.
Method arguments of primitive types are also safe from
 modification in separate threads because Java passes arguments by
 value rather than by reference. A corollary of this is that methods
 such as Math.sqrt() that simply
 take zero or more primitive data type arguments, perform some
 calculation, and return a value without ever interacting with the
 fields of any class are inherently thread-safe. These methods often
 either are or should be declared static.
Method arguments of object types are a little trickier because
 the actual argument passed by value is a reference to the object.
 Suppose, for example, you pass a reference to an array into a sort() method. While the method is sorting
 the array, there's nothing to stop some other thread that also has a
 reference to the array from changing the values in the array.
String arguments are safe
 because they're immutable; that is, once a
 String object has been created, it
 cannot be changed by any thread. An immutable object never changes
 state. The values of its fields are set once when the constructor runs
 and never altered thereafter. StringBuffer arguments are not safe because
 they're not immutable; they can be changed after they're
 created.
A constructor normally does not have to worry about issues of
 thread safety. Until the constructor returns, no thread has a
 reference to the object, so it's impossible for two threads to have a
 reference to the object. (The most likely issue is if a constructor
 depends on another object in another thread that may change while the
 constructor runs, but that's uncommon. There's also a potential
 problem if a constructor somehow passes a reference to the object it's
 creating into a different thread, but this is also uncommon.)
You can take advantage of immutability in your own classes. It's
 often the easiest way to make a class thread-safe, often much easier
 than determining exactly which methods or code blocks to synchronize.
 To make an object immutable, simply declare all its fields private and
 don't write any methods that can change them. A lot of classes in the
 core Java library are immutable, for instance, java.lang.String, java.lang.Integer, java.lang.Double, and many more. This makes
 these classes less useful for some purposes, but it does make them a
 lot more thread-safe.
A third technique is to use a thread-unsafe class but only as a
 private field of a class that is thread-safe. As long as the
 containing class accesses the unsafe class only in a thread-safe
 fashion and as long as it never lets a reference to the private field
 leak out into another object, the class is safe. An example of this
 technique might be a web server that uses an unsynchronized LogFile class but gives each separate thread
 its own separate log so no resources are shared between the individual
 threads.

Deadlock

 Synchronization can lead to another possible problem:
 deadlock. Deadlock occurs when two threads need
 exclusive access to the same set of resources and each thread holds the
 lock on a different subset of those resources. If neither thread is
 willing to give up the resources it has, both threads come to an
 indefinite halt. This isn't quite a hang in the classical sense because
 the program is still active and behaving normally from the perspective
 of the OS, but to a user the difference is insignificant.
To return to the library example, deadlock is what occurs when
 Jack and Jill are each writing a term paper on Thomas Jefferson and they
 both need the two books Thomas Jefferson and Sally Hemings: An
 American Controversy and Sally Hemings and Thomas
 Jefferson: History, Memory and Civic Culture. If Jill has
 checked out the first book and Jack has checked out the second, and
 neither is willing to give up the book they have, neither can finish the
 paper. Eventually the deadline expires and they both get an F. That's
 the problem of deadlock.
Worse yet, deadlock can be a sporadic, hard-to-detect bug.
 Deadlock usually depends on unpredictable issues of timing. Most of the
 time, either Jack or Jill will get to the library first and get both
 books. In this case, the one who gets the books writes a paper and
 returns the books; then the other one gets the books and writes their
 paper. Only rarely will they arrive at the same time and each get one of
 the two books. 99 times out of 100 or 999 times out of 1,000, a program
 will run to completion perfectly normally. Only rarely will it hang for
 no apparent reason. Of course, if a multithreaded server is handling
 hundreds or thousands of connections a minute, even a problem that
 occurs only once every million requests can hang the server in short
 order.
The most important technique for preventing deadlock is to avoid
 unnecessary synchronization. If there's an alternative approach for
 ensuring thread safety, such as making objects immutable or keeping a
 local copy of an object, use it. Synchronization should be a last resort
 for ensuring thread safety. If you do need to synchronize, keep the
 synchronized blocks small and try not to synchronize on more than one
 object at a time. This can be tricky, though, because many of the
 methods from the Java class library that your code may invoke
 synchronize on objects you aren't aware of. Consequently, you may in
 fact be synchronizing on many more objects than you expect.
The best you can do in the general case is carefully consider
 whether deadlock is likely to be a problem and design your code around
 it. If multiple objects need the same set of shared resources to
 operate, make sure they request them in the same order. For instance, if
 Class A and Class B need exclusive access to Object X and Object Y, make
 sure that both classes request X first and Y second. If neither requests
 Y unless it already possesses X, deadlock is not a problem.

Thread Scheduling

 When multiple threads are running at the same time (more
 properly, when multiple threads are available to be run at the same
 time), you have to consider issues of thread scheduling. You need to
 make sure that all important threads get at least some time to run and
 that the more important threads get more time. Furthermore, you want to
 ensure that the threads execute in a reasonable order. If your web
 server has 10 queued requests, each of which requires 5 seconds to
 process, you don't want to process them in series. If you do, the first
 request will finish in 5 seconds but the second will take 10, the third
 15, and so on until the last request, which will have to wait almost a
 minute to be serviced. By that point, the user has likely gone to
 another page. By running threads in parallel, you might be able to
 process all 10 requests in only 10 seconds total. The reason this
 strategy works is that there's a lot of dead time in servicing a typical
 web request, time in which the thread is simply waiting for the network
 to catch up with the CPU—time the VM's thread scheduler can put to good
 use by other threads. However, CPU-bound threads (as opposed to the
 I/O-bound threads more common in network programs) may never reach a
 point where they have to wait for more input. It is possible for such a
 thread to starve all other threads by taking all the available CPU
 resources. With a little thought, you can avoid this problem. In fact,
 starvation is a considerably easier problem to avoid than either
 mis-synchronization or deadlock.
Priorities

Not all threads are created equal. Each thread has a
 priority, specified as an integer from 1 to 10. When multiple threads
 are able to run, the VM will generally run only the highest-priority
 thread, although that's not a hard-and-fast rule. In Java, 10 is the
 highest priority and 1 is the lowest. The default priority is 5, and
 this is the priority that your threads will have unless you
 deliberately set them otherwise.
Warning
This is exact opposite of the normal Unix way of prioritizing
 processes, in which the higher the priority number of a process, the
 less CPU time the process gets.

These three priorities (1, 5, and 10) are often specified as the
 three named constants Thread.MIN_PRIORITY, Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY:
public static final int MIN_PRIORITY = 1;
public static final int NORM_PRIORITY = 5;
public static final int MAX_PRIORITY = 10;
Sometimes you want to give one thread more time than another.
 Threads that interact with the user should get very high priorities so
 that perceived responsiveness will be very quick. On the other hand,
 threads that calculate in the background should get low priorities.
 Tasks that will complete quickly should have high priorities. Tasks
 that take a long time should have low priorities so that they won't
 get in the way of other tasks. The priority of a thread can be changed
 using the setPriority()
 method:
public final void setPriority(int newPriority)
Attempting to exceed the maximum priority or set a nonpositive
 priority throws an IllegalArgumentException.
The getPriority() method
 returns the current priority of the thread:
public final int getPriority()
For instance, in Example
 5-11, you might want to give higher priorities to the threads
 that do the calculating than the main program that spawns the threads.
 This is easily achieved by changing the calculateDigest() method to set the
 priority of each spawned thread to 8:
 public void calculateDigest() {

 ListCallbackDigest cb = new ListCallbackDigest(input);
 cb.addDigestListener(this);
 Thread t = new Thread(cb);
 t.setPriority(8);
 t.start();

 }
In general, though, try to avoid using too high a priority for
 threads, since you run the risk of starving other, lower-priority
 threads.

Preemption

Every virtual machine has a thread scheduler that
 determines which thread to run at any given time. There are two kinds
 of thread scheduling: preemptive and
 cooperative. A preemptive thread scheduler
 determines when a thread has had its fair share of CPU time, pauses
 that thread, and then hands off control of the CPU to a different
 thread. A cooperative thread scheduler waits for the running thread to
 pause itself before handing off control of the CPU to a different
 thread. A virtual machine that uses cooperative thread scheduling is
 much more susceptible to thread starvation than a virtual machine that
 uses preemptive thread scheduling, since one high-priority,
 uncooperative thread can hog an entire CPU.
All Java virtual machines are guaranteed to use preemptive
 thread scheduling between priorities. That is, if a lower-priority
 thread is running when a higher-priority thread becomes able to run,
 the virtual machine will sooner or later (and probably sooner) pause
 the lower-priority thread to allow the higher-priority thread to run.
 The higher-priority thread preempts the
 lower-priority thread.
The situation when multiple threads of the same priority are
 able to run is trickier. A preemptive thread scheduler will
 occasionally pause one of the threads to allow the next one in line to
 get some CPU time. However, a cooperative thread scheduler will not.
 It will wait for the running thread to explicitly give up control or
 come to a stopping point. If the running thread never gives up control
 and never comes to a stopping point and if no higher-priority threads
 preempt the running thread, all other threads will starve. This is a
 bad thing. It's important to make sure all your threads periodically
 pause themselves so that other threads have an opportunity to
 run.
Warning
A starvation problem can be hard to spot if you're developing
 on a VM that uses preemptive thread scheduling. Just because the
 problem doesn't arise on your machine doesn't mean it won't arise on
 your customers' machines if their VMs use cooperative thread
 scheduling. Most current virtual machines use preemptive thread
 scheduling, but some older virtual machines are cooperatively
 scheduled.

There are 10 ways a thread can pause in favor of other threads
 or indicate that it is ready to pause. These are:
	It can block on I/O.

	It can block on a synchronized object.

	It can yield.

	It can go to sleep.

	It can join another thread.

	It can wait on an object.

	It can finish.

	It can be preempted by a higher-priority thread.

	It can be suspended.

	It can stop.

You should inspect every run(
) method you write to make sure that one of these conditions
 will occur with reasonable frequency. The last two possibilities are
 deprecated because they have the potential to leave objects in
 inconsistent states, so let's look at the other eight ways a thread
 can be a cooperative citizen of the virtual machine.
Blocking

Blocking occurs any time a thread has to stop and wait
 for a resource it doesn't have. The most common way a thread in a
 network program will voluntarily give up control of the CPU is by
 blocking on I/O. Since CPUs are much faster than networks and disks,
 a network program will often block while waiting for data to arrive
 from the network or be sent out to the network. Even though it may
 block for only a few milliseconds, this is enough time for other
 threads to do significant work.
Threads can also block when they enter a synchronized method
 or block. If the thread does not already possess the lock for the
 object being synchronized on and some other thread does possess that
 lock, the thread will pause until the lock is released. If the lock
 is never released, the thread is permanently stopped.
Neither blocking on I/O nor blocking on a lock will release
 any locks the thread already possesses. For I/O blocks, this is not
 such a big deal, since eventually the I/O will either unblock and
 the thread will continue or an IOException will be thrown and the thread
 will then exit the synchronized block or method and release its
 locks. However, a thread blocking on a lock that it doesn't possess
 will never give up its own locks. If one thread is waiting for a
 lock that a second thread owns and the second thread is waiting for
 a lock that the first thread owns, deadlock results.

Yielding

The second way for a thread to give up control is to
 explicitly yield. A thread does this by invoking the static Thread.yield() method:
public static void yield()
This signals the virtual machine that it can run another
 thread if one is ready to run. Some virtual machines, particularly
 on real-time operating systems, may ignore this hint.
Before yielding, a thread should make sure that it or its
 associated Runnable object is in
 a consistent state that can be used by other objects. Yielding does
 not release any locks the thread holds. Therefore, ideally, a thread
 should not be synchronized on anything when it yields. If the only
 other threads waiting to run when a thread yields are blocked
 because they need the synchronized resources that the yielding
 thread possesses, then the other threads won't be able to run.
 Instead, control will return to the only thread that can run, the
 one that just yielded, which pretty much defeats the purpose of
 yielding.
Making a thread yield is quite simple in practice. If the
 thread's run() method simply
 consists of an infinite loop, just put a call to Thread.yield() at the end of the loop.
 For example:
public void run() {

 while (true) {
 // Do the thread's work...
 Thread.yield();
 }

}
This gives other threads of the same priority the opportunity
 to run.
If each iteration of the loop takes a significant amount of
 time, you may want to intersperse more calls to Thread.yield() in the rest of the code.
 This precaution should have minimal effect in the event that
 yielding isn't necessary.

Sleeping

Sleeping is a more powerful form of yielding. Whereas
 yielding indicates only that a thread is willing to pause and let
 other equal-priority threads have a turn, a thread that goes to
 sleep will pause whether any other thread is ready to run or not.
 This gives an opportunity to run not only to other threads of the
 same priority but also to threads of lower priorities . However, a
 thread that goes to sleep does hold onto all the locks it's grabbed.
 Consequently, other threads that need the same locks will be blocked
 even if the CPU is available. Therefore, try to avoid having threads
 sleeping inside a synchronized method or block.
Sometimes sleeping is useful even if you don't need to yield
 to other threads. Putting a thread to sleep for a specified period
 of time lets you write code that executes once every second, every
 minute, every 10 minutes, and so forth. For instance, if you wrote a
 network monitor program that retrieved a page from a web server
 every five minutes and emailed the webmaster if the server had
 crashed, you could implement it as a thread that slept for five
 minutes between retrievals.
A thread goes to sleep by invoking one of two overloaded
 static Thread.sleep() methods.
 The first takes the number of milliseconds to sleep as an argument.
 The second takes both the number of milliseconds and the number of
 nanoseconds:
public static void sleep(long milliseconds) throws InterruptedException
public static void sleep(long milliseconds, int nanoseconds)
 throws InterruptedException
While most modern computer clocks have at least
 close-to-millisecond accuracy, nanosecond accuracy is rarer. There's
 no guarantee that you can actually time the sleep to within a
 nanosecond or even within a millisecond on any particular virtual
 machine. If the local hardware can't support that level of accuracy,
 the sleep time is simply rounded to the nearest value that can be
 measured. For example:
public void run() {

 while (true) {
 if (!getPage("http://www.cafeaulait.org/")) {
 mailError("elharo@metalab.unc.edu");
 }
 try {
 Thread.sleep(300000); // 300,000 milliseconds == 5 minutes
 }
 catch (InterruptedException ex) {
 break;
 }
 }

}
The thread is not absolutely guaranteed to sleep as long as it
 wants to. On occasion, the thread may not be woken up until some
 time after its requested wake-up call, simply because the VM is busy
 doing other things. It is also possible that some other thread will
 do something to wake up the sleeping thread before its time.
 Generally, this is accomplished by invoking the sleeping thread's
 interrupt() method.
public void interrupt()
This is one of those cases where the distinction between the
 thread and the Thread object is
 important. Just because the thread is sleeping doesn't mean that
 other threads that are awake can't work with the corresponding
 Thread object through its methods
 and fields. In particular, another thread can invoke the sleeping
 Thread object's interrupt() method, which the sleeping
 thread experiences as an InterruptedException. From that point
 forward, the thread is awake and executes as normal, at least until
 it goes to sleep again. In the previous example, an InterruptedException is used to terminate
 a thread that would otherwise run forever. When the InterruptedException is thrown, the
 infinite loop is broken, the run(
) method finishes, and the thread dies. The user interface
 thread can invoke this thread's interrupt(
) method when the user selects Exit from a menu or
 otherwise indicates that he wants the program to quit.

Joining threads

It's not uncommon for one thread to need the result of
 another thread. For example, a web browser loading an HTML page in
 one thread might spawn a separate thread to retrieve every image
 embedded in the page. If the IMG
 elements don't have HEIGHT and
 WIDTH attributes, the main thread
 might have to wait for all the images to load before it can finish
 by displaying the page. Java provides three join() methods to allow one thread to
 wait for another thread to finish before continuing. These
 are:
public final void join() throws InterruptedException
public final void join(long milliseconds) throws InterruptedException
public final void join(long milliseconds, int nanoseconds)
 throws InterruptedException
The first variant waits indefinitely for the
 joined thread to finish. The second two
 variants wait for the specified amount of time, after which they
 continue even if the joined thread has not finished. As with the
 sleep() method, nanosecond
 accuracy is not guaranteed.
The joining thread (that is, the one that invokes the join() method) waits for the joined thread
 (that is, the one whose join()
 method is invoked) to finish. For instance, consider this code
 fragment. We want to find the minimum, maximum, and median of a
 random array of doubles. It's quicker to do this with a sorted
 array. We spawn a new thread to sort the array, then join to that
 thread to await its results. Only when it's done do we read out the
 desired values.
double[] array = new double[10000]; // 1
for (int i = 0; i < array.length; i++) { // 2
 array[i] = Math.random(); // 3
} // 4
SortThread t = new SortThread(array); // 5
t.start(); // 6
try { // 7
 t.join(); // 8
 System.out.println("Minimum: " + array[0]); // 9
 System.out.println("Median: " + array[array.length/2]); // 10
 System.out.println("Maximum: " + array[array.length-1]); // 11
} // 12
catch (InterruptedException ex) { // 13
} // 14
First lines 1 through 4 execute, filling the array with random
 numbers. Then line 5 creates a new SortThread. Line 6 starts the thread that
 will sort the array. Before we can find the minimum, median, and
 maximum of the array, we need to wait for the sorting thread to
 finish. Therefore, line 8 joins the current thread to the sorting
 thread. At this point, the thread executing these lines of code
 stops in its tracks. It waits for the sorting thread to finish
 running. The minimum, median, and maximum are not retrieved in lines
 9 through 10 until the sorting thread has finished running and died.
 Notice that at no point is there a reference to the thread that
 pauses. It's not the Thread
 object on which the join() method
 is invoked; it's not passed as an argument to that method. It exists
 implicitly only as the current thread. If this is within the normal
 flow of control of the main()
 method of the program, there may not be any Thread variable anywhere that points to
 this thread.
A thread that's joined to another thread can be interrupted
 just like a sleeping thread if some other thread invokes its
 interrupt() method. The thread
 experiences this invocation as an InterruptedException. From that point
 forward, it executes as normal, starting from the catch block that caught the exception. In
 the preceding example, if the thread is interrupted, it skips over
 the calculation of the minimum, median, and maximum because they
 won't be available if the sorting thread was interrupted before it
 could finish.
We can use join() to fix
 up Example 5-4. Example 5-4s problem was that
 the main() method tended to
 outpace the threads whose results the main(
) method was using. It's straightforward to fix this by
 joining to each thread before trying to use its result. Example 5-13
 demonstrates.
Example 5-13. Avoid a race condition by joining to the thread that has a
 result you need
import java.io.*;

public class JoinDigestUserInterface {

 public static void main(String[] args) {

 ReturnDigest[] digestThreads = new ReturnDigest[args.length];

 for (int i = 0; i < args.length; i++) {

 // Calculate the digest
 File f = new File(args[i]);
 digestThreads[i] = new ReturnDigest(f);
 digestThreads[i].start();

 }

 for (int i = 0; i < args.length; i++) {

 try {
 digestThreads[i].join();
 // Now print the result
 StringBuffer result = new StringBuffer(args[i]);
 result.append(": ");
 byte[] digest = digestThreads[i].getDigest();
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);
 }
 catch (InterruptedException ex) {
 System.err.println("Thread Interrupted before completion");
 }

 }

 }

}

Since Example 5-13
 joins to threads in the same order as the threads are started, this
 fix also has the side effect of printing the output in the same
 order as the arguments used to construct the threads, rather than in
 the order the threads finish. This modification doesn't make the
 program any slower, but it may occasionally be an issue if you want
 to get the output of a thread as soon as it's done, without waiting
 for other unrelated threads to finish first.

Waiting on an object

A thread can wait on an object it
 has locked. While waiting, it releases the lock on the object and
 pauses until it is notified by some other thread. Another thread
 changes the object in some way, notifies the thread waiting on that
 object, and then continues. This differs from joining in that
 neither the waiting nor the notifying thread has to finish before
 the other thread can continue. Waiting is used to pause execution
 until an object or resource reaches a certain state. Joining is used
 to pause execution until a thread finishes.
Waiting on an object is one of the lesser-known ways a thread
 can pause. That's because it doesn't involve any methods in the
 Thread class. Instead, to wait on
 a particular object, the thread that wants to pause must first
 obtain the lock on the object using synchronized and then invoke one of the
 object's three overloaded wait()
 methods:
public final void wait() throws InterruptedException
public final void wait(long milliseconds) throws InterruptedException
public final void wait(long milliseconds, int nanoseconds)
 throws InterruptedException
These methods are not in the Thread class; rather, they are in the
 java.lang.Object class.
 Consequently, they can be invoked on any object of any class. When
 one of these methods is invoked, the thread that invoked it releases
 the lock on the object it's waiting on (though not any locks it
 possesses on other objects) and goes to sleep. It remains asleep
 until one of three things happens:
	The timeout expires.

	The thread is interrupted.

	The object is notified.

The timeout is the same as for the
 sleep() and join() methods; that is, the thread wakes
 up after the specified amount of time has passed (within the limits
 of the local hardware clock accuracy). When the timeout expires,
 execution of the thread resumes with the statement immediately
 following the invocation of wait(). However, if the thread can't
 immediately regain the lock on the object it was waiting on, it may
 still be blocked for some time.
Interruption works the same way as
 sleep() and join(): some other thread invokes the
 thread's interrupt() method.
 This causes an InterruptedException, and execution
 resumes in the catch block that
 catches the exception. The thread regains the lock on the object it
 was waiting on before the exception is thrown, however, so the
 thread may still be blocked for some time after the interrupt() method is invoked.
The third possibility, notification, is
 new. Notification occurs when some other thread invokes the notify() or notifyAll() method on the object on which
 the thread is waiting. Both of these methods are in the java.lang.Object class:
public final void notify()
public final void notifyAll()
These must be invoked on the object the thread was waiting on,
 not generally on the Thread
 itself. Before notifying an object, a thread must first obtain the
 lock on the object using a synchronized method or block. The
 notify() method selects one
 thread more or less at random from the list of threads waiting on
 the object and wakes it up. The notifyAll() method wakes up every thread
 waiting on the given object.
Once a waiting thread is notified, it attempts to regain the
 lock of the object it was waiting on. If it succeeds, execution
 resumes with the statement immediately following the invocation of
 wait(). If it fails, it blocks on
 the object until its lock becomes available; then execution resumes
 with the statement immediately following the invocation of wait().
For example, suppose one thread is reading a JAR archive from
 a network connection. The first entry in the archive is the manifest
 file. Another thread might be interested in the contents of the
 manifest file even before the rest of the archive is available. The
 interested thread could create a custom ManifestFile object, pass a reference to
 this object to the thread that would read the JAR archive, and wait
 on it. The thread reading the archive would first fill the ManifestFile with entries from the stream,
 then notify the ManifestFile,
 then continue reading the rest of the JAR archive. When the reader
 thread notified the ManifestFile,
 the original thread would wake up and do whatever it planned to do
 with the now fully prepared ManifestFile object. The first thread
 works something like this:
ManifestFile m = new ManifestFile();
JarThread t = new JarThread(m, in);
synchronized (m) {
 t.start();
 try {
 m.wait();
 // work with the manifest file...
 }
 catch (InterruptedException ex) {
 // handle exception...
 }
}
The JarThread class works
 like this:
ManifestFile theManifest;
InputStream in;

public JarThread(Manifest m, InputStream in) {
 theManifest = m;
 this.in= in;
}

public void run() {

 synchronized (theManifest) {
 // read the manifest from the stream in...
 theManifest.notify();
 }
 // read the rest of the stream...

}
Waiting and notification are more commonly used when multiple
 threads want to wait on the same object. For example, one thread may
 be reading a web server log file in which each line contains one
 entry to be processed. Each line is placed in a java.util.List as it's read. Several
 threads wait on the List to
 process entries as they're added. Every time an entry is added, the
 waiting threads are notified using the notifyAll() method. If more than one
 thread is waiting on an object, notifyAll(
) is preferred, since there's no way to select which
 thread to notify. When all threads waiting on one object are
 notified, all will wake up and try to get the lock on the object.
 However, only one can succeed immediately. That one continues; the
 rest are blocked until the first one releases the lock. If several
 threads are all waiting on the same object, a significant amount of
 time may pass before the last one gets its turn at the lock on the
 object and continues. It's entirely possible that the object on
 which the thread was waiting will once again have been placed in an
 unacceptable state during this time. Thus, you'll generally put the
 call to wait() in a loop that
 checks the current state of the object. Do not assume that just
 because the thread was notified, the object is now in the correct
 state. Check it explicitly if you can't guarantee that once the
 object reaches a correct state it will never again reach an
 incorrect state. For example, this is how the client threads waiting
 on the log file entries might look:
private List entries;

public void processEntry() {

 synchronized (entries) { // must synchronize on the object we wait on
 while (entries.size() == 0) {
 try {
 entries.wait();
 // We stopped waiting because entries.size() became non-zero
 // However we don't know that it's still non-zero so we
 // pass through the loop again to test its state now.
 }
 catch (InterruptedException ex) {
 // If interrupted, the last entry has been processed so
 return;
 }
 }
 String entry = (String) entries.remove(entries.size()-1);
 // process this entry...
 }

}
The code reading the log file and adding entries to the vector
 might look something like this:
public void readLogFile() {

 String entry;

 while (true) {
 entry = log.getNextEntry();
 if (entry == null) {
 // There are no more entries to add to the vector so
 // we have to interrupt all threads that are still waiting.
 // Otherwise, they'll wait forever.
 for (int i = 0; i < threads.length; i++) threads[i].interrupt();
 break;
 }
 synchronized (entries) {
 entries.add(0, entry);
 entries.notifyAll();
 }
 }

}

Priority-based preemption

Since threads are preemptive between priorities, you
 do not need to worry about giving up time to higher-priority
 threads. A high-priority thread will preempt lower-priority threads
 when it's ready to run. However, when the high-priority thread
 finishes running or blocks, it generally won't be the same
 low-priority thread that runs next. Instead, most non-real-time VMs
 use a round-robin scheduler so that the lower-priority thread that
 has been waiting longest will run next.
For example, suppose there are three threads with priority 5
 named A, B, and C running in a cooperatively scheduled virtual
 machine. None of them will yield or block. Thread A starts running
 first. It runs for a while and is then preempted by thread D, which
 has priority 6. A stops running. Eventually, thread D blocks, and
 the thread scheduler looks for the next highest-priority thread to
 run. It finds three: A, B, and C. Thread A has already had some time
 to run, so the thread scheduler picks B (or perhaps C; this doesn't
 have to go in alphabetical order). B runs for a while when thread D
 suddenly unblocks. Thread D still has higher priority so the virtual
 machine pauses thread B and lets D run for a while. Eventually, D
 blocks again, and the thread scheduler looks for another thread to
 run. Again, it finds A, B, and C, but at this point, A has had some
 time and B has had some time, but C hasn't had any. So the thread
 scheduler picks thread C to run. Thread C runs until it is once
 again preempted by thread D. When thread D blocks again, the thread
 scheduler finds three threads ready to run. Of the three, however, A
 ran the longest ago, so the scheduler picks thread A. From this
 point forward, every time D preempts and blocks and the scheduler
 needs a new thread to run, it will run the threads A, B, and C in
 that order, circling back around to A after C.
If you'd rather avoid explicit yielding, you can use a
 higher-priority thread to force the lower-priority threads to give
 up time to each other. In essence, you can use a high-priority
 thread scheduler of your own devising to make all threading
 preemptive. The trick is to run a high-priority thread that does
 nothing but sleep and wake up periodically, say every 100
 milliseconds. This will split the lower-priority threads into
 100-millisecond time slices. It isn't necessary for the thread
 that's doing the splitting to know anything about the threads it's
 preempting. It's simply enough that it exists and is running. Example 5-14 demonstrates with
 a TimeSlicer class that allows
 you to guarantee preemption of threads with priorities less than a
 fixed value every timeslice
 milliseconds.
Example 5-14. A thread that forces preemptive scheduling for
 lower-priority threads
public class TimeSlicer extends Thread {

 private long timeslice;

 public TimeSlicer(long milliseconds, int priority) {

 this.timeslice = milliseconds;
 this.setPriority(priority);
 // If this is the last thread left, it should not
 // stop the VM from exiting
 this.setDaemon(true);

 }

 // Use maximum priority
 public TimeSlicer(long milliseconds) {
 this(milliseconds, 10);
 }

 // Use maximum priority and 100ms timeslices
 public TimeSlicer() {
 this(100, 10);
 }

 public void run() {

 while (true) {
 try {
 Thread.sleep(timeslice);
 }
 catch (InterruptedException ex) {
 }
 }

 }

}

Finish

The final way a thread can give up control of the CPU
 in an orderly fashion is by finishing. When the
 run() method returns, the thread
 dies and other threads can take over. In network applications, this
 tends to occur with threads that wrap a single blocking operation,
 such as downloading a file from a server, so that the rest of the
 application won't be blocked.
Otherwise, if your run()
 method is so simple that it always finishes quickly enough without
 blocking, there's a very real question of whether you should spawn a
 thread at all. There's a nontrivial amount of overhead for the
 virtual machine in setting up and tearing down threads. If a thread
 is finishing in a small fraction of a second anyway, chances are it
 would finish even faster if you used a simple method call rather
 than a separate thread.

Thread Pools

Adding multiple threads to a program dramatically improves
 performance, especially for I/O-bound programs such as most network
 programs. However, threads are not without overhead of their own.
 Starting a thread and cleaning up after a thread that has died takes a
 noticeable amount of work from the virtual machine, especially if a
 program spawns hundreds of threads—not an unusual occurrence for even a
 low- to medium-volume network server. Even if the threads finish
 quickly, this can overload the garbage collector or other parts of the
 VM and hurt performance, just like allocating thousands of any other
 kind of object every minute. Even more importantly, switching between
 running threads carries overhead. If the threads are blocking
 naturally—for instance, by waiting for data from the network—there's no
 real penalty to this, but if the threads are CPU-bound, then the total
 task may finish more quickly if you can avoid a lot of switching between
 threads. Finally, and most importantly, although threads help make more
 efficient use of a computer's limited CPU resources, there are still
 only a finite amount of resources to go around. Once you've spawned
 enough threads to use all the computer's available idle time, spawning
 more threads just wastes MIPS and memory on thread management.
Fortunately, you can get the best of both worlds by reusing
 threads. You cannot restart a thread once it's died, but you can
 engineer threads so that they don't die as soon as they've finished one
 task. Instead, put all the tasks you need to accomplish in a queue or
 other data structure and have each thread retrieve a new task from the
 queue when it's completed its previous task. This is called
 thread pooling, and the data structure in which the
 tasks are kept is called the pool .
The simplest way to implement a thread pool is by allotting a
 fixed number of threads when the pool is first created. When the pool is
 empty, each thread waits on the pool. When a task is added to the pool,
 all waiting threads are notified. When a thread finishes its assigned
 task, it goes back to the pool for a new task. If it doesn't get one, it
 waits until a new task is added to the pool.
An alternative is to put the threads themselves in the pool and
 have the main program pull threads out of the pool and assign them
 tasks. If no thread is in the pool when a task becomes necessary, the
 main program can spawn a new thread. As each thread finishes a task, it
 returns to the pool. (Imagine this scheme as a union hall in which new
 workers join the union only when full employment of current members is
 achieved.)
There are many data structures you can use for a pool, although a
 queue is probably the most efficient for ensuring that tasks are
 performed in a first-in, first-out order. Whichever data structure you
 use to implement the pool, however, you have to be extremely careful
 about synchronization, since many threads will interact with it very
 close together in time. The simplest way to avoid problems is to use
 either a java.util.Vector (which is
 fully synchronized) or a synchronized Collection from the Java Collections
 API.
Let's look at an example. Suppose you want to gzip every file in
 the current directory using a java.util.zip.GZIPOutputStream. On the one
 hand, this is an I/O-heavy operation because all the files have to be
 read and written. On the other hand, data compression is a very
 CPU-intensive operation, so you don't want too many threads running at
 once. This is a good opportunity to use a thread pool. Each client
 thread will compress files while the main program will determine which
 files to compress. In this example, the main program is likely to
 significantly outpace the compressing threads since all it has to do is
 list the files in a directory. Therefore, it's not out of the question
 to fill the pool first, then start the threads that compress the files
 in the pool. However, to make this example as general as possible, we'll
 allow the main program to run in parallel with the zipping
 threads.
Example 5-15 shows the
 GZipThread class. It contains a
 private field called pool containing
 a reference to the pool. Here that field is declared to have List type, but it's always accessed in a
 strictly queue-like first-in, first-out order. The run() method removes File objects from the pool and gzips each one.
 If the pool is empty when the thread is ready to get something new from
 the pool, then the thread waits on the pool object.
Example 5-15. The GZipThread class
import java.io.*;
import java.util.*;
import java.util.zip.*;

public class GZipThread extends Thread {

 private List pool;
 private static int filesCompressed = 0;

 public GZipThread(List pool) {
 this.pool = pool;
 }

 private static synchronized void incrementFilesCompressed() {
 filesCompressed++;
 }

 public void run() {

 while (filesCompressed != GZipAllFiles.
 getNumberOfFilesToBeCompressed()) {

 File input = null;

 synchronized (pool) {
 while (pool.isEmpty()) {
 if (filesCompressed == GZipAllFiles.
 getNumberOfFilesToBeCompressed()) {
 System.out.println("Thread ending");
 return;
 }
 try {
 pool.wait();
 }
 catch (InterruptedException ex) {
 }
 }

 input = (File) pool.remove(pool.size()-1);
 incrementFilesCompressed();

 }

 // don't compress an already compressed file
 if (!input.getName().endsWith(".gz")) {
 try {
 InputStream in = new FileInputStream(input);
 in = new BufferedInputStream(in);

 File output = new File(input.getParent(), input.getName() + ".gz");
 if (!output.exists()) { // Don't overwrite an existing file
 OutputStream out = new FileOutputStream(output);
 out = new GZIPOutputStream(out);
 out = new BufferedOutputStream(out);
 int b;
 while ((b = in.read()) != -1) out.write(b);
 out.flush();
 out.close();
 in.close();
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end if

 } // end while

 } // end run

} // end ZipThread

Example 5-16 is the
 main program. It constructs the pool as a Vector object, passes this to four newly
 constructed GZipThread objects,
 starts all four threads, and iterates through all the files and
 directories listed on the command line. Those files and files in those
 directories are added to the pool for eventual processing by the four
 threads.
Example 5-16. The GZipThread user interface class
import java.io.*;
import java.util.*;

public class GZipAllFiles {

 public final static int THREAD_COUNT = 4;
 private static int filesToBeCompressed = -1;

 public static void main(String[] args) {

 Vector pool = new Vector();
 GZipThread[] threads = new GZipThread[THREAD_COUNT];

 for (int i = 0; i < threads.length; i++) {
 threads[i] = new GZipThread(pool);
 threads[i].start();
 }

 int totalFiles = 0;
 for (int i = 0; i < args.length; i++) {

 File f = new File(args[i]);
 if (f.exists()) {
 if (f.isDirectory()) {
 File[] files = f.listFiles();
 for (int j = 0; j < files.length; j++) {
 if (!files[j].isDirectory()) { // don't recurse directories
 totalFiles++;
 synchronized (pool) {
 pool.add(0, files[j]);
 pool.notifyAll();
 }
 }
 }
 }
 else {
 totalFiles++;
 synchronized (pool) {
 pool.add(0, f);
 pool.notifyAll();
 }
 }

 } // end if

 } // end for

 filesToBeCompressed = totalFiles;

 // make sure that any waiting thread knows that no
 // more files will be added to the pool
 for (int i = 0; i < threads.length; i++) {
 threads[i].interrupt();
 }

 }

 public static int getNumberOfFilesToBeCompressed() {
 return filesToBeCompressed;
 }

}

The big question here is how to tell the program that it's done
 and should exit. You can't simply exit when all files have been added to
 the pool, because at that point most of the files haven't been
 processed. Neither can you exit when the pool is empty, because that may
 occur at the start of the program (before any files have been placed in
 the pool) or at various intermediate times when not all files have yet
 been put in the pool but all files that have been put there are
 processed. The latter possibility also prevents the use of a simple
 counter scheme.
The solution adopted here is to separately track the number of
 files that need to be processed (GZipAllFiles.filesToBeCompressed) and the
 number of files actually processed (GZipThread.filesCompressed). When these two
 values match, all threads' run()
 methods return. Checks are made at the start of each of the while loops in the run() method to see whether it's necessary to
 continue. This scheme is preferred to the deprecated stop() method, because it won't suddenly stop
 the thread while it's halfway through compressing a file. This gives us
 much more fine-grained control over exactly when and where the thread
 stops.
Initially, GZipAllFiles.filesToBeCompressed is set to the
 impossible value -1. Only when the final number is known is it set to
 its real value. This prevents early coincidental matches between the
 number of files processed and the number of files to be processed. It's
 possible that when the final point of the main(
) method is reached, one or more of the threads will be
 waiting. Thus, we interrupt each of the threads (an action that has no
 effect if the thread is merely processing and not waiting or sleeping)
 to make sure it checks one last time.
And finally, the last element of this program is the private
 GZipThread.incrementFilesCompressed(
) method. This method is synchronized to ensure that if two
 threads try to update the filesCompressed field at the same time, one
 will wait. Otherwise, the GZipThread.filesCompressed field could end up
 one short of the true value and the program would never exit. Since the
 method is static, all threads synchronize on the same Class object. A synchronized instance method
 wouldn't be sufficient here.
The complexity of determining when to stop this program is mostly
 atypical of the more heavily threaded programs you'll write because it
 does have such a definite ending point: the point at which all files are
 processed. Most network servers continue indefinitely until some part of
 the user interface shuts them down. The real solution here is to provide
 some sort of simple user interface—such as typing a period on a line by
 itself—that ends the program.
This chapter has been a whirlwind tour of threading in Java,
 covering the bare minimum you need to know to write multithreaded
 network programs. For a more detailed and comprehensive look with many
 more examples, check out Java Threads, by Scott
 Oaks and Henry Wong (O'Reilly). Once you've mastered that book, Doug
 Lea's Concurrent Programming in Java (Addison
 Wesley) provides a comprehensive look at the traps and pitfalls of
 concurrent programming from a design patterns perspective.

Chapter 6. Looking Up Internet Addresses

Devices connected to the Internet are called
 nodes . Nodes that are computers are called
 hosts . Each node or host is identified by at least one unique
 number called an Internet address or an IP address. Most current IP addresses are four bytes long;
 these are referred to as IPv4 addresses. However, a small but growing
 number of IP addresses are 16 bytes long; these are called IPv6 addresses.
 (4 and 6 refer to the version of the Internet Protocol, not the number of
 the bytes in the address.) Both IPv4 and IPv6 addresses are ordered
 sequences of bytes, like an array. They aren't numbers, and they aren't
 ordered in any predictable or useful sense.
An IPv4 address is normally written as four unsigned bytes,
 each ranging from 0 to 255, with the most significant byte first. Bytes
 are separated by periods for the convenience of human eyes. For example,
 the address for hermes.oit.unc.edu is 152.2.21.2. This is called the
 dotted quad format.
An IPv6 address is normally written as eight blocks of four
 hexadecimal digits separated by colons. For example, at the time of this
 writing, the address of www.ipv6.com.cn is
 2001:0250:02FF:0210:0250:8BFF:FEDE:67C8. Leading
 zeros do not need to be written. Thus, the address of www.ipv6.com.cn can be written as
 2001:250:2FF:210:250:8BFF:FEDE:67C8. A double colon,
 at most one of which may appear in any address, indicates multiple zero
 blocks. For example,
 FEDC:0000:0000:0000:00DC:0000:7076:0010 could be
 written more compactly as FEDC::DC:0:7076:10. In
 mixed networks of IPv6 and IPv4, the last four bytes of the IPv6 address
 are sometimes written as an IPv4 dotted quad address. For example,
 FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 could be
 written as
 FEDC:BA98:7654:3210:FEDC:BA98:118.84.50.16. IPv6 is
 only supported in Java 1.4 and later. Java 1.3 and earlier only support
 four byte addresses.
IP addresses are great for computers, but they are a problem for
 humans, who have a hard time remembering long numbers. In the 1950s, it
 was discovered that most people could remember about seven digits per
 number; some can remember as many as nine, while others remember as few as
 five. ("The Magic Number Seven, Plus or Minus Two: Some Limits on Our
 Capacity for Processing Information," by G. A. Miller, in the
 Psychological Review, Vol. 63, pp. 81-97.) This is
 why phone numbers are broken into three- and four-digit pieces with
 three-digit area codes. Obviously, an IP address, which can have as many
 as 12 decimal digits, is beyond the capacity of most humans to remember. I
 can remember about two IP addresses, and then only if I use both daily and
 the second is on the same subnet as the first.
To avoid the need to carry around Rolodexes full of IP addresses,
 the Internet's designers invented the Domain Name System (DNS). DNS associates hostnames that
 humans can remember (such as hermes.oit.unc.edu) with
 IP addresses that computers can remember (such as 152.2.21.2). Most hosts have at least one
 hostname. An exception is made for computers that don't have a permanent
 IP address (like many PCs); because these computers don't have a permanent
 address, they can't be used as servers and therefore don't need a name,
 since nobody will need to refer to them.
Tip
Colloquially, people often use "Internet address" to mean a hostname (or even an email
 address). In a book about network programming, it is crucial to be
 precise about addresses and hostnames. In this book, an address is
 always a numeric IP address, never a human-readable hostname.

Some machines have multiple names. For instance, www.ibiblio.org and helios.metalab.unc.edu are
 really the same Linux box in Chapel Hill. The name www.ibiblio.org really refers to a
 web site rather than a particular machine. In the past, when this web site
 moved from one machine to another, the name was reassigned to the new
 machine so it always pointed to the site's current server. This way, URLs
 around the Web don't need to be updated just because the site has moved to
 a new host. Some common names like www and
 news are often aliases for the machines providing
 those services. For example, news.speakeasy.net is an
 alias for my ISP's news server. Since the server may change over time, the
 alias can move with the service.
On occasion, one name maps to multiple IP addresses. It is then the
 responsibility of the DNS server to randomly choose machines to respond to
 each request. This feature is most frequently used for very high traffic
 web sites, where it splits the load across multiple systems. For instance,
 www.oreilly.com is actually
 two machines, one at 208.201.239.36 and one at 208.201.239.37.
Every computer connected to the Internet should have access to a
 machine called a domain name server , generally a Unix box running special DNS software that
 knows the mappings between different hostnames and IP addresses. Most
 domain name servers only know the addresses of the hosts on their local
 network, plus the addresses of a few domain name servers at other sites.
 If a client asks for the address of a machine outside the local domain,
 the local domain name server asks a domain name server at the remote
 location and relays the answer to the requester.
Most of the time, you can use hostnames and let DNS handle the
 translation to IP addresses. As long as you can connect to a domain name
 server, you don't need to worry about the details of how names and
 addresses are passed between your machine, the local domain name server,
 and the rest of the Internet. However, you will need access to at least
 one domain name server to use the examples in this chapter and most of the
 rest of this book. These programs will not work on a standalone computer.
 Your machine must be connected to the Internet.
The InetAddress Class

The java.net.InetAddress
 class is Java's high-level representation of an
 IP address, both IPv4 and IPv6. It is used by most of the
 other networking classes, including Socket, ServerSocket, URL, DatagramSocket, DatagramPacket, and more. Generally, it
 includes both a hostname and an IP address.
public class InetAddress extends Object implements Serializable
Tip
In Java 1.3 and earlier, this class is final. In Java
 1.4, it has two subclasses. However, you should not subclass it
 yourself. Indeed, you can't, because all constructors are package
 protected.

Creating New InetAddress Objects

There are no public constructors in the InetAddress class. However, InetAddress has three static methods that
 return suitably initialized InetAddress objects given a little
 information. They are:
public static InetAddress getByName(String hostName)
 throws UnknownHostException
public static InetAddress[] getAllByName(String hostName)
 throws UnknownHostException
public static InetAddress getLocalHost()
 throws UnknownHostException
All three of these methods may make a connection to the local
 DNS server to fill out the information in the InetAddress object, if necessary. This has a
 number of possibly unexpected implications, among them that these
 methods may throw security exceptions if the connection to the DNS
 server is prohibited. Furthermore, invoking one of these methods may
 cause a host that uses a PPP connection to dial into its provider if
 it isn't already connected. The key thing to remember is that these
 methods do not simply use their arguments to set the internal fields.
 They actually make network connections to retrieve all the information
 they need. The other methods in this class, such as getAddress() and getHostName(), mostly work with the
 information provided by one of these three methods. They do not make
 network connections; on the rare occasions that they do, they do not
 throw any exceptions. Only these three methods have to go outside Java
 and the local system to get their work done.
Since DNS lookups can be relatively expensive (on the order of
 several seconds for a request that has to go through several
 intermediate servers, or one that's trying to resolve an unreachable
 host) the InetAddress class caches
 the results of lookups. Once it has the address of a given host, it
 won't look it up again, even if you create a new InetAddress object for the same host. As
 long as IP addresses don't change while your program is running, this
 is not a problem.
Negative results (host not found errors) are slightly more
 problematic. It's not uncommon for an initial attempt to resolve a
 host to fail, but the immediately following one to succeed. What has
 normally happened in this situation is that the first attempt timed
 out while the information was still in transit from the remote DNS
 server. Then the address arrived at the local server and was
 immediately available for the next request. For this reason, Java only
 caches unsuccessful DNS queries for 10 seconds.
In Java 1.4 and later, these times can be controlled by the
 networkaddress.cache.ttl and
 networkaddress.cache.negative.ttl
 system properties. networkaddress.cache.ttl specifies the
 number of seconds a successful DNS lookup will remain in Java's cache.
 networkaddress.cache.negative.ttl
 is the number of seconds an unsuccessful lookup will be cached.
 Attempting to look up the same host again within these limits will
 only return the same value. -1 is interpreted as "never
 expire".
Besides locale caching inside the InetAddress class, the local host, the local
 domain name server, and other DNS servers elsewhere on the Internet
 may also cache the results of various queries. Java provides no way to
 control this. As a result, it may take several hours for the
 information about an IP address change to propagate across the
 Internet. In the meantime, your program may encounter various
 exceptions, including UnknownHostException, NoRouteToHostException, and ConnectException, depending on the changes
 made to the DNS.
Java 1.4 adds two more factory methods that do not check their
 addresses with the local DNS server. The first creates an InetAddress object with an IP address and no
 hostname. The second creates an InetAddress object with an IP address and a
 hostname.
public static InetAddress getByAddress(byte[] address)
 throws UnknownHostException // 1.4
public static InetAddress getByAddress(String hostName, byte[] address)
 throws UnknownHostException // 1.4
Unlike the other three factory methods, these two methods make
 no guarantees that such a host exists or that the hostname is
 correctly mapped to the IP address. They throw an UnknownHostException only if a byte array of
 an illegal size (neither 4 nor 16 bytes long) is passed as the
 address argument.
public static InetAddress getByName(String hostName) throws
 UnknownHostException

InetAddress.getByName()
 is the most frequently used of these factory methods.
 It is a static method that takes the hostname you're looking for as
 its argument. It looks up the host's IP address using DNS. Call
 getByName() like this:
java.net.InetAddress address =
 java.net.InetAddress.getByName("www.oreilly.com");
If you have already imported the java.net.InetAddress class, which will
 almost always be the case, you can call getByName() like this:
InetAddress address = InetAddress.getByName("www.oreilly.com");
In the rest of this book, I assume that there is an import java.net.*; statement at the top of the
 program containing each code fragment, as well as any other
 necessary import
 statements.
The InetAddress.getByName(
) method throws an UnknownHostException if the host can't be
 found, so you need to declare that the method making the call throws
 UnknownHostException (or its
 superclass, IOException) or wrap
 it in a try block, like
 this:
try {
 InetAddress address = InetAddress.getByName("www.oreilly.com");
 System.out.println(address);
}
catch (UnknownHostException ex) {
 System.out.println("Could not find www.oreilly.com");
}
Example 6-1 shows a
 complete program that creates an InetAddress object for www.oreilly.com and prints it
 out.
Example 6-1. A program that prints the address of
 www.oreilly.com
import java.net.*;

public class OReillyByName {

 public static void main (String[] args) {

 try {
 InetAddress address = InetAddress.getByName("www.oreilly.com");
 System.out.println(address);
 }
 catch (UnknownHostException ex) {
 System.out.println("Could not find www.oreilly.com");
 }

 }

}

Here's the result:
% java OReillyByName
www.oreilly.com/208.201.239.36
On rare occasions, you will need to connect to a machine that
 does not have a hostname. In this case, you can pass a String containing the dotted quad or
 hexadecimal form of the IP address to InetAddress.getByName():
InetAddress address = InetAddress.getByName("208.201.239.37");
Example 6-2 uses the
 IP address for www.oreilly.com instead of the
 name.
Example 6-2. A program that prints the address of 208.201.239.37
import java.net.*;

public class OReillyByAddress {

 public static void main (String[] args) {

 try {
 InetAddress address = InetAddress.getByName("208.201.239.37");
 System.out.println(address);
 }
 catch (UnknownHostException ex) {
 System.out.println("Could not find 208.201.239.37");
 }

 }

}

Here's the result in Java 1.3 and earlier:
% java OReillyByAddress
www.oreilly.com/208.201.239.37
When you call getByName()
 with an IP address string as an argument, it creates an InetAddress object for the requested IP
 address without checking with DNS. This means it's possible to
 create InetAddress objects for
 hosts that don't really exist and that you can't connect to. The
 hostname of an InetAddress object
 created from a string containing an IP address is initially set to
 that string. A DNS lookup for the actual hostname is performed only
 when the hostname is requested, either explicitly via getHostName() or implicitly through
 toString(). That's how www.oreilly.com was determined
 from the dotted quad address 208.201.239.37. If at the time
 the hostname is requested and a DNS lookup is finally performed the
 host with the specified IP address can't be found, then the hostname
 remains the original dotted quad string. However, no UnknownHostException is thrown.
The toString() method in
 Java 1.4 behaves a little differently than in earlier versions. It
 does not do a reverse name lookup; thus, the host is not printed
 unless it is already known, either because it was provided as an
 argument to the factory method or because getHostName() was invoked. In Java 1.4,
 Example 6-2 produces this
 output:
/208.201.239.37
Hostnames are much more stable than IP addresses. Some
 services have lived at the same hostname for years but have switched
 IP addresses several times. If you have a choice between using a
 hostname like www.oreilly.com or an IP
 address like 208.201.239.37, always choose
 the hostname. Use an IP address only when a hostname is not
 available.

public static InetAddress[] getAllByName(String hostName)
 throws UnknownHostException

Some computers have more than one Internet address. Given a
 hostname, InetAddress.getAllByName() returns an array that contains all the addresses
 corresponding to that name. Its use is straightforward:
InetAddress[] addresses = InetAddress.getAllByName("www.apple.com");
Like InetAddress.getByName(
), InetAddress.getAllByName(
) can throw an UnknownHostException, so you need to
 enclose it in a try block or
 declare that your method throws UnknownHostException. Example 6-3 demonstrates by
 returning a complete list of the IP addresses for www.microsoft.com.
Example 6-3. A program that prints all the addresses of
 www.microsoft.com
import java.net.*;

public class AllAddressesOfMicrosoft {

 public static void main (String[] args) {

 try {
 InetAddress[] addresses =
 InetAddress.getAllByName("www.microsoft.com");
 for (int i = 0; i < addresses.length; i++) {
 System.out.println(addresses[i]);
 }
 }
 catch (UnknownHostException ex) {
 System.out.println("Could not find www.microsoft.com");
 }

 }

}

Here's the result:
% java AllAddressesOfMicrosoft
www.microsoft.com/63.211.66.123
www.microsoft.com/63.211.66.124
www.microsoft.com/63.211.66.131
www.microsoft.com/63.211.66.117
www.microsoft.com/63.211.66.116
www.microsoft.com/63.211.66.107
www.microsoft.com/63.211.66.118
www.microsoft.com/63.211.66.115
www.microsoft.com/63.211.66.110
www.microsoft.com appears to
 have nine IP addresses. Hosts with more than one address are the
 exception rather than the rule. Most hosts with multiple IP
 addresses are very high-volume web servers. Even in those cases, you
 rarely need to know more than one address.

public static InetAddress getByAddress(byte[] address)
 throws UnknownHostException // Java 1.4public static InetAddress
 getByAddress(String hostName, byte[] address) throws
 UnknownHostException // Java 1.4

In Java 1.4 and later, you can pass a byte array and
 optionally a hostname to getByAddress() to create an InetAddress object with exactly those
 bytes. Domain name lookup is not performed. However, if byte array
 is some length other than 4 or 16 bytes—that is, if it can't be an
 IPv4 or IPv6 address—an UnknownHostException is thrown.
This is useful if a domain name server is not available or
 might have inaccurate information. For example, none of the
 computers, printers, or routers in my basement area network are
 registered with any DNS server. Since I can never remember which
 addresses I've assigned to which systems, I wrote a simple program
 that attempts to connect to all 254 possible local addresses in turn
 to see which ones are active. (This only took me about 10 times as
 long as writing down all the addresses on a piece of paper.)
getByAddress(byte[]
 address) really doesn't do anything getByAddress(String address) doesn't do. In a few cases, it
 might be marginally faster because it doesn't have to convert a
 string to a byte array, but that's a trivial improvement. getByAddress(String hostName, byte[] address) does let you create InetAddress objects that don't match or
 even actively conflict with the information in the local DNS. There
 might occasionally be a call for this, but the use case is pretty
 obscure.

public static InetAddress getLocalHost() throws
 UnknownHostException

The InetAddress class
 contains one final means of getting an InetAddress object. The static method
 InetAddress.getLocalHost()
 returns the InetAddress of the machine on which it's
 running. Like InetAddress.getByName(
) and InetAddress.getAllByName(
), it throws an UnknownHostException when it can't find
 the address of the local machine (though this really shouldn't
 happen). Its use is straightforward:
InetAddress me = InetAddress.getLocalHost();
Example 6-4 prints
 the address of the machine it's run on.
Example 6-4. Find the address of the local machine
import java.net.*;

public class MyAddress {

 public static void main (String[] args) {

 try {
 InetAddress address = InetAddress.getLocalHost();
 System.out.println(address);
 }
 catch (UnknownHostException ex) {
 System.out.println("Could not find this computer's address.");
 }

 }

}

Here's the output; I ran the program on
 titan.oit.unc.edu:
% java MyAddress
titan.oit.unc.edu/152.2.22.14
Whether you see a fully qualified name like
 titan.oit.unc.edu or a partial name like
 titan depends on what the local DNS server
 returns for hosts in the local domain. If you're not connected to
 the Internet, and the system does not have a fixed IP address or
 domain name, you'll probably see localhost as
 the domain name and 127.0.0.1
 as the IP address.

Security Issues

 Creating a new InetAddress object from a hostname is
 considered a potentially insecure operation because it requires a DNS
 lookup. An untrusted applet under the control of the default security
 manager will only be allowed to get the IP address of the host it came
 from (its codebase) and possibly the local host.
 Untrusted code is not allowed to create an InetAddress object from any other hostname.
 This is true whether the code uses the InetAddress.getByName() method, the
 InetAddress.getAllByName() method,
 the InetAddress.getLocalHost()
 method, or something else. Untrusted code can construct an InetAddress object from the string form of
 the IP address, though it will not perform DNS lookups for such
 addresses.
Untrusted code is not allowed to perform arbitrary DNS lookups
 for third-party hosts because of the prohibition against making
 network connections to hosts other than the codebase. Arbitrary DNS
 lookups would open a covert channel by which a program could talk to
 third-party hosts. For instance, suppose an applet downloaded from
 www.bigisp.com wants to send the message
 "macfaq.dialup.cloud9.net is vulnerable" to
 crackersinc.com. All it has to do is request DNS
 information for
 macfaq.dialup.cloud9.net.is.vulnerable.crackersinc.com.
 To resolve that hostname, the applet would contact the local DNS
 server. The local DNS server would contact the DNS server at
 crackersinc.com. Even though these hosts don't
 exist, the cracker can inspect the DNS error log for
 crackersinc.com to retrieve the message. This
 scheme could be considerably more sophisticated with compression,
 error correction, encryption, custom DNS servers that email the
 messages to a fourth site, and more, but this version is good enough
 for a proof of concept. Arbitrary DNS lookups are prohibited because
 arbitrary DNS lookups leak information.
Untrusted code is allowed to call InetAddress.getLocalHost(). However, this
 method returns a hostname of localhost and an IP
 address of 127.0.0.1. This is a special hostname and IP address called
 the loopback address. No matter which machine you
 use this hostname or IP address on, it always refers to the current
 machine. No specific DNS resolution is necessary. The reason for
 prohibiting the applet from finding out the true hostname and address
 is that the computer on which the applet is running may be
 deliberately hidden behind a firewall. In this case, an applet should
 not be a channel for information the web server doesn't already have.
 (Some older browsers, including Netscape 4.x, do allow a little more
 information about the local host to leak out, including its IP
 address, but only if no DNS lookup is required to get this
 information.)
Like all security checks, prohibitions against DNS resolutions
 can be relaxed for trusted code. The specific SecurityManager method used to test whether
 a host can be resolved is checkConnect(
):
public void checkConnect(String hostname, int port)
When the port argument is -1,
 this method checks whether DNS may be invoked to resolve the specified
 host. (If the port argument is greater than -1, this
 method checks whether a connection to the named host on the specified
 port is allowed.) The host argument
 may be either a hostname like www.oreilly.com, a dotted quad IP
 address like 208.201.239.37, or, in Java 1.4
 and later, a hexadecimal IPv6 address like
 FEDC::DC:0:7076:10.
You can grant an applet permission to resolve a host by using
 the Policy Tool to add a java.net.SocketPermission with the action
 connect and the target being the name of the host you want to allow
 the applet to resolve. You can use the asterisk wildcard (*) to allow
 all hosts in particular domains to be resolved. For example, setting
 the target to *.oreilly.com allows the applet to
 resolve the hosts www.oreilly.com, java.oreilly.com, perl.oreilly.com, and all others
 in the oreilly.com domain. Although you'll
 generally use a hostname to set permissions, Java checks it against
 the actual IP addresses. In this example, that also allows hosts in
 the ora.com domain to be resolved because this is
 simply an alias for oreilly.com with the same
 range of IP addresses. To allow all hosts in all domains to be
 resolved, just set the target to *. Figure 6-1 demonstrates.
[image: Using the Policy Tool to grant DNS resolution permission to all applets]

Figure 6-1. Using the Policy Tool to grant DNS resolution permission to
 all applets

Getter Methods

The InetAddress class
 contains three getter methods that return the hostname as a string and
 the IP address as both a string and a byte array:
public String getHostName()
public byte[] getAddress()
public String getHostAddress()
There are no corresponding setHostName(
) and setAddress()
 methods, which means that packages outside of java.net can't change an InetAddress object's fields behind its back.
 Therefore, Java can guarantee that the hostname and the IP address
 match each other. This has the beneficial side effect of making
 InetAdddress immutable and thus
 thread-safe.
public String getHostName()

The getHostName()
 method returns a String that contains the name of the host
 with the IP address represented by this InetAddress object. If the machine in
 question doesn't have a hostname or if the security manager prevents
 the name from being determined, a dotted quad format of the numeric
 IP address is returned. For example:
InetAddress machine = InetAddress.getLocalHost();
String localhost = machine.getHostName();
In some cases, you may only see a partially qualified name
 like titan instead of the full name like
 titan.oit.unc.edu. The details depend on how
 the local DNS behaves when resolving local hostnames.
The getHostName() method
 is particularly useful when you're starting with a dotted quad IP
 address rather than the hostname. Example 6-5 converts the dotted
 quad address 208.201.239.37 into a hostname
 by using InetAddress.getByName()
 and then applying getHostName()
 on the resulting object.
Example 6-5. Given the address, find the hostname
import java.net.*;

public class ReverseTest {

 public static void main (String[] args) {

 try {
 InetAddress ia = InetAddress.getByName("208.201.239.37");
 System.out.println(ia.getHostName());
 }
 catch (Exception ex) {
 System.err.println(ex);
 }

 }

}

Here's the result:
% java ReverseTest
www.oreillynet.com

public String getHostAddress()

The getHostAddress()
 method returns a string containing the dotted quad
 format of the IP address. Example
 6-6 uses this method to print the IP address of the local
 machine in the customary format.
Example 6-6. Find the IP address of the local machine
import java.net.*;

public class MyAddress {

 public static void main(String[] args) {

 try {
 InetAddress me = InetAddress.getLocalHost();
 String dottedQuad = me.getHostAddress();
 System.out.println("My address is " + dottedQuad);
 }
 catch (UnknownHostException ex) {
 System.out.println("I'm sorry. I don't know my own address.");
 }

 }

}

Here's the result:
% java MyAddress
My address is 152.2.22.14.
Of course, the exact output depends on where the program is
 run.

public byte[] getAddress()

If you want to know the IP address of a machine (and you
 rarely do), getAddress()
 returns an IP address as an array of bytes in network
 byte order. The most significant byte (i.e., the first byte in the
 address's dotted quad form) is the first byte in the array, or
 element zero—remember, Java array indices start with zero. To be
 ready for IPv6 addresses, try not to assume anything about the
 length of this array. If you need to know the length of the array,
 use the array's length
 field:
InetAddress me = InetAddress.getLocalHost();
byte[] address = me.getAddress());
The bytes returned are unsigned, which poses a problem. Unlike
 C, Java doesn't have an unsigned byte primitive data type. Bytes
 with values higher than 127 are treated as negative numbers.
 Therefore, if you want to do anything with the bytes returned by
 getAddress(), you need to
 promote the bytes to ints and
 make appropriate adjustments. Here's one way to do it:
int unsignedByte = signedByte < 0 ? signedByte + 256 : signedByte;
Here, signedByte may be
 either positive or negative. The conditional operator ? tests whether signedByte is negative. If it is, 256 is
 added to signedByte to make it
 positive. Otherwise, it's left alone. signedByte is automatically promoted to an
 int before the addition is
 performed so wraparound is not a problem.
One reason to look at the raw bytes of an IP address is to
 determine the type of the address. Test the number of bytes in the
 array returned by getAddress()
 to determine whether you're dealing with an IPv4 or IPv6 address.
 Example 6-7
 demonstrates.
Example 6-7. Determining whether an IP address is v4 or v6
import java.net.*;

public class AddressTests {

 public static int getVersion(InetAddress ia) {

 byte[] address = ia.getAddress();
 if (address.length == 4) return 4;
 else if (address.length == 16) return 6;
 else return -1;

 }

}

Address Types

 Some IP addresses and some patterns of addresses have
 special meanings. For instance, I've already mentioned that 127.0.0.1
 is the local loopback address. IPv4 addresses in the range 224.0.0.0
 to 239.255.255.255 are multicast addresses that send to several
 subscribed hosts at once. Java 1.4 and later include 10 methods for
 testing whether an InetAddress
 object meets any of these criteria:
public boolean isAnyLocalAddress()
public boolean isLoopbackAddress()
public boolean isLinkLocalAddress()
public boolean isSiteLocalAddress()
public boolean isMulticastAddress()
public boolean isMCGlobal()
public boolean isMCNodeLocal()
public boolean isMCLinkLocal()
public boolean isMCSiteLocal()
public boolean isMCOrgLocal()
public boolean isAnyLocalAddress()

This method returns true if the address is a
 wildcard address , false otherwise. A wildcard address matches any
 address of the local system. This is important if the system has
 multiple network interfaces, e.g. several Ethernet cards or an
 Ethernet card and a wireless connection. This is normally important
 only on servers and gateways. In IPv4, the wildcard address is
 0.0.0.0. In IPv6 this address is 0:0:0:0:0:0:0:0 (a.k.a ::).

public boolean isLoopbackAddress()

This method returns true if the address is the loopback address, false otherwise. The loopback
 address connects to the same computer directly in the IP layer
 without using any physical hardware. Thus, connecting to the
 loopback address enables tests to bypass potentially buggy or
 nonexistent Ethernet, PPP, and other drivers, helping to isolate
 problems. Connecting to the loopback address is not the same as
 connecting to the system's normal IP address from the same system.
 In IPv4, this address is 127.0.0.1. In IPv6, this address is
 0:0:0:0:0:0:0:1 (a.k.a. ::1).

public boolean isLinkLocalAddress()

This method returns true if the address is an IPv6 link-local address, false otherwise. This is an
 address used to help IPv6 networks self-configure, much like DHCP on
 IPv4 networks but without necessarily using a server. Routers do not
 forward these packets beyond the local subnet. All link-local
 addresses begin with the eight bytes FE80:0000.0000:0000. The next
 eight bytes are filled with a local address, often copied from the
 Ethernet MAC address assigned by the Ethernet card
 manufacturer.

public boolean isSiteLocalAddress()

This method returns true if the address is an IPv6 site-local address, false otherwise. Site-local
 addresses are similar to link-local addresses except that they may
 be forwarded by routers within a site or campus but should not be
 forwarded beyond that site. Site-local addresses begin with the
 eight bytes FEC0:0000.0000:0000. The next eight bytes are filled
 with a local address, often copied from the Ethernet MAC address
 assigned by the Ethernet card manufacturer.

public boolean isMulticastAddress()

This method returns true if the address is a multicast address, false otherwise. Multicasting
 broadcasts content to all subscribed computers rather than to one
 particular computer. In IPv4, multicast addresses all fall in the
 range 224.0.0.0 to 239.255.255.255. In IPv6, they all begin with
 byte FF. Multicasting will be discussed in Chapter 14.

public boolean isMCGlobal()

This method returns true if the address is a global multicast address, false otherwise. A global
 multicast address may have subscribers around the world. All
 multicast addresses begin with FF. In IPv6, global multicast
 addresses begin with FF0E or FF1E depending on whether the multicast
 address is a well known permanently assigned address or a transient
 address. In IPv4, all multicast addresses have global scope, at
 least as far as this method is concerned. As you'll see in Chapter 14, IPv4 uses time-to-live
 (TTL) values to control scope rather than addressing.

public boolean isMCOrgLocal()

This method returns true if the address is an organization-wide multicast address, false otherwise.
 An organization-wide multicast address may have subscribers within
 all the sites of a company or organization, but not outside that
 organization. Organization multicast addresses begin with FF08 or
 FF18, depending on whether the multicast address is a well known
 permanently assigned address or a transient address.

public boolean isMCSiteLocal()

This method returns true if the address is a site-wide multicast address, false otherwise. Packets
 addressed to a site-wide address will only be transmitted within
 their local site. Site-wide multicast addresses begin with FF05 or
 FF15, depending on whether the multicast address is a well known
 permanently assigned address or a transient address.

public boolean isMCLinkLocal()

This method returns true if the address is a subnet-wide multicast address, false otherwise.
 Packets addressed to a link-local address will only be transmitted
 within their own subnet. Link-local multicast addresses begin with
 FF02 or FF12, depending on whether the multicast address is a well
 known permanently assigned address or a transient address.

public boolean isMCNodeLocal()

This method returns true if the address is an interface-local multicast address, false otherwise.
 Packets addressed to an interface-local address are not sent beyond
 the network interface from which they originate, not even to a
 different network interface on the same node. This is primarily
 useful for network debugging and testing. Interface-local multicast
 addresses begin with the two bytes FF01 or FF11, depending on
 whether the multicast address is a well known permanently assigned
 address or a transient address.
Tip
The method name is out of sync with current terminology.
 Earlier drafts of the IPv6 protocol called this type of address
 "node-local", hence the name "isMCNodeLocal". The IPNG working
 group actually changed the name before Java 1.4 was released.
 Unfortunately, Java 1.4 uses the old terminology.

Example 6-8 is a
 simple program to test the nature of an address entered from the
 command line using these 10 methods.
Example 6-8. Testing the characteristics of an IP address (Java 1.4 and
 later)
import java.net.*;

public class IPCharacteristics {

 public static void main(String[] args) {

 try {
 InetAddress address = InetAddress.getByName(args[0]);

 if (address.isAnyLocalAddress()) {
 System.out.println(address + " is a wildcard address.");
 }
 if (address.isLoopbackAddress()) {
 System.out.println(address + " is loopback address.");
 }

 if (address.isLinkLocalAddress()) {
 System.out.println(address + " is a link-local address.");
 }
 else if (address.isSiteLocalAddress()) {
 System.out.println(address + " is a site-local address.");
 }
 else {
 System.out.println(address + " is a global address.");
 }

 if (address.isMulticastAddress()) {
 if (address.isMCGlobal()) {
 System.out.println(address + " is a global multicast address.");
 }
 else if (address.isMCOrgLocal()) {
 System.out.println(address
 + " is an organization wide multicast address.");
 }
 else if (address.isMCSiteLocal()) {
 System.out.println(address + " is a site wide multicast
 address.");
 }
 else if (address.isMCLinkLocal()) {
 System.out.println(address + " is a subnet wide multicast
 address.");
 }
 else if (address.isMCNodeLocal()) {
 System.out.println(address
 + " is an interface-local multicast address.");
 }
 else {
 System.out.println(address + " is an unknown multicast
 address type.");
 }

 }
 else {
 System.out.println(address + " is a unicast address.");
 }

 }
 catch (UnknownHostException ex) {
 System.err.println("Could not resolve " + args[0]);
 }

 }

}

Here's the output from an IPv4 and IPv6 address:
$ java IPCharacteristics 127.0.0.1
/127.0.0.1 is loopback address.
/127.0.0.1 is a global address.
/127.0.0.1 is a unicast address.
$ java IPCharacteristics 192.168.254.32
/192.168.254.32 is a site-local address.
/192.168.254.32 is a unicast address.
$ java IPCharacteristics www.oreilly.com
www.oreilly.com/208.201.239.37 is a global address.
www.oreilly.com/208.201.239.37 is a unicast address.
$ java IPCharacteristics 224.0.2.1
/224.0.2.1 is a global address.
/224.0.2.1 is a global multicast address.
$ java IPCharacteristics FF01:0:0:0:0:0:0:1
/ff01:0:0:0:0:0:0:1 is a global address.
/ff01:0:0:0:0:0:0:1 is an interface-local multicast address.
$ java IPCharacteristics FF05:0:0:0:0:0:0:101
/ff05:0:0:0:0:0:0:101 is a global address.
/ff05:0:0:0:0:0:0:101 is a site wide multicast address.
$ java IPCharacteristics 0::1
/0:0:0:0:0:0:0:1 is loopback address.
/0:0:0:0:0:0:0:1 is a global address.
/0:0:0:0:0:0:0:1 is a unicast address.

Testing Reachability // Java 1.5

 Java 1.5 adds two new methods to the InetAddress class that enable applications
 to test whether a particular node is reachable from the current host;
 that is, whether a network connection can be made. Connections can be
 blocked for many reasons, including firewalls, proxy servers,
 misbehaving routers, and broken cables, or simply because the remote
 host is not turned on when you try to connect. The isReachable() methods allow you to test the
 connection:
public boolean isReachable(int timeout) throws IOException
public boolean isReachable(NetworkInterface interface, int ttl, int timeout)
 throws IOException
These methods attempt to connect to the echo port on the remote
 host site to find out if it's reachable. If the host responds within
 timeout milliseconds, the methods
 return true; otherwise, they return false. An IOException will be thrown if there's a
 network error. The second variant also lets you specify the local
 network interface the connection is made from and the "time-to-live"
 (the maximum number of network hops the connection will attempt before
 being discarded).
In practice, these methods aren't very reliable across the
 global Internet. Firewalls tend to get in the way of the network
 protocols Java uses to figure out if a host is reachable or not.
 However, you may be able to use these methods on the local
 intranet.

Object Methods

Like every other class, java.net.InetAddress inherits from java.lang.Object. Thus, it has access to all
 the methods of that class. It overrides three methods to provide more
 specialized behavior:
public boolean equals(Object o)
public int hashCode()
public String toString()
public boolean equals(Object o)

An object is equal to an InetAddress object only if it is itself an
 instance of the InetAddress class
 and it has the same IP address. It does not need to have the same
 hostname. Thus, an InetAddress
 object for www.ibiblio.org is equal to an
 InetAddress object for
 www.cafeaulait.org since both names refer to
 the same IP address. Example
 6-9 creates InetAddress
 objects for www.ibiblio.org and
 helios.metalab.unc.edu and then tells you
 whether they're the same machine.
Example 6-9. Are www.ibiblio.org and helios.metalab.unc.edu the
 same?
import java.net.*;

public class IBiblioAliases {

 public static void main (String args[]) {

 try {
 InetAddress ibiblio = InetAddress.getByName("www.ibiblio.org");
 InetAddress helios = InetAddress.getByName("helios.metalab.unc.edu");
 if (ibiblio.equals(helios)) {
 System.out.println
 ("www.ibiblio.org is the same as helios.metalab.unc.edu");
 }
 else {
 System.out.println
 ("www.ibiblio.org is not the same as helios.metalab.unc.edu");
 }
 }
 catch (UnknownHostException ex) {
 System.out.println("Host lookup failed.");
 }

 }

}

When you run this program, you discover:
% java IBiblioAliases
www.ibiblio.org is the same as helios.metalab.unc.edu

public int hashCode()

The hashCode() method returns an int that is needed when InetAddress objects are used as keys in
 hash tables. This is called by the various methods of java.util.Hashtable. You will almost
 certainly not need to call this method directly.
Consistent with the equals(
) method, the int that
 hashCode() returns is calculated
 solely from the IP address. It does not take the hostname into
 account. If two InetAddress
 objects have the same address, then they have the same hash code,
 even if their hostnames are different. Therefore, if you try to
 store two objects in a Hashtable
 using equivalent InetAddress
 objects as a key (for example, the InetAddress objects for
 helios.metalab.unc.edu and
 www.ibiblio.org), the second will overwrite the
 first. If this is a problem, use the String returned by getHostName() as the key instead of the
 InetAddress itself.

public String toString()

Like all good classes, java.net.InetAddress has a toString() method that returns a short text representation of
 the object. Example 6-1
 through Example 6-4 all
 implicitly called this method when passing InetAddress objects to System.out.println(). As you saw, the
 string produced by toString()
 has the form:
hostname/dotted quad address
Not all InetAddress objects
 have hostnames. If one doesn't, the dotted quad address is
 substituted in Java 1.3 and earlier. In Java 1.4, the hostname is
 set to the empty string. This format isn't particularly useful, so
 you'll probably never call toString() explicitly. If you do, the
 syntax is simple:
InetAddress thisComputer = InetAddress.getLocalHost();
String address = thisComputer.toString();

Inet4Address and Inet6Address

Java 1.4 introduces two new classes, Inet4Address and
 Inet6Address, in order to distinguish
 IPv4 addresses from IPv6 addresses:
public final class Inet4Address extends InetAddress
public final class Inet6Address extends InetAddress
(In Java 1.3 and earlier, all InetAddress objects represent IPv4
 addresses.)
Most of the time, you really shouldn't be concerned with whether
 an address is an IPv4 or IPv6 address. In the application layer where
 Java programs reside, you simply don't need to know this (and even if
 you do need to know, it's quicker to check the size of the byte array
 returned by getAddress() than to use
 instanceof to test which subclass you
 have). Mostly these two classes are just implementation details you do
 not need to concern yourself with. Inet4Address overrides several of the methods
 in InetAddress but doesn't change
 their behavior in any public way. Inet6Address is similar, but it does add one
 new method not present in the superclass, isIPv4CompatibleAddress():
public boolean isIPv4CompatibleAddress()
This method returns true if and only if the address is essentially
 an IPv4 address stuffed into an IPv6 container—which means only the last
 four bytes are non-zero. That is, the address has the form
 0:0:0:0:0:0:0:xxxx. If this is the case, you can
 pull off the last four bytes from the array returned by getBytes() and use this data to create an
 Inet4Address instead. However, you
 rarely need to do this.

The NetworkInterface Class

 Java 1.4 adds a NetworkInterface class that represents a local
 IP address. This can either be a physical interface such as an
 additional Ethernet card (common on firewalls and routers) or it can be
 a virtual interface bound to the same physical hardware as the machine's
 other IP addresses. The NetworkInterface class provides methods to
 enumerate all the local addresses, regardless of interface, and to
 create InetAddress objects from them.
 These InetAddress objects can then be
 used to create sockets, server sockets, and so forth.
Factory Methods

Since NetworkInterface
 objects represent physical hardware and virtual
 addresses, they cannot be constructed arbitrarily. As with the
 InetAddress class, there are static
 factory methods that return the NetworkInterface object associated with a
 particular network interface. You can ask for a NetworkInterface by IP address, by name, or
 by enumeration.
public static NetworkInterface getByName(String name) throws
 SocketException

The getByName() method returns a NetworkInterface object representing the
 network interface with the particular name. If there's no interface
 with that name, it returns null. If the underlying network stack
 encounters a problem while locating the relevant network interface,
 a SocketException is thrown, but
 this isn't too likely to happen.
The format of the names is platform-dependent. On a typical
 Unix system, the Ethernet interface names have the form eth0, eth1,
 and so forth. The local loopback address is probably named something
 like "lo". On Windows, the names are strings like "CE31" and
 "ELX100" that are derived from the name of the vendor and model of
 hardware on that particular network interface. For example, this
 code fragment attempts to find the primary Ethernet interface on a
 Unix system:
try {
 NetworkInterface ni = NetworkInterface.getByName("eth0");
 if (ni == null) {
 System.err.println("No such interface: eth0");
 }
}
catch (SocketException ex) {
 System.err.println("Could not list sockets.");
}

public static NetworkInterface getByInetAddress(InetAddress
 address) throws SocketException

The getByInetAddress()
 method returns a NetworkInterface object representing the
 network interface bound to the specified IP address. If no network
 interface is bound to that IP address on the local host, then it
 returns null. If anything goes wrong, it throws a SocketException. For example, this code
 fragment finds the network interface for the local loopback
 address:
try {
 InetAddress local = InetAddress.getByName("127.0.0.1");
 NetworkInterface ni = NetworkInterface.getByInetAddress(local);
 if (ni == null) {
 System.err.println("That's weird. No local loopback address.");
 }
}
catch (SocketException ex) {
 System.err.println("Could not list sockets.");
}
catch (UnknownHostException ex) {
 System.err.println("That's weird. No local loopback address.");
}

public static Enumeration getNetworkInterfaces() throws
 SocketException

The getNetworkInterfaces()
 method returns a java.util.Enumeration listing all the
 network interfaces on the local host. Example 6-10 is a simple
 program to list all network interfaces on the local host:
Example 6-10. A program that lists all the network interfaces
import java.net.*;
import java.util.*;

public class InterfaceLister {

 public static void main(String[] args) throws Exception {

 Enumeration interfaces = NetworkInterface.getNetworkInterfaces();
 while (interfaces.hasMoreElements()) {
 NetworkInterface ni = (NetworkInterface) interfaces.nextElement();
 System.out.println(ni);
 }

 }

}

Here's the result of running this on the IBiblio login
 server:
% java InterfaceLister
name:eth1 (eth1) index: 3 addresses:
/192.168.210.122;

name:eth0 (eth0) index: 2 addresses:
/152.2.210.122;

name:lo (lo) index: 1 addresses:
/127.0.0.1;
You can see that this host has two separate Ethernet cards
 plus the local loopback address. Ignore the number of addresses (3,
 2, and 1). It's a meaningless number, not the actual number of IP
 addresses bound to each interface.

Getter Methods

Once you have a NetworkInterface object, you can inquire
 about its IP address and name. This is pretty much the only thing you
 can do with these objects.
public Enumeration getInetAddresses()

A single network interface may be bound to more than one IP
 address. This situation isn't common these days, but it does happen.
 The getInetAddresses() method
 returns a java.util.Enumeration
 containing an InetAddress object
 for each IP address the interface is bound to. For example, this
 code fragment lists all the IP addresses for the eth0
 interface:
NetworkInterface eth0 = NetworkInterrface.getByName("eth0");
Enumeration addresses = eth0.getInetAddresses();
while (addresses.hasMoreElements()) {
 System.out.println(addresses.nextElement());
}

public String getName()

The getName() method
 returns the name of a particular NetworkInterface object, such as eth0 or
 lo.

public String getDisplayName()

The getDisplayName()
 method allegedly returns a more human-friendly name for the
 particular NetworkInterface—something like "Ethernet
 Card 0". However, in my tests on Unix, it always returned the same
 string as getName(). On Windows,
 you may see slightly friendlier names such as "Local Area
 Connection" or "Local Area Connection 2".

Object Methods

The NetworkInterface
 class defines the equals() , hashCode(), and
 toString() methods with the usual
 semantics:
public boolean equals()
public int hashCode()
public String toString()
Two NetworkInterface objects
 are equal if they represent the same physical network interface (e.g.,
 both point to the same Ethernet port, modem, or wireless card) and
 they have the same IP address. Otherwise, they are not equal.
NetworkInterface does not
 implement Cloneable, Serializable, or Comparable. NetworkInterface objects cannot be cloned,
 compared, or serialized.

Some Useful Programs

You now know everything there is to know about the java.net.InetAddress class. The tools in this
 class alone let you write some genuinely useful programs. Here we'll
 look at two examples: one that queries your domain name server
 interactively and another that can improve the performance of your web
 server by processing log files offline.
HostLookup

nslookup is an old Unix utility that converts hostnames to IP
 addresses and IP addresses to hostnames. It has two modes: interactive
 and command-line. If you enter a hostname on the command line,
 nslookup prints the IP address of that host. If
 you enter an IP address on the command line,
 nslookup prints the hostname. If no hostname or
 IP address is entered on the command line,
 nslookup enters interactive mode, in which it
 reads hostnames and IP addresses from standard input and echoes back
 the corresponding IP addresses and hostnames until you type "exit".
 Example 6-11 is a simple
 character mode application called HostLookup , which emulates nslookup. It
 doesn't implement any of nslookup's more complex
 features, but it does enough to be useful.
Example 6-11. An nslookup clone
import java.net.*;
import java.io.*;

public class HostLookup {

 public static void main (String[] args) {

 if (args.length > 0) { // use command line
 for (int i = 0; i < args.length; i++) {
 System.out.println(lookup(args[i]));
 }
 }
 else {
 BufferedReader in = new BufferedReader(new InputStreamReader
 (System.in));
 System.out.println("Enter names and IP addresses.
 Enter \"exit\" to quit.");
 try {
 while (true) {
 String host = in.readLine();
 if (host.equalsIgnoreCase("exit") ||
 host.equalsIgnoreCase("quit")) {
 break;
 }
 System.out.println(lookup(host));
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

 } /* end main */

 private static String lookup(String host) {

 InetAddress node;

 // get the bytes of the IP address
 try {
 node = InetAddress.getByName(host);
 }
 catch (UnknownHostException ex) {
 return "Cannot find host " + host;
 }

 if (isHostname(host)) {
 return node.getHostAddress();
 }
 else { // this is an IP address
 return node.getHostName();
 }

 } // end lookup

 private static boolean isHostname(String host) {

 // Is this an IPv6 address?
 if (host.indexOf(':') != -1) return false;

 char[] ca = host.toCharArray();
 // if we see a character that is neither a digit nor a period
 // then host is probably a hostname
 for (int i = 0; i < ca.length; i++) {
 if (!Character.isDigit(ca[i])) {
 if (ca[i] != '.') return true;
 }
 }

 // Everything was either a digit or a period
 // so host looks like an IPv4 address in dotted quad format
 return false;

 } // end isHostName

 } // end HostLookup

Here's some sample output; the input typed by the user is in
 bold:
$ java HostLookup utopia.poly.edu
128.238.3.21
$ java HostLookup 128.238.3.21
utopia.poly.edu
$ java HostLookup
Enter names and IP addresses. Enter "exit" to quit.
cs.nyu.edu
128.122.80.78
199.1.32.90
star.blackstar.com
localhost
127.0.0.1
stallio.elharo.com
Cannot find host stallio.elharo.com
stallion.elharo.com
127.0.0.1
127.0.0.1
stallion.elharo.com
java.oreilly.com
208.201.239.37
208.201.239.37
www.oreillynet.com
exit
$
There are three methods in the HostLookup program:
 main(), lookup(), and isHostName(). The main() method determines whether there are
 command-line arguments. If there are command-line arguments, main() calls lookup() to
 process each one. If there are no command-line arguments, main() chains a BufferedReader to an InputStreamReader chained to System.in and reads input from the user with
 the readLine() method. (The
 warning about this method in Chapter
 4 doesn't apply here because the program is reading from the
 console, not a network connection.) If the line is "exit", then the
 program exits. Otherwise, the line is assumed to be a hostname or IP
 address and is passed to the lookup() method.
The lookup() method uses InetAddress.getByName() to find the
 requested host, regardless of the input's format; remember that
 getByName() doesn't care if its
 argument is a name or a dotted quad address. If getByName() fails, lookup() returns a failure message.
 Otherwise, it gets the address of the requested system. Then lookup() calls isHostName() to determine whether the input string host is a hostname such as
 cs.nyu.edu, a dotted quad IPv4 address such as
 128.122.153.70, or a
 hexadecimal IPv6 address such as
 FEDC::DC:0:7076:10. isHostName() first looks for colons, which
 any IPv6 hexadecimal address will have and no hostname will have. If
 it finds any, it returns false. Checking for IPv4 addresses is a
 little trickier because dotted quad addresses don't contain any
 character that can't appear in a hostname. Instead, isHostName() looks at each character of the
 string; if all the characters are digits or periods, isHostName() guesses that the string is a
 numeric IP address and returns false. Otherwise, isHostName() guesses that the string is a
 hostname and returns true. What if the string is neither? Such an
 eventuality is very unlikely: if the string is neither a hostname nor
 an address, getByName() won't be
 able to do a lookup and will throw an exception. However, it would not
 be difficult to add a test making sure that the string looks valid;
 this is left as an exercise for the reader. If the user types a
 hostname, lookup() returns the
 corresponding dotted quad or hexadecimal address using getHostAddress(). If the user types an IP
 address, then we use the getHostName() method to look up the hostname
 corresponding to the address, and return it.

Processing Web Server Log Files

 Web server logs track the hosts that access a web site.
 By default, the log reports the IP addresses of the sites that connect
 to the server. However, you can often get more information from the
 names of those sites than from their IP addresses. Most web servers
 have an option to store hostnames instead of IP addresses, but this
 can hurt performance because the server needs to make a DNS request
 for each hit. It is much more efficient to log the IP addresses and
 convert them to hostnames at a later time, when the server isn't busy
 or even on another machine completely. Example 6-12 is a program called
 Weblog that reads a web server log
 file and prints each line with IP addresses converted to
 hostnames.
Most web servers have standardized on the common log file
 format, although there are exceptions; if your web server is one of
 those exceptions, you'll have to modify this program. A typical line
 in the common log file format looks like this:
205.160.186.76 unknown - [17/Jun/2003:22:53:58 -0500]
 "GET /bgs/greenbg.gif HTTP 1. 0" 200 50
This line indicates that a web browser at IP address
 205.160.186.76 requested the file
 /bgs/greenbg.gif from this web server at 11:53
 p.m. (and 58 seconds) on June 17, 2003. The file was found (response
 code 200) and 50 bytes of data were successfully transferred to the
 browser.
The first field is the IP address or, if DNS resolution is
 turned on, the hostname from which the connection was made. This is
 followed by a space. Therefore, for our purposes, parsing the log file
 is easy: everything before the first space is the IP address, and
 everything after it does not need to be changed.
The Common Log File Format
If you want to expand Weblog into a more general web server log
 processor, you need a little more information about the common log
 file format. A line in the file has the format:
remotehost rfc931 authuser [date] "request" status bytes
	remotehost
	remotehost is either
 the hostname or IP address from which the browser
 connected.

	rfc931
	rfc931 is the username of the user on the remote system,
 as specified by Internet protocol RFC 931. Very few browsers
 send this information, so it's almost always either unknown or
 a dash. This is followed by a space.

	authuser
	authuser is the
 authenticated username as specified by RFC 931. Once again,
 most popular browsers or client systems do not support this;
 this field usually is filled in with a dash, followed by a
 space.

	[date]
	The date and time of the request are given in brackets.
 This is the local system time when the request was made. Days
 are a two-digit number ranging from 01 to 31. The month is
 Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec.
 The year is indicated by four digits. The year is followed by
 a colon, the hour (from 00 to 23), another colon, two digits
 signifying the minute (00 to 59), a colon, and two digits
 signifying the seconds (00 to 59). Then comes the closing
 bracket and another space.

	"request"
	The request line exactly as it came from the client. It
 is enclosed in quotation marks because it may contain embedded
 spaces. It is not guaranteed to be a valid HTTP request since
 client software may misbehave.

	status
	A numeric HTTP status code returned to the client. A
 list of HTTP 1.0 status codes is given in Chapter 3. The most common
 response is 200, which means the request was successfully
 processed.

	bytes
	The number of bytes of data that was sent to the client
 as a result of this request.

The dotted quad format IP address is converted into a hostname
 using the usual methods of java.net.InetAddress. Example 6-12 shows the
 code.
Example 6-12. Process web server log files
import java.net.*;
import java.io.*;
import java.util.*;
import com.macfaq.io.SafeBufferedReader;

public class Weblog {

 public static void main(String[] args) {

 Date start = new Date();
 try {
 FileInputStream fin = new FileInputStream(args[0]);
 Reader in = new InputStreamReader(fin);
 SafeBufferedReader bin = new SafeBufferedReader(in);

 String entry = null;
 while ((entry = bin.readLine()) != null) {

 // separate out the IP address
 int index = entry.indexOf(' ', 0);
 String ip = entry.substring(0, index);
 String theRest = entry.substring(index, entry.length());

 // find the hostname and print it out
 try {
 InetAddress address = InetAddress.getByName(ip);
 System.out.println(address.getHostName() + theRest);
 }
 catch (UnknownHostException ex) {
 System.out.println(entry);
 }

 } // end while
 }
 catch (IOException ex) {
 System.out.println("Exception: " + ex);
 }

 Date end = new Date();
 long elapsedTime = (end.getTime()-start.getTime())/1000;
 System.out.println("Elapsed time: " + elapsedTime + " seconds");

 } // end main

}

The name of the file to be processed is passed to Weblog as the first argument on the command
 line. A FileInputStream fin is opened from this file and an InputStreamReader is chained to fin. This InputStreamReader is buffered by chaining it
 to an instance of the SafeBufferedReader class developed in Chapter 4. The file is processed line
 by line in a while loop.
Each pass through the loop places one line in the String variable entry. entry is then split into two substrings:
 ip, which contains everything
 before the first space, and theRest, which is everything after the first
 space. The position of the first space is determined by entry.indexOf(" ", 0). ip is
 converted to an InetAddress object
 using getByName(). getHostName() then looks up the hostname.
 Finally, the hostname, a space, and everything else on the line
 (theRest) are printed on System.out. Output can be sent to a new file
 through the standard means for redirecting output.
Weblog is more efficient than
 you might expect. Most web browsers generate multiple log file entries
 per page served, since there's an entry in the log not just for the
 page itself but for each graphic on the page. And many visitors
 request multiple pages while visiting a site. DNS lookups are
 expensive and it simply doesn't make sense to look up each site every
 time it appears in the log file. The InetAddress class caches requested
 addresses. If the same address is requested again, it can be retrieved
 from the cache much more quickly than from DNS.
Nonetheless, this program could certainly be faster. In my
 initial tests, it took more than a second per log entry. (Exact
 numbers depend on the speed of your network connection, the speed of
 the local and remote DNS servers, and network congestion when the
 program is run.) The program spends a huge amount of time sitting and
 waiting for DNS requests to return. Of course, this is exactly the
 problem multithreading is designed to solve. One main thread can read
 the log file and pass off individual entries to other threads for
 processing.
A thread pool is absolutely necessary here. Over the
 space of a few days, even low-volume web servers can easily generate a
 log file with hundreds of thousands of lines. Trying to process such a
 log file by spawning a new thread for each entry would rapidly bring
 even the strongest virtual machine to its knees, especially since the
 main thread can read log file entries much faster than individual
 threads can resolve domain names and die. Consequently, reusing
 threads is essential. The number of threads is stored in a tunable
 parameter, numberOfThreads, so that
 it can be adjusted to fit the VM and network stack. (Launching too
 many simultaneous DNS requests can also cause problems.)
This program is now divided into two classes. The first class,
 PooledWeblog, shown in Example 6-13, contains the
 main() method and the processLogFile() method. It also holds the
 resources that need to be shared among the threads. These are the
 pool, implemented as a synchronized LinkedList from the Java Collections API,
 and the output log, implemented as a BufferedWriter named out. Individual threads have direct access
 to the pool but have to pass through PooledWeblog's log(
) method to write output.
The key method is processLogFile() . As before, this method reads from the underlying log
 file. However, each entry is placed in the entries pool rather than being immediately
 processed. Because this method is likely to run much more quickly than
 the threads that have to access DNS, it yields after reading each
 entry. Furthermore, it goes to sleep if there are more entries in the
 pool than threads available to process them. The amount of time it
 sleeps depends on the number of threads. This setup avoids using
 excessive amounts of memory for very large log files. When the last
 entry is read, the finished flag is
 set to true to tell the threads
 that they can die once they've completed their work.
Example 6-13. PooledWebLog
import java.io.*;
import java.util.*;
import com.macfaq.io.SafeBufferedReader;

public class PooledWeblog {

 private BufferedReader in;
 private BufferedWriter out;
 private int numberOfThreads;
 private List entries = Collections.synchronizedList(new LinkedList());
 private boolean finished = false;
 private int test = 0;

 public PooledWeblog(InputStream in, OutputStream out,
 int numberOfThreads) {
 this.in = new SafeBufferedReader(new InputStreamReader(in));
 this.out = new BufferedWriter(new OutputStreamWriter(out));
 this.numberOfThreads = numberOfThreads;
 }

 public boolean isFinished() {
 return this.finished;
 }

 public int getNumberOfThreads() {
 return numberOfThreads;
 }

 public void processLogFile() {

 for (int i = 0; i < numberOfThreads; i++) {
 Thread t = new LookupThread(entries, this);
 t.start();
 }

 try {

 String entry = in.readLine();
 while (entry != null) {

 if (entries.size() > numberOfThreads) {
 try {
 Thread.sleep((long) (1000.0/numberOfThreads));
 }
 catch (InterruptedException ex) {}
 continue;
 }

 synchronized (entries) {
 entries.add(0, entry);
 entries.notifyAll();
 }

 entry = in.readLine();
 Thread.yield();

 } // end while
 }
 catch (IOException e) {
 System.out.println("Exception: " + e);
 }

 this.finished = true;

 // finish any threads that are still waiting
 synchronized (entries) {
 entries.notifyAll();
 }

 }

 public void log(String entry) throws IOException {
 out.write(entry + System.getProperty("line.separator", "\r\n"));
 out.flush();
 }

 public static void main(String[] args) {

 try {
 PooledWeblog tw = new PooledWeblog(new FileInputStream(args[0]),
 System.out, 100);
 tw.processLogFile();
 }
 catch (FileNotFoundException ex) {
 System.err.println("Usage: java PooledWeblog logfile_name");
 }
 catch (ArrayIndexOutOfBoundsException ex) {
 System.err.println("Usage: java PooledWeblog logfile_name");
 }
 catch (Exception ex) {
 System.err.println(ex);
 ex.printStackTrace();
 }

 } // end main

}

The LookupThread class, shown in Example 6-14, handles the
 detailed work of converting IP addresses to hostnames in the log
 entries. The constructor provides each thread with a reference to the
 entries pool it will retrieve work
 from and a reference to the PooledWeblog object it's working for. The
 latter reference allows callbacks to the PooledWeblog so that the thread can log
 converted entries and check to see when the last entry has been
 processed. It does so by calling the isFinished() method in PooledWeblog when the entries pool is empty (i.e., has size 0).
 Neither an empty pool nor isFinished(
) returning true is sufficient by itself. isFinished() returns true after the last
 entry is placed in the pool, which occurs, at least for a small amount
 of time, before the last entry is removed from the pool. And entries may be empty while there are still
 many entries remaining to be read if the lookup threads outrun the
 main thread reading the log file.
Example 6-14. LookupThread
import java.net.*;
import java.io.*;
import java.util.*;

public class LookupThread extends Thread {

 private List entries;
 PooledWeblog log; // used for callbacks

 public LookupThread(List entries, PooledWeblog log) {
 this.entries = entries;
 this.log = log;
 }

 public void run() {

 String entry;

 while (true) {

 synchronized (entries) {
 while (entries.size() == 0) {
 if (log.isFinished()) return;
 try {
 entries.wait();
 }
 catch (InterruptedException ex) {
 }
 }
 entry = (String) entries.remove(entries.size()-1);
 }

 int index = entry.indexOf(' ', 0);
 String remoteHost = entry.substring(0, index);
 String theRest = entry.substring(index, entry.length());

 try {
 remoteHost = InetAddress.getByName(remoteHost).getHostName();
 }
 catch (Exception ex) {
 // remoteHost remains in dotted quad format
 }

 try {
 log.log(remoteHost + theRest);
 }
 catch (IOException ex) {
 }
 this.yield();

 }

 }

}

Using threads like this lets the same log files be
 processed in parallel—a huge time-savings. In my unscientific tests,
 the threaded version is 10 to 50 times faster than the sequential
 version.
The biggest disadvantage to the multithreaded approach is that
 it reorders the log file. The output statistics aren't necessarily in
 the same order as the input statistics. For simple hit counting, this
 doesn't matter. However, there are some log analysis tools that can
 mine a log file to determine paths users followed through a site.
 These tools could get confused if the log is out of sequence. If the
 log sequence is an issue, attach a sequence number to each log entry.
 As the individual threads return log entries to the main program, the
 log() method in the main program
 stores any that arrive out of order until their predecessors appear.
 This is in some ways reminiscent of how network software reorders TCP
 packets that arrive out of order.

Chapter 7. URLs and URIs

The URL class is the
 simplest way for a Java program to locate and retrieve data from the
 network. You do not need to worry about the details of the protocol being
 used, the format of the data being retrieved, or how to communicate with
 the server; you simply tell Java the URL and it gets the data for you.
 Although Java can only handle a few protocols and content types out of the
 box, in later chapters you'll learn how to write and install new content
 and protocol handlers that extend Java's capabilities to include new
 protocols and new kinds of data. You'll also learn how to open sockets and
 communicate directly with different kinds of servers. But that's later;
 for now, let's see how much can be done with a minimum of work.
The URL Class

The java.net.URL class is an abstraction of a Uniform Resource Locator
 such as http://www.hamsterdance.com/ or ftp://ftp.redhat.com/pub/. It extends java.lang.Object, and it is a final class that
 cannot be subclassed. Rather than relying on inheritance to configure
 instances for different kinds of URLs, it uses the strategy design
 pattern. Protocol handlers are the strategies, and the URL class itself forms the context through
 which the different strategies are selected:
public final class URL extends Object implements Serializable
Although storing a URL as a string would be trivial, it is helpful
 to think of URLs as objects with fields that include the scheme (a.k.a.
 the protocol), hostname, port, path, query string, and fragment
 identifier (a.k.a. the ref), each of which may be set independently.
 Indeed, this is almost exactly how the java.net.URL class is organized, though the
 details vary a little between different versions of Java.
The fields of java.net.URL are
 only visible to other members of the java.net package; classes that aren't in
 java.net can't access a URL's fields directly. However, you can set
 these fields using the URL
 constructors and retrieve their values using the various getter methods
 (getHost(), getPort(), and so on). URLs are effectively
 immutable. After a URL object has
 been constructed, its fields do not change. This has the side effect of
 making them thread-safe.
Creating New URLs

Unlike the InetAddress objects in Chapter 6, you can construct instances
 of java.net.URL. There are
 six constructors, differing in the information they
 require. Which constructor you use depends on the information you have
 and the form it's in. All these constructors throw a MalformedURLException if you try to create a
 URL for an unsupported protocol and
 may throw a MalformedURLException
 if the URL is syntactically incorrect.
Exactly which protocols are supported is
 implementation-dependent. The only protocols that have been available
 in all major virtual machines are http and file, and the latter is
 notoriously flaky. Java 1.5 also requires virtual machines to support
 https, jar, and ftp; many virtual machines prior to Java 1.5 support
 these three as well. Most virtual machines also support ftp, mailto,
 and gopher as well as some custom protocols like doc, netdoc,
 systemresource, and verbatim used internally by Java. The Netscape
 virtual machine supports the http, file, ftp, mailto, telnet, ldap,
 and gopher protocols. The Microsoft virtual machine supports http,
 file, ftp, https, mailto, gopher, doc, and systemresource, but not
 telnet, netdoc, jar, or verbatim. Of course, support for all these
 protocols is limited in applets by the security policy. For example,
 just because an untrusted applet can construct a URL object from a file URL does not mean
 that the applet can actually read the file the URL refers to. Just
 because an untrusted applet can construct a URL object from an HTTP URL that points to a
 third-party web site does not mean that the applet can connect to that
 site.
If the protocol you need isn't supported by a particular VM, you
 may be able to install a protocol handler for that scheme. This is
 subject to a number of security checks in applets and is really
 practical only for applications. Other than verifying that it
 recognizes the URL scheme, Java does not make any checks about the
 correctness of the URLs it constructs. The programmer is responsible
 for making sure that URLs created are valid. For instance, Java does
 not check that the hostname in an HTTP URL does not contain spaces or
 that the query string is x-www-form-URL-encoded. It does not check
 that a mailto URL actually contains an email address. Java does not
 check the URL to make sure that it points at an existing host or that
 it meets any other requirements for URLs. You can create URLs for
 hosts that don't exist and for hosts that do exist but that you won't
 be allowed to connect to.
Constructing a URL from a string

The simplest URL
 constructor just takes an absolute URL in string form as its single
 argument:
public URL(String url) throws MalformedURLException
Like all constructors, this may only be called after the
 new operator, and like all
 URL constructors, it can throw a
 MalformedURLException. The
 following code constructs a URL
 object from a String, catching
 the exception that might be thrown:
try {
 URL u = new URL("http://www.audubon.org/");
}
catch (MalformedURLException ex) {
 System.err.println(ex);
}
Example 7-1 is a
 simple program for determining which protocols a virtual machine
 supports. It attempts to construct a URL object for each of 14 protocols (8
 standard protocols, 3 custom protocols for various Java APIs, and 4
 undocumented protocols used internally by HotJava). If the
 constructor succeeds, you know the protocol is supported. Otherwise,
 a MalformedURLException is thrown
 and you know the protocol is not supported.
Example 7-1. ProtocolTester
/* Which protocols does a virtual machine support? */
import java.net.*;

public class ProtocolTester {

 public static void main(String[] args) {

 // hypertext transfer protocol
 testProtocol("http://www.adc.org");

 // secure http
 testProtocol("https://www.amazon.com/exec/obidos/order2/");

 // file transfer protocol
 testProtocol("ftp://metalab.unc.edu/pub/languages/java/javafaq/");

 // Simple Mail Transfer Protocol
 testProtocol("mailto:elharo@metalab.unc.edu");

 // telnet
 testProtocol("telnet://dibner.poly.edu/");

 // local file access
 testProtocol("file:///etc/passwd");

 // gopher
 testProtocol("gopher://gopher.anc.org.za/");

 // Lightweight Directory Access Protocol
 testProtocol(
 "ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US?postalAddress");

 // JAR
 testProtocol(
 "jar:http://cafeaulait.org/books/javaio/ioexamples/javaio.jar!"
 +"/com/macfaq/io/StreamCopier.class");

 // NFS, Network File System
 testProtocol("nfs://utopia.poly.edu/usr/tmp/");

 // a custom protocol for JDBC
 testProtocol("jdbc:mysql://luna.metalab.unc.edu:3306/NEWS");

 // rmi, a custom protocol for remote method invocation
 testProtocol("rmi://metalab.unc.edu/RenderEngine");

 // custom protocols for HotJava
 testProtocol("doc:/UsersGuide/release.html");
 testProtocol("netdoc:/UsersGuide/release.html");
 testProtocol("systemresource://www.adc.org/+/index.html");
 testProtocol("verbatim:http://www.adc.org/");

 }

 private static void testProtocol(String url) {

 try {
 URL u = new URL(url);
 System.out.println(u.getProtocol() + " is supported");
 }
 catch (MalformedURLException ex) {
 String protocol = url.substring(0, url.indexOf(':'));
 System.out.println(protocol + " is not supported");
 }

 }

}

The results of this program depend on which virtual machine
 runs it. Here are the results from Java 1.4.1 on Mac OS X 10.2,
 which turns out to support all the protocols except Telnet, LDAP,
 RMI, NFS, and JDBC:
% java ProtocolTester
http is supported
https is supported
ftp is supported
mailto is supported
telnet is not supported
file is supported
gopher is supported
ldap is not supported
jar is supported
nfs is not supported
jdbc is not supported
rmi is not supported
doc is supported
netdoc is supported
systemresource is supported
verbatim is supported
Results using Sun's Linux 1.4.2 virtual machine were
 identical. Other 1.4 virtual machines derived from the Sun code will
 show similar results. Java 1.2 and later are likely to be the same
 except for maybe HTTPS, which was only recently added to the
 standard distribution. VMs that are not derived from the Sun
 codebase may vary somewhat in which protocols they support. For
 example, here are the results of running ProtocolTester with the open source Kaffe
 VM 1.1.1:
% java ProtocolTester
http is supported
https is not supported
ftp is supported
mailto is not supported
telnet is not supported
file is supported
gopher is not supported
ldap is not supported
jar is supported
nfs is not supported
jdbc is not supported
rmi is not supported
doc is not supported
netdoc is not supported
systemresource is not supported
verbatim is not supported
The nonsupport of RMI and JDBC is actually a little deceptive;
 in fact, the JDK does support these protocols. However, that support
 is through various parts of the java.rmi and java.sql packages, respectively. These
 protocols are not accessible through the URL class like the other supported protocols (although I
 have no idea why Sun chose to wrap up RMI and JDBC parameters in URL
 clothing if it wasn't intending to interface with these via Java's
 quite sophisticated mechanism for handling URLs).

Constructing a URL from its component parts

The second constructor builds a URL from three strings specifying the
 protocol, the hostname, and the file:
public URL(String protocol, String hostname, String file)
 throws MalformedURLException
This constructor sets the port to -1 so the default port for
 the protocol will be used. The file argument should begin with a slash
 and include a path, a filename, and optionally a fragment
 identifier. Forgetting the initial slash is a common mistake, and
 one that is not easy to spot. Like all URL constructors, it can throw a MalformedURLException. For example:
try {
 URL u = new URL("http", "www.eff.org", "/blueribbon.html#intro");
}
catch (MalformedURLException ex) {
 // All VMs should recognize http
}
This creates a URL object
 that points to http://www.eff.org/blueribbon.html#intro, using the
 default port for the HTTP protocol (port 80). The file specification
 includes a reference to a named anchor. The code catches the
 exception that would be thrown if the virtual machine did not
 support the HTTP protocol. However, this shouldn't happen in
 practice.
For the rare occasions when the default port isn't correct,
 the next constructor lets you specify the port explicitly as an
 int:
public URL(String protocol, String host, int port, String file)
 throws MalformedURLException
The other arguments are the same as for the URL(String protocol, String host, String file) constructor and carry the same
 caveats. For example:
try {
 URL u = new URL("http", "fourier.dur.ac.uk", 8000, "/~dma3mjh/jsci/");
}
catch (MalformedURLException ex) {
 System.err.println(ex);
}
This code creates a URL
 object that points to http://fourier.dur.ac.uk:8000/~dma3mjh/jsci/,
 specifying port 8000 explicitly.
Example 7-2 is an
 alternative protocol tester that can run as an applet, making it
 useful for testing support of browser virtual machines. It uses the
 three-argument constructor rather than the one-argument constructor
 in Example 7-1. It also
 stores the schemes to be tested in an array and uses the same host
 and file for each scheme. This produces seriously malformed URLs
 like
 mailto://www.peacefire.org/bypass/SurfWatch/,
 once again demonstrating that all Java checks for at object
 construction is whether it recognizes the scheme, not whether the
 URL is appropriate.
Example 7-2. A protocol tester applet
import java.net.*;
import java.applet.*;
import java.awt.*;

public class ProtocolTesterApplet extends Applet {

 TextArea results = new TextArea();

 public void init() {
 this.setLayout(new BorderLayout());
 this.add("Center", results);
 }

 public void start() {

 String host = "www.peacefire.org";
 String file = "/bypass/SurfWatch/";

 String[] schemes = {"http", "https", "ftp", "mailto",
 "telnet", "file", "ldap", "gopher",
 "jdbc", "rmi", "jndi", "jar",
 "doc", "netdoc", "nfs", "verbatim",
 "finger", "daytime", "systemresource"};

 for (int i = 0; i < schemes.length; i++) {
 try {
 URL u = new URL(schemes[i], host, file);
 results.append(schemes[i] + " is supported\r\n");
 }
 catch (MalformedURLException ex) {
 results.append(schemes[i] + " is not supported\r\n");
 }
 }

 }

}

Figure 7-1 shows
 the results of Example 7-2
 in Mozilla 1.4 with Java 1.4 installed. This browser supports HTTP,
 HTTPS, FTP, mailto, file, gopher, doc, netdoc, verbatim,
 systemresource, and jar but not ldap, Telnet, jdbc, rmi, jndi,
 finger or daytime.
[image: The ProtocolTesterApplet running in Mozilla 1.4]

Figure 7-1. The ProtocolTesterApplet running in Mozilla 1.4

Constructing relative URLs

This constructor builds an absolute URL from a relative URL and a base URL:
public URL(URL base, String relative) throws MalformedURLException
For instance, you may be parsing an HTML document at http://www.ibiblio.org/javafaq/index.html and
 encounter a link to a file called
 mailinglists.html with no further qualifying
 information. In this case, you use the URL to the document that
 contains the link to provide the missing information. The
 constructor computes the new URL
 as http://www.ibiblio.org/javafaq/mailinglists.html. For
 example:
try {
 URL u1 = new URL("http://www.ibiblio.org/javafaq/index.html");
 URL u2 = new URL (u1, "mailinglists.html");
}
catch (MalformedURLException ex) {
 System.err.println(ex);
}
The filename is removed from the path of u1 and the new filename
 mailinglists.html is appended to make u2. This constructor is particularly
 useful when you want to loop through a list of files that are all in
 the same directory. You can create a URL for the first file and then
 use this initial URL to create URL objects for the other files by
 substituting their filenames. You also use this constructor when you
 want to create a URL relative to
 the applet's document base or code base, which you retrieve using
 the getDocumentBase() or getCodeBase()
 methods of the java.applet.Applet
 class. Example 7-3 is a
 very simple applet that uses getDocumentBase() to create a new
 URL object:
Example 7-3. A URL relative to the web page
import java.net.*;
import java.applet.*;
import java.awt.*;

public class RelativeURLTest extends Applet {

 public void init () {

 try {
 URL base = this.getDocumentBase();
 URL relative = new URL(base, "mailinglists.html");
 this.setLayout(new GridLayout(2,1));
 this.add(new Label(base.toString()));
 this.add(new Label(relative.toString()));
 }
 catch (MalformedURLException ex) {
 this.add(new Label("This shouldn't happen!"));
 }

 }

}

Of course, the output from this applet depends on the document
 base. In the run shown in Figure
 7-2, the original URL (the
 document base) refers to the file
 RelativeURL.html; the constructor creates a new
 URL that points to the
 mailinglists.html file in the same
 directory.
[image: A base and a relative URL]

Figure 7-2. A base and a relative URL

When using this constructor with getDocumentBase(), you frequently put the
 call to getDocumentBase() inside
 the constructor, like this:
URL relative = new URL(this.getDocumentBase(), "mailinglists.html");

Specifying a URLStreamHandler // Java 1.2

Two constructors allow you to specify the protocol
 handler used for the URL. The first constructor builds a relative
 URL from a base URL and a relative part. The second builds
 the URL from its component
 pieces:
public URL(URL base, String relative, URLStreamHandler handler) // 1.2
 throws MalformedURLException
public URL(String protocol, String host, int port, String file, // 1.2
 URLStreamHandler handler) throws MalformedURLException
All URL objects have
 URLStreamHandler objects to do
 their work for them. These two constructors change from the default
 URLStreamHandler subclass for a
 particular protocol to one of your own choosing. This is useful for
 working with URLs whose schemes aren't supported in a particular
 virtual machine as well as for adding functionality that the default
 stream handler doesn't provide, such as asking the user for a
 username and password. For example:
URL u = new URL("finger", "utopia.poly.edu", 79, "/marcus",
 new com.macfaq.net.www.protocol.finger.Handler());
The com.macfaq.net.www.protocol.finger.Handler
 class used here will be developed in Chapter 16.
While the other four constructors raise no security issues in
 and of themselves, these two do because class loader security is
 closely tied to the various URLStreamHandler classes. Consequently,
 untrusted applets are not allowed to specify a URLSreamHandler. Trusted applets can do so
 if they have the NetPermission
 specifyStreamHandler. However,
 for reasons that will become apparent in Chapter 16, this is a security hole
 big enough to drive the Microsoft money train through. Consequently,
 you should not request this permission or expect it to be granted if
 you do request it.

Other sources of URL objects

Besides the constructors discussed here, a number of other
 methods in the Java class library return URL objects. You've already seen getDocumentBase() from java.applet.Applet. The other common
 source is getCodeBase(), also
 from java.applet.Applet. This
 works just like getDocumentBase(
), except it returns the URL of the applet itself instead of the
 URL of the page that contains the applet. Both getDocumentBase() and getCodeBase() come from the java.applet.AppletStub interface, which
 java.applet.Applet implements.
 You're unlikely to implement this interface yourself unless you're
 building a web browser or applet viewer.
In Java 1.2 and later, the java.io.File class has a toURL() method that returns a file URL
 matching the given file. The exact format of the URL returned by
 this method is platform-dependent. For example, on Windows it may
 return something like
 file:/D:/JAVA/JNP3/07/ToURLTest.java. On Linux
 and other Unixes, you're likely to see
 file:/home/elharo/books/JNP3/07/ToURLTest.java.
 In practice, file URLs are heavily platform-
 and program-dependent. Java file URLs often cannot be interchanged
 with the URLs used by web browsers and other programs, or even with
 Java programs running on different platforms.
Class loaders are used not only to load classes but also to
 load resources such as images and audio files. The static ClassLoader.getSystemResource(String name)
 method returns a URL from which a single resource can be
 read. The ClassLoader.getSystemResources(String
 name) method returns an Enumeration containing a list of URLs from which the named resource can be
 read. Finally, the instance method getResource(String name) searches the path used by the
 referenced class loader for a URL to the named resource. The URLs
 returned by these methods may be file URLs, HTTP URLs, or some other
 scheme. The name of the resource is a slash-separated list of Java
 identifiers, such as
 /com/macfaq/sounds/swale.au or
 com/macfaq/images/headshot.jpg. The Java
 virtual machine will attempt to find the requested resource in the
 class path—potentially including parts of the class path on the web
 server that an applet was loaded from—or inside a JAR
 archive.
Java 1.4 adds the URI
 class, which we'll discuss soon. URIs can be converted into URLs
 using the toURL() method,
 provided Java has the relevant protocol handler installed.
There are a few other methods that return URL objects here and there throughout the
 class library, but most are simple getter methods that return only a
 URL you probably already know because you used it to construct the
 object in the first place; for instance, the getPage() method of java.swing.JEditorPane and the getURL() method of java.net.URLConnection.

Splitting a URL into Pieces

 URLs are composed of five pieces:
	The scheme, also known as the protocol

	The authority

	The path

	The fragment identifier, also known as the section or
 ref

	The query string

For example, given the URL http://www.ibiblio.org/javafaq/books/jnp/index.html?isbn=1565922069#toc,
 the scheme is http, the authority is
 www.ibiblio.org, the path is
 /javafaq/books/jnp/index.html, the fragment
 identifier is toc, and the query string is
 isbn=1565922069. However, not all URLs have all
 these pieces. For instance, the URL http://www.faqs.org/rfcs/rfc2396.html has a scheme, an
 authority, and a path, but no fragment identifier or query
 string.
The authority may further be divided into the user info, the
 host, and the port. For example, in the URL http://admin@www.blackstar.com:8080/, the authority is
 admin@www.blackstar.com:8080. This has the user info
 admin, the host
 www.blackstar.com, and the port
 8080.
Read-only access to these parts of a URL is provided by five
 public methods: getFile(),
 getHost(), getPort(), getProtocol(), and getRef(). Java 1.3 adds four more methods:
 getQuery(), getPath(), getUserInfo(), and getAuthority().
public String getProtocol()

The getProtocol()
 method returns a String containing the scheme of the URL,
 e.g., "http", "https", or "file". For example:
URL page = this.getCodeBase();
System.out.println("This applet was downloaded via "
 + page.getProtocol());

public String getHost()

The getHost() method returns a String containing the hostname of the URL.
 For example:
URL page = this.getCodeBase();
System.out.println("This applet was downloaded from " + page.getHost());
The most recent virtual machines get this method right but
 some older ones, including Sun's JDK 1.3.0, may return a host string
 that is not necessarily a valid hostname or address. In particular,
 URLs that incorporate usernames, like ftp://anonymous:anonymous@wuarchive.wustl.edu/,
 sometimes include the user info in the host. For example, consider
 this code fragment:
URL u = new URL("ftp://anonymous:anonymous@wuarchive.wustl.edu/");
String host = u.getHost();
Java 1.3 sets host to
 anonymous:anonymous@wuarchive.wustl.edu,
 not simply wuarchive.wustl.edu.
 Java 1.4 would return wuarchive.wustl.edu instead.

public int getPort()

The getPort() method returns the port number specified in the URL
 as an int. If no port was
 specified in the URL, getPort() returns -1 to signify that the
 URL does not specify the port explicitly, and will use the default
 port for the protocol. For example, if the URL is http://www.userfriendly.org/, getPort() returns -1; if the URL is
 http://www.userfriendly.org:80/, getPort() returns 80. The following code
 prints -1 for the port number because it isn't specified in the
 URL:
URL u = new URL("http://www.ncsa.uiuc.edu/demoweb/html-primer.html");
System.out.println("The port part of " + u + " is " + u.getPort());

public int getDefaultPort()

The getDefaultPort()
 method returns the default port used for this
 URL's protocol when none is
 specified in the URL. If no default port is defined for the
 protocol, getDefaultPort()
 returns -1. For example, if the URL is http://www.userfriendly.org/, getDefaultPort() returns 80; if the URL
 is ftp://ftp.userfriendly.org:8000/, getDefaultPort() returns 21.

public String getFile()

The getFile() method returns a String that contains the path portion of a
 URL; remember that Java does not break a URL into separate path and
 file parts. Everything from the first slash (/) after the hostname
 until the character preceding the # sign that begins a fragment
 identifier is considered to be part of the file. For example:
URL page = this.getDocumentBase();
System.out.println("This page's path is " + page.getFile());
If the URL does not have a file part, Java 1.2 and earlier
 append a slash to the URL and return the slash as the filename. For
 example, if the URL is http://www.slashdot.org
 (rather than something like http://www.slashdot.org/, getFile() returns /. Java 1.3 and later simply set the file
 to the empty string.

public String getPath() // Java 1.3

The getPath() method, available only in Java 1.3 and later, is a
 near synonym for getFile(); that
 is, it returns a String
 containing the path and file portion of a URL. However, unlike
 getFile(), it does not include
 the query string in the String it
 returns, just the path.
Tip
Note that the getPath()
 method does not return only the directory path and getFile() does not return only the
 filename, as you might expect. Both getPath() and getFile() return the full path and
 filename. The only difference is that getFile() also returns the query string
 and getPath() does not.

public String getRef()

The getRef() method returns the fragment identifier part of the
 URL. If the URL doesn't have a fragment identifier, the method
 returns null. In the following
 code, getRef() returns the
 string xtocid1902914:
URL u = new URL(
 "http://www.ibiblio.org/javafaq/javafaq.html#xtocid1902914");
System.out.println("The fragment ID of " + u + " is " + u.getRef());

public String getQuery() // Java 1.3

The getQuery() method returns the query string of the URL. If the
 URL doesn't have a query string, the method returns null. In the following code, getQuery() returns the string category=Piano:
URL u = new URL(
 "http://www.ibiblio.org/nywc/compositions.phtml?category=Piano");
System.out.println("The query string of " + u + " is " + u.getQuery());
In Java 1.2 and earlier, you need to extract the query string
 from the value returned by getFile(
) instead.

public String getUserInfo() // Java 1.3

 Some URLs include usernames and occasionally even
 password information. This information comes after the scheme and
 before the host; an @ symbol delimits it. For instance, in the URL
 http://elharo@java.oreilly.com/, the user info
 is elharo. Some URLs also include passwords in
 the user info. For instance, in the URL
 ftp://mp3:secret@ftp.example.com/c%3a/stuff/mp3/,
 the user info is mp3:secret. However, most of
 the time including a password in a URL is a security risk. If the
 URL doesn't have any user info, getUserInfo() returns null. Mailto URLs may not behave like you
 expect. In a URL like mailto:elharo@metalab.unc.edu,
 elharo@metalab.unc.edu is the path, not the user info
 and the host. That's because the URL specifies the remote recipient
 of the message rather than the username and host that's sending the
 message.

public String getAuthority() // Java 1.3

 Between the scheme and the path of a URL, you'll find
 the authority. The term authority is taken from the Uniform Resource Identifier
 specification (RFC 2396), where this part of the URI indicates the
 authority that resolves the resource. In the most general case, the
 authority includes the user info, the host, and the port. For
 example, in the URL ftp://mp3:mp3@138.247.121.61:21000/c%3a/, the
 authority is mp3:mp3@138.247.121.61:21000.
 However, not all URLs have all parts. For instance, in the URL
 http://conferences.oreilly.com/java/speakers/,
 the authority is simply the hostname
 conferences.oreilly.com. The getAuthority() method returns the
 authority as it exists in the URL, with or without the user info and
 port.
Example 7-4 uses all
 eight methods to split URLs entered on the command line into their
 component parts. This program requires Java 1.3 or later.
Example 7-4. The parts of a URL
import java.net.*;

public class URLSplitter {

 public static void main(String args[]) {

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 System.out.println("The URL is " + u);
 System.out.println("The scheme is " + u.getProtocol());
 System.out.println("The user info is " + u.getUserInfo());

 String host = u.getHost();
 if (host != null) {
 int atSign = host.indexOf('@');
 if (atSign != -1) host = host.substring(atSign+1);
 System.out.println("The host is " + host);
 }
 else {
 System.out.println("The host is null.");
 }

 System.out.println("The port is " + u.getPort());
 System.out.println("The path is " + u.getPath());
 System.out.println("The ref is " + u.getRef());
 System.out.println("The query string is " + u.getQuery());
 } // end try
 catch (MalformedURLException ex) {
 System.err.println(args[i] + " is not a URL I understand.");
 }
 System.out.println();
 } // end for

 } // end main

} // end URLSplitter

Here's the result of running this against several of the URL
 examples in this chapter:
% java URLSplitter \
 http://www.ncsa.uiuc.edu/demoweb/html-primer.html#A1.3.3.3 \
 ftp://mp3:mp3@138.247.121.61:21000/c%3a/ \
 http://www.oreilly.com \
 http://www.ibiblio.org/nywc/compositions.phtml?category=Piano \
 http://admin@www.blackstar.com:8080/ \
The URL is http://www.ncsa.uiuc.edu/demoweb/html-primer.html#A1.3.3.3
The scheme is http
The user info is null
The host is www.ncsa.uiuc.edu
The port is -1
The path is /demoweb/html-primer.html
The ref is A1.3.3.3
The query string is null

The URL is ftp://mp3:mp3@138.247.121.61:21000/c%3a/
The scheme is ftp
The user info is mp3:mp3
The host is 138.247.121.61
The port is 21000
The path is /c%3a/
The ref is null
The query string is null

The URL is http://www.oreilly.com
The scheme is http
The user info is null
The host is www.oreilly.com
The port is -1
The path is
The ref is null
The query string is null

The URL is http://www.ibiblio.org/nywc/compositions.phtml?category=Piano
The scheme is http
The user info is null
The host is www.ibiblio.org
The port is -1
The path is /nywc/compositions.phtml
The ref is null
The query string is category=Piano

The URL is http://admin@www.blackstar.com:8080/
The scheme is http
The user info is admin
The host is www.blackstar.com
The port is 8080
The path is /
The ref is null
The query string is null

Retrieving Data from a URL

Naked URLs aren't very exciting. What's interesting is
 the data contained in the documents they point to. The URL class has several methods that retrieve
 data from a URL:
public InputStream openStream() throws IOException
public URLConnection openConnection() throws IOException
public URLConnection openConnection(Proxy proxy) throws IOException // 1.5
public Object getContent() throws IOException
public Object getContent(Class[] classes) throws IOException // 1.3
These methods differ in that they return the data at the URL as
 an instance of different classes.
public final InputStream openStream() throws
 IOException

The openStream()
 method connects to the resource referenced by the
 URL, performs any necessary
 handshaking between the client and the server, and returns an
 InputStream from which data can
 be read. The data you get from this InputStream is the raw (i.e.,
 uninterpreted) contents of the file the URL references: ASCII if you're reading an
 ASCII text file, raw HTML if you're reading an HTML file, binary
 image data if you're reading an image file, and so forth. It does
 not include any of the HTTP headers or any other protocol-related
 information. You can read from this InputStream as you would read from any
 other InputStream. For
 example:
try {
 URL u = new URL("http://www.hamsterdance.com");
 InputStream in = u.openStream();
 int c;
 while ((c = in.read()) != -1) System.out.write(c);
}
catch (IOException ex) {
 System.err.println(ex);
}
This code fragment catches an IOException, which also catches the
 MalformedURLException that the
 URL constructor can throw, since
 MalformedURLException subclasses
 IOException.
Example 7-5 reads a
 URL from the command line, opens an InputStream from that URL, chains the
 resulting InputStream to an
 InputStreamReader using the
 default encoding, and then uses InputStreamReader's read() method to read successive
 characters from the file, each of which is printed on System.out. That is, it prints the raw
 data located at the URL: if the URL references an HTML file, the
 program's output is raw HTML.
Example 7-5. Download a web page
import java.net.*;
import java.io.*;

public class SourceViewer {

 public static void main (String[] args) {

 if (args.length > 0) {
 try {
 //Open the URL for reading
 URL u = new URL(args[0]);
 InputStream in = u.openStream();
 // buffer the input to increase performance
 in = new BufferedInputStream(in);
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end if

 } // end main

} // end SourceViewer

And here are the first few lines of output when SourceViewer downloads http://www.oreilly.com:
% java SourceViewer http://www.oreilly.com
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>
<title>oreilly.com -- Welcome to O'Reilly Media, Inc. -- computer books,
software conferences, online publishing</title>
<meta name="keywords" content="O'Reilly, oreilly, computer books, technical
books, UNIX, unix, Perl, Java, Linux, Internet, Web, C, C++, Windows, Windows
NT, Security, Sys Admin, System Administration, Oracle, PL/SQL, online books,
books online, computer book online, e-books, ebooks, Perl Conference, Open Source
Conference, Java Conference, open source, free software, XML, Mac OS X, .Net, dot
net, C#, PHP, CGI, VB, VB Script, Java Script, javascript, Windows 2000, XP,
bioinformatics, web services, p2p" />
<meta name="description" content="O'Reilly is a leader in technical and computer book
documentation, online content, and conferences for UNIX, Perl, Java, Linux, Internet,
Mac OS X, C, C++, Windows, Windows NT, Security, Sys Admin, System Administration,
Oracle, Design and Graphics, Online Books, e-books, ebooks, Perl Conference, Java
Conference, P2P Conference" />
There are quite a few more lines in that web page; if you want
 to see them, you can fire up your web browser.
The shakiest part of this program is that it blithely
 assumes that the remote URL is text, which is not necessarily true.
 It could well be a GIF or JPEG image, an MP3 sound file, or
 something else entirely. Even if it is text, the document encoding
 may not be the same as the default encoding of the client system.
 The remote host and local client may not have the same default
 character set. As a general rule, for pages that use a character set
 radically different from ASCII, the HTML will include a META tag in the header specifying the character set in
 use. For instance, this META tag
 specifies the Big-5 encoding for Chinese:
<meta http-equiv="Content-Type" content="text/html; charset=big5">
An XML document will likely have an XML declaration instead:
<?xml version="1.0" encoding="Big5"?>
In practice, there's no easy way to get at this information
 other than by parsing the file and looking for a header like this
 one, and even that approach is limited. Many HTML files hand-coded
 in Latin alphabets don't have such a META tag. Since Windows, the Mac, and most
 Unixes have somewhat different interpretations of the characters
 from 128 to 255, the extended characters in these documents do not
 translate correctly on platforms other than the one on which they
 were created.
And as if this isn't confusing enough, the HTTP header that
 precedes the actual document is likely to have its own encoding
 information, which may completely contradict what the document
 itself says. You can't read this header using the URL class, but you can with the URLConnection object returned by the
 openConnection() method.
 Encoding detection and declaration is one of the thornier parts of
 the architecture of the Web.

public URLConnection openConnection() throws
 IOException

The openConnection()
 method opens a socket to the specified URL and
 returns a URLConnection
 object. A URLConnection represents an open
 connection to a network resource. If the call fails, openConnection() throws an IOException. For example:
try {
 URL u = new URL("http://www.jennicam.org/");
 try {
 URLConnection uc = u.openConnection();
 InputStream in = uc.getInputStream();
 // read from the connection...
 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 }
} // end try
catch (MalformedURLException ex) {
 System.err.println(ex);
}
Use this method when you want to communicate directly with the
 server. The URLConnection gives
 you access to everything sent by the server: in addition to the
 document itself in its raw form (e.g., HTML, plain text, binary
 image data), you can access all the metadata specified by the
 protocol. For example, if the scheme is HTTP, the URLConnection lets you access the HTTP
 headers as well as the raw HTML. The URLConnection class also lets you write
 data to as well as read from a URL—for instance, in order to send
 email to a mailto URL or post form data. The URLConnection class will be the primary
 subject of Chapter 15.
Java 1.5 adds one overloaded variant of this method that
 specifies the proxy server to pass the connection through:
public URLConnection openConnection(Proxy proxy) throws IOException
This overrides any proxy server set with the usual socksProxyHost, socksProxyPort, http.proxyHost, http.proxyPort, http.nonProxyHosts, and similar system
 properties. If the protocol handler does not support proxies, the
 argument is ignored and the connection is made directly if
 possible.

public final Object getContent() throws IOException

The getContent()
 method is the third way to download data referenced
 by a URL. The getContent()
 method retrieves the data referenced by the URL and tries to make it
 into some type of object. If the URL refers to some kind of text
 object such as an ASCII or HTML file, the object returned is usually
 some sort of InputStream. If the
 URL refers to an image such as a GIF or a JPEG file, getContent() usually returns a java.awt.ImageProducer (more specifically,
 an instance of a class that implements the ImageProducer interface). What unifies
 these two disparate classes is that they are not the thing itself
 but a means by which a program can construct the thing:
try {
 URL u = new URL("http://mesola.obspm.fr/");
 Object o = u.getContent();
 // cast the Object to the appropriate type
 // work with the Object...
}
catch (Exception ex) {
 System.err.println(ex);
}
getContent() operates by
 looking at the Content-type field
 in the MIME header of the data it gets from the server. If the
 server does not use MIME headers or sends an unfamiliar Content-type, getContent() returns some sort of
 InputStream with which the data
 can be read. An IOException is
 thrown if the object can't be retrieved. Example 7-6 demonstrates
 this.
Example 7-6. Download an object
import java.net.*;
import java.io.*;

public class ContentGetter {

 public static void main (String[] args) {

 if (args.length > 0) {

 //Open the URL for reading
 try {
 URL u = new URL(args[0]);
 try {
 Object o = u.getContent();
 System.out.println("I got a " + o.getClass().getName());
 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 }
 } // end try
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 } // end if

 } // end main

} // end ContentGetter

Here's the result of trying to get the content of http://www.oreilly.com:
% java ContentGetter http://www.oreilly.com/
I got a sun.net.www.protocol.http.HttpURLConnection$HttpInputStream
The exact class may vary from one version of Java to the next
 (in earlier versions, it's been java.io.PushbackInputStream or sun.net.www.http.KeepAliveStream) but it
 should be some form of InputStream.
Here's what you get when you try to load a header image from
 that page:
% java ContentGetter http://www.oreilly.com/graphics_new/animation.gif
I got a sun.awt.image.URLImageSource
Here's what happens when you try to load a Java applet using
 getContent():
% java ContentGetter http://www.cafeaulait.org/RelativeURLTest.class
I got a sun.net.www.protocol.http.HttpURLConnection$HttpInputStream
Here's what happens when you try to load an audio file using
 getContent():
% java ContentGetter http://www.cafeaulait.org/course/week9/spacemusic.au
I got a sun.applet.AppletAudioClip
The last result is the most unusual because it is as close as
 the Java core API gets to a class that represents a sound file. It's
 not just an interface through which you can load the sound
 data.
This example demonstrates the biggest problems with using
 getContent(): it's hard to
 predict what kind of object you'll get. You could get some kind of
 InputStream or an ImageProducer or perhaps an AudioClip; it's easy to check using the
 instanceof operator. This
 information should be enough to let you read a text file or display
 an image.

public final Object getContent(Class[] classes) throws
 IOException // Java 1.3

Starting in Java 1.3, it is possible for a content handler to
 provide different views of an object. This overloaded variant of the
 getContent() method lets you choose what class you'd like the
 content to be returned as. The method attempts to return the URL's
 content in the order used in the array. For instance, if you prefer
 an HTML file to be returned as a String, but your second choice is a
 Reader and your third choice is
 an InputStream, write:
URL u = new URL("http://www.nwu.org");
Class[] types = new Class[3];
types[0] = String.class;
types[1] = Reader.class;
types[2] = InputStream.class;
Object o = u.getContent(types);
You then have to test for the type of the returned object
 using instanceof. For
 example:
if (o instanceof String) {
 System.out.println(o);
}
else if (o instanceof Reader) {
 int c;
 Reader r = (Reader) o;
 while ((c = r.read()) != -1) System.out.print((char) c);
}
else if (o instanceof InputStream) {
 int c;
 InputStream in = (InputStream) o;
 while ((c = in.read()) != -1) System.out.write(c);
}
else {
 System.out.println("Error: unexpected type " + o.getClass());
}

Utility Methods

The URL class contains a couple of utility methods that perform
 common operations on URLs. The sameFile(
) method determines whether two URLs point to the same
 document. The toExternalForm()
 method converts a URL object to a
 string that can be used in an HTML link or a web browser's Open URL
 dialog.
public boolean sameFile(URL other)

The sameFile() method tests whether two URL objects point to the same file. If
 they do, sameFile() returns
 true; otherwise, it returns
 false. The test that sameFile() performs is quite shallow; all
 it does is compare the corresponding fields for equality. It detects
 whether the two hostnames are really just aliases for each other.
 For instance, it can tell that http://www.ibiblio.org/ and http://metalab.unc.edu/ are the same file. However,
 it cannot tell that http://www.ibiblio.org:80/
 and http://metalab.unc.edu/ are the same file
 or that http://www.cafeconleche.org/ and
 http://www.cafeconleche.org/index.html are the
 same file. sameFile() is smart
 enough to ignore the fragment identifier part of a URL, however.
 Here's a fragment of code that uses sameFile() to compare two URLs:
try {
 URL u1 = new URL("http://www.ncsa.uiuc.edu/HTMLPrimer.html#GS");
 URL u2 = new URL("http://www.ncsa.uiuc.edu/HTMLPrimer.html#HD");
 if (u1.sameFile(u2)) {
 System.out.println(u1 + " is the same file as \n" + u2);
 }
 else {
 System.out.println(u1 + " is not the same file as \n" + u2);
 }
}
catch (MalformedURLException ex) {
 System.err.println(ex);
}
The output is:
http://www.ncsa.uiuc.edu/HTMLPrimer.html#GS is the same file as
http://www.ncsa.uiuc.edu/HTMLPrimer.html#HD
The sameFile() method is
 similar to the equals() method
 of the URL class. The main
 difference between sameFile()
 and equals() is that equals() considers the fragment
 identifier (if any), whereas sameFile(
) does not. The two URLs shown here do not compare equal
 although they are the same file. Also, any object may be passed to
 equals(); only URL objects can be passed to sameFile().

public String toExternalForm()

The toExternalForm()
 method returns a human-readable String representing the URL. It is
 identical to the toString()
 method. In fact, all the toString(
) method does is return toExternalForm(). Therefore, this method
 is currently redundant and rarely used.

public URI toURI() throws URISyntaxException // Java
 1.5

Java 1.5 adds a toURI()
 method that converts a URL object to an equivalent URI object. We'll take up the URI class shortly. In the meantime, the
 main thing you need to know is that the URI class provides much more accurate,
 specification-conformant behavior than the URL class. For operations like
 absolutization and encoding, you should prefer the URI class where you have the option. In
 Java 1.4 and later, the URL class
 should be used primarily for the actual downloading of content from
 the remote server.

The Object Methods

URL inherits from java.lang.Object, so it has access to all
 the methods of the Object class. It overrides three to provide more
 specialized behavior: equals(),
 hashCode(), and toString().
public String toString()

Like all good classes, java.net.URL has a toString() method. Example
 7-1 through Example
 7-5 implicitly called this method when URLs were passed to System.out.println(). As those examples
 demonstrated, the String produced
 by toString() is always an
 absolute URL, such as http://www.cafeaulait.org/javatutorial.html.
It's uncommon to call toString(
) explicitly. Print statements call toString() implicitly. Outside of print
 statements, it's more proper to use toExternalForm() instead. If you do call
 toString(), the syntax is
 simple:
URL codeBase = this.getCodeBase();
String appletURL = codeBase.toString();

public boolean equals(Object o)

 An object is equal to a URL only if it is also a URL, both URLs point to the same file as determined
 by the sameFile() method, and
 both URLs have the same fragment
 identifier (or both URLs don't
 have fragment identifiers). Since equals(
) depends on sameFile(
), equals() has the
 same limitations as sameFile().
 For example, http://www.oreilly.com/ is not
 equal to http://www.oreilly.com/index.html,
 and http://www.oreilly.com:80/ is not equal to
 http://www.oreilly.com/. Whether this makes
 sense depends on whether you think of a URL as a string or as a
 reference to a particular Internet resource.
Example 7-7 creates
 URL objects for http://www.ibiblio.org/ and http://metalab.unc.edu/ and tells you if they're the
 same using the equals()
 method.
Example 7-7. Are http://www.ibiblio.org and http://www.metalab.unc.edu
 the same?
import java.net.*;

public class URLEquality {

 public static void main (String[] args) {

 try {
 URL ibiblio = new URL ("http://www.ibiblio.org/");
 URL metalab = new URL("http://metalab.unc.edu/");
 if (ibiblio.equals(metalab)) {
 System.out.println(ibiblio + " is the same as " + metalab);
 }
 else {
 System.out.println(ibiblio + " is not the same as " + metalab);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(ex);
 }

 }

}

When you run this program, you discover:
% java URLEquality
http://www.ibiblio.org/ is the same as http://metalab.unc.edu/

public int hashCode()

The hashCode() method returns an int that is used when URL objects are used as keys in hash
 tables. Thus, it is called by the various methods of java.util.Hashtable. You rarely need to
 call this method directly, if ever. Hash codes for two different
 URL objects are unlikely to be
 the same, but it is certainly possible; there are far more
 conceivable URLs than there are four-byte integers.

Methods for Protocol Handlers

The last method in the URL
 class I'll just mention briefly here for the sake of
 completeness: setURLStreamHandlerFactory(
). It's primarily used by protocol handlers that are
 responsible for new schemes, not by programmers who just want to
 retrieve data from a URL. We'll discuss it in more detail in Chapter 16.
public static synchronized void
 setURLStreamHandlerFactory(URLStreamHandlerFactory factory)

This method sets the URLStreamHandlerFactory for the application and throws a generic Error if the factory has already been set.
 A URLStreamHandler is responsible
 for parsing the URL and then constructing the appropriate URLConnection object to handle the
 connection to the server. Most of the time this happens behind the
 scenes.

The URLEncoder and URLDecoder Classes

One of the challenges faced by the designers of the Web was
 dealing with the differences between operating systems. These differences can cause problems with URLs: for
 example, some operating systems allow spaces in filenames; some don't.
 Most operating systems won't complain about a # sign in a filename; but
 in a URL, a # sign indicates that the filename has ended, and a fragment
 identifier follows. Other special characters, nonalphanumeric characters, and so on,
 all of which may have a special meaning inside a URL or on another
 operating system, present similar problems. To solve these problems,
 characters used in URLs must come from a fixed subset of ASCII,
 specifically:
	The capital letters A-Z

	The lowercase letters a-z

	The digits 0-9

	The punctuation characters - _ . ! ~ * ' (and ,)

The characters : / & ? @ # ; $ + = and % may also be used, but
 only for their specified purposes. If these characters occur as part of
 a filename, they and all other characters should be encoded.
The encoding is very simple. Any characters that are not ASCII
 numerals, letters, or the punctuation marks specified earlier are
 converted into bytes and each byte is written as a percent sign followed
 by two hexadecimal digits. Spaces are a special case because they're so common.
 Besides being encoded as %20, they can be encoded as a plus sign (+).
 The plus sign itself is encoded as %2B. The / # = & and ? characters
 should be encoded when they are used as part of a name, and not as a
 separator between parts of the URL.
Warning
This scheme doesn't work well in heterogeneous environments with
 multiple character sets. For example, on a U.S. Windows system, é is
 encoded as %E9. On a U.S. Mac, it's encoded as %8E. The existence of
 variations is a distinct shortcoming of the current URI specification
 that should be addressed in the future through Internationalized Resource Identifiers (IRIs).

The URL class does not perform encoding or decoding
 automatically. You can construct URL
 objects that use illegal ASCII and non-ASCII characters and/or percent
 escapes. Such characters and escapes are not automatically encoded or
 decoded when output by methods such as getPath() and toExternalForm(). You are responsible for
 making sure all such characters are properly encoded in the strings used
 to construct a URL object.
Luckily, Java provides a URLEncoder class to encode strings in this
 format. Java 1.2 adds a URLDecoder
 class that can decode strings in this format. Neither of these classes
 will be instantiated.
public class URLDecoder extends Object
public class URLEncoder extends Object
URLEncoder

In Java 1.3 and earlier, the java.net.URLEncoder class contains a single
 static method called encode()
 that encodes a String according to these rules:
public static String encode(String s)
This method always uses the default encoding of the platform on
 which it runs, so it will produce different results on different
 systems. As a result, Java 1.4 deprecates this method and replaces it
 with a method that requires you to specify the encoding:
public static String encode(String s, String encoding)
 throws UnsupportedEncodingException
Both variants change any
 nonalphanumeric characters into % sequences (except the space,
 underscore, hyphen, period, and asterisk characters). Both also encode
 all non-ASCII characters. The space is converted into a plus sign.
 These methods are a little over-aggressive; they also convert tildes,
 single quotes, exclamation points, and parentheses to percent escapes,
 even though they don't absolutely have to. However, this change isn't
 forbidden by the URL specification, so web browsers deal reasonably
 with these excessively encoded URLs.
Both variants return a new String, suitably encoded. The Java 1.3
 encode() method uses the platform's default encoding to
 calculate percent escapes. This encoding is typically ISO-8859-1 on
 U.S. Unix systems, Cp1252 on U.S. Windows systems, MacRoman on U.S.
 Macs, and so on in other locales. Because both encoding and decoding
 are platform- and locale-specific, this method is annoyingly
 non-interoperable, which is precisely why it has been deprecated in
 Java 1.4 in favor of the variant that requires you to specify an
 encoding. However, if you just pick the platform default encoding,
 your program will be as platform- and locale-locked as the Java 1.3
 version. Instead, you should always pick UTF-8, never anything else.
 UTF-8 is compatible with the new IRI specification, the URI class, modern web browsers, and more
 other software than any other encoding you could choose.
Example 7-8 is a
 program that uses URLEncoder.encode(
) to print various encoded strings. Java 1.4 or later is
 required to compile and run it.
Example 7-8. x-www-form-urlencoded strings
import java.net.URLEncoder;
import java.io.UnsupportedEncodingException;

public class EncoderTest {

 public static void main(String[] args) {

 try {
 System.out.println(URLEncoder.encode("This string has spaces",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This*string*has*asterisks",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This%string%has%percent%signs",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This+string+has+pluses",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This/string/has/slashes",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This\"string\"has\"quote\"marks",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This:string:has:colons",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This~string~has~tildes",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This(string)has(parentheses)",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This.string.has.periods",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This=string=has=equals=signs",
 "UTF-8"));
 System.out.println(URLEncoder.encode("This&string&has&ersands",
 "UTF-8"));
 System.out.println(URLEncoder.encode("Thiséstringéhasé
 non-ASCII characters", "UTF-8"));
 }
 catch (UnsupportedEncodingException ex) {
 throw new RuntimeException("Broken VM does not support UTF-8");
 }

 }

}

Here is the output. Note that the code needs to be saved in
 something other than ASCII, and the encoding chosen should be passed
 as an argument to the compiler to account for the non-ASCII characters
 in the source code.
% javac -encoding UTF8 EncoderTest
% java EncoderTest
This+string+has+spaces
This*string*has*asterisks
This%25string%25has%25percent%25signs
This%2Bstring%2Bhas%2Bpluses
This%2Fstring%2Fhas%2Fslashes
This%22string%22has%22quote%22marks
This%3Astring%3Ahas%3Acolons
This%7Estring%7Ehas%7Etildes
This%28string%29has%28parentheses%29
This.string.has.periods
This%3Dstring%3Dhas%3Dequals%3Dsigns
This%26string%26has%26ampersands
This%C3%A9string%C3%A9has%C3%A9non-ASCII+characters
Notice in particular that this method encodes the forward slash,
 the ampersand, the equals sign, and the colon. It does not attempt to
 determine how these characters are being used in a URL. Consequently,
 you have to encode URLs piece by piece rather than encoding an entire URL
 in one method call. This is an important point, because the most
 common use of URLEncoder is in
 preparing query strings for communicating with server-side
 programs that use GET. For example,
 suppose you want to encode this query string used for an AltaVista
 search:
pg=q&kl=XX&stype=stext&q=+"Java+I/O"&search.x=38&search.y=3
This code fragment encodes it:
String query = URLEncoder.encode(
 "pg=q&kl=XX&stype=stext&q=+\"Java+I/O\"&search.x=38&search.y=3");
System.out.println(query);
Unfortunately, the output is:
pg%3Dq%26kl%3DXX%26stype%3Dstext%26q%3D%2B%22Java%2BI%2FO%22%26search
.x%3D38%26search.y%3D3
The problem is that URLEncoder.encode(
) encodes blindly. It can't distinguish between special
 characters used as part of the URL or query string, like & and = in the previous string, and characters
 that need to be encoded. Consequently, URLs need to be encoded a piece
 at a time like this:
String query = URLEncoder.encode("pg");
query += "=";
query += URLEncoder.encode("q");
query += "&";
query += URLEncoder.encode("kl");
query += "=";
query += URLEncoder.encode("XX");
query += "&";
query += URLEncoder.encode("stype");
query += "=";
query += URLEncoder.encode("stext");
query += "&";
query += URLEncoder.encode("q");
query += "=";
query += URLEncoder.encode("\"Java I/O\"");
query += "&";
query += URLEncoder.encode("search.x");
query += "=";
query += URLEncoder.encode("38");
query += "&";
query += URLEncoder.encode("search.y");
query += "=";
query += URLEncoder.encode("3");
System.out.println(query);
The output of this is what you actually want:
pg=q&kl=XX&stype=stext&q=%2B%22Java+I%2FO%22&search.x=38&search.y=3
Example 7-9 is a
 QueryString class
 that uses the URLEncoder to encode
 successive name and value pairs in a Java object, which will be used
 for sending data to server-side programs. When you create a QueryString, you can supply the first
 name-value pair to the constructor as individual strings. To add
 further pairs, call the add()
 method, which also takes two strings as arguments and encodes them.
 The getQuery() method returns the accumulated list of encoded
 name-value pairs.
Example 7-9. -The QueryString class
package com.macfaq.net;

import java.net.URLEncoder;
import java.io.UnsupportedEncodingException;

public class QueryString {

 private StringBuffer query = new StringBuffer();

 public QueryString(String name, String value) {
 encode(name, value);
 }

 public synchronized void add(String name, String value) {
 query.append('&');
 encode(name, value);
 }

 private synchronized void encode(String name, String value) {
 try {
 query.append(URLEncoder.encode(name, "UTF-8"));
 query.append('=');
 query.append(URLEncoder.encode(value, "UTF-8"));
 }
 catch (UnsupportedEncodingException ex) {
 throw new RuntimeException("Broken VM does not support UTF-8");
 }
 }

 public String getQuery() {
 return query.toString();
 }

 public String toString() {
 return getQuery();
 }

}

Using this class, we can now encode the previous example:
QueryString qs = new QueryString("pg", "q");
qs.add("kl", "XX");
qs.add("stype", "stext");
qs.add("q", "+\"Java I/O\"");
qs.add("search.x", "38");
qs.add("search.y", "3");
String url = "http://www.altavista.com/cgi-bin/query?" + qs;
System.out.println(url);

URLDecoder

The corresponding URLDecoder class has two static methods that
 decode strings encoded in x-www-form-url-encoded format. That is, they
 convert all plus signs to spaces and all percent escapes to their
 corresponding character:
public static String decode(String s) throws Exception
public static String decode(String s, String encoding) // Java 1.4
 throws UnsupportedEncodingException
The first variant is used in Java 1.3 and 1.2. The second
 variant is used in Java 1.4 and later. If you have any doubt about
 which encoding to use, pick UTF-8. It's more likely to be correct than
 anything else.
An IllegalArgumentException
 may be thrown if the string contains a percent sign that isn't
 followed by two hexadecimal digits or decodes into an illegal
 sequence. Then again it may not be. This is implementation-dependent,
 and what happens when an illegal sequence is detected and does not
 throw an IllegalArgumentException
 is undefined. In Sun's JDK 1.4, no exception is thrown and extra bytes
 with no apparent meaning are added to the undecodable string. This is
 truly brain-damaged, and possibly a security hole.
Since this method does not touch non-escaped characters, you can
 pass an entire URL to it rather than splitting it into pieces first.
 For example:
String input = "http://www.altavista.com/cgi-bin/" +
"query?pg=q&kl=XX&stype=stext&q=%2B%22Java+I%2FO%22&search.x=38&search.y=3";
 try {
 String output = URLDecoder.decode(input, "UTF-8");
 System.out.println(output);
 }

The URI Class

A URI is an abstraction of a URL that includes not only
 Uniform Resource Locators but also Uniform Resource Names (URNs). Most
 URIs used in practice are URLs, but most specifications and standards
 such as XML are defined in terms of URIs. In Java 1.4 and later, URIs
 are represented by the java.net.URI
 class. This class differs from the java.net.URL class in three important
 ways:
	The URI class is purely
 about identification of resources and parsing of URIs. It provides
 no methods to retrieve a representation of the resource identified
 by its URI.

	The URI class is more
 conformant to the relevant specifications than the URL class.

	A URI object can represent
 a relative URI. The URL class
 absolutizes all URIs before storing them.

In brief, a URL object is a
 representation of an application layer protocol for network retrieval,
 whereas a URI object is purely for
 string parsing and manipulation. The URI class has no network retrieval
 capabilities. The URL class has some
 string parsing methods, such as getFile(
) and getRef(), but many
 of these are broken and don't always behave exactly as the relevant
 specifications say they should. Assuming you're using Java 1.4 or later
 and therefore have a choice, you should use the URL class when you want to download the
 content of a URL and the URI class
 when you want to use the URI for identification rather than retrieval,
 for instance, to represent an XML namespace URI. In some cases when you
 need to do both, you may convert from a URI to a URL with the toURL(
) method, and in Java 1.5 you can also convert from a URL to a URI using the toURI(
) method of the URL
 class.
Constructing a URI

URIs are built from strings. Unlike the URL class, the URI class does not depend on an underlying
 protocol handler. As long as the URI is syntactically correct, Java
 does not need to understand its protocol in order to create a
 representative URI object. Thus, unlike the URL class, the URI class can be used for new and
 experimental URI schemes.
public URI(String uri) throws URISyntaxException

This is the basic constructor that creates a new URI object from any convenient string. For
 example,
URI voice = new URI("tel:+1-800-9988-9938");
URI web = new URI("http://www.xml.com/pub/a/2003/09/17/stax.html#id=_hbc");
URI book = new URI("urn:isbn:1-565-92870-9");
If the string argument does not follow URI syntax rules—for
 example, if the URI begins with a colon—this constructor throws a
 URISyntaxException. This is a
 checked exception, so you need to either catch it or declare that
 the method where the constructor is invoked can throw it. However,
 one syntactic rule is not checked. In contradiction to the URI
 specification, the characters used in the URI are not limited to
 ASCII. They can include other Unicode characters, such as ø and é.
 Syntactically, there are very few restrictions on URIs, especially
 once the need to encode non-ASCII characters is removed and relative
 URIs are allowed. Almost any string can be interpreted as a
 URI.

public URI(String scheme, String schemeSpecificPart, String
 fragment) throws URISyntaxException

This constructor is mostly used for nonhierarchical URIs. The
 scheme is the URI's protocol, such as http, urn, tel, and so forth.
 It must be composed exclusively of ASCII letters and digits and the
 three punctuation characters +,
 -, and .. It must begin with a
 letter. Passing null for this argument omits the scheme, thus
 creating a relative URI. For example:
URI absolute = new URI("http", "//www.ibiblio.org" , null);
URI relative = new URI(null, "/javafaq/index.shtml", "today");
The scheme-specific part depends on the syntax of the URI
 scheme; it's one thing for an http URL, another for a mailto URL,
 and something else again for a tel URI. Because the URI class encodes illegal characters with
 percent escapes, there's effectively no syntax error you can make in
 this part.
Finally, the third argument contains the fragment identifier,
 if any. Again, characters that are forbidden in a fragment
 identifier are escaped automatically. Passing null for this argument
 simply omits the fragment identifier.

public URI(String scheme, String host, String path, String
 fragment) throws URISyntaxException

This constructor is used for hierarchical URIs such as http
 and ftp URLs. The host and path together (separated by a /) form the
 scheme-specific part for this URI. For example:
URI today= new URI("http", "www.ibiblio.org", "/javafaq/index.html", "today");
produces the URI http://www.ibiblio.org/javafaq/index.html#today.
If the constructor cannot form a legal hierarchical URI from
 the supplied pieces—for instance, if there is a scheme so the URI
 has to be absolute but the path doesn't start with /—then it throws
 a URISyntaxException.

public URI(String scheme, String authority, String path,
 String query, String fragment) throws URISyntaxException

This constructor is basically the same as the previous one,
 with the addition of a query string component. For example:
URI today= new URI("http", "www.ibiblio.org", "/javafaq/index.html",
 "referrer=cnet&date=2004-08-23", "today");
As usual, any unescapable syntax errors cause a URISyntaxException to be thrown and null
 can be passed to omit any of the arguments.

public URI(String scheme, String userInfo, String host, int
 port, String path, String query, String fragment) throws
 URISyntaxException

This is the master hierarchical URI constructor that the
 previous two invoke. It divides the authority into separate user
 info, host, and port parts, each of which has its own syntax rules.
 For example:
URI styles = new URI("ftp", "anonymous:elharo@metalab.unc.edu",
 "ftp.oreilly.com", 21, "/pub/stylesheet", null, null);
However, the resulting URI still has to follow all the usual
 rules for URIs and again, null can be passed for any argument to
 omit it from the result.

public static URI create(String uri)

This is not a constructor, but rather a static factory method.
 Unlike the constructors, it does not throw a URISyntaxException. If you're sure your
 URIs are legal and do not violate any of the rules, you can use this
 method. For example, this invocation creates a URI for anonymous FTP access using an
 email address as password:
URI styles = URI.create(
 "ftp://anonymous:elharo%40metalab.unc.edu@ftp.oreilly.com:
 21/pub/stylesheet");
If the URI does prove to be malformed, this method throws an
 IllegalArgumentException. This is
 a runtime exception, so you don't have to explicitly declare it or
 catch it.

The Parts of the URI

A URI reference has up to three parts: a scheme, a
 scheme-specific part, and a fragment identifier. The general format
 is:
 scheme:scheme-specific-part:fragment
 If the scheme is omitted, the URI reference is relative.
 If the fragment identifier is omitted, the URI reference is a pure
 URI. The URI class has getter methods that return these three parts of
 each URI object. The getRaw Foo
 () methods return the encoded
 forms of the parts of the URI, while the equivalent get Foo () methods first decode any percent-escaped
 characters and then return the decoded part:
public String getScheme()
public String getSchemeSpecificPart()
public String getRawSchemeSpecificPart()
public String getFragment()
public String getRawFragment()
Tip
There's no getRawScheme()
 method because the URI specification requires that all scheme names
 be composed exclusively of URI-legal ASCII characters and does not
 allow percent escapes in scheme names.

These methods all return null if the particular URI object does not have the relevant
 component: for example, a relative URI without a scheme or an http URI
 without a fragment identifier.
A URI that has a scheme is an
 absolute URI. A URI without a scheme is
 relative . The isAbsolute()
 method returns true if the URI is absolute, false if
 it's relative:
public boolean isAbsolute()
The details of the scheme-specific part vary depending on the
 type of the scheme. For example, in a tel URL,
 the scheme-specific part has the syntax of a telephone number.
 However, in many useful URIs, including the very common
 file and http URLs, the
 scheme-specific part has a particular hierarchical format divided into an authority, a path,
 and a query string. The authority is further divided into user info,
 host, and port. The isOpaque()
 method returns false if the URI is hierarchical, true
 if it's not hierarchical—that is, if it's opaque:
public boolean isOpaque()
If the URI is opaque, all you can get is the scheme,
 scheme-specific part, and fragment identifier. However, if the URI is
 hierarchical, there are getter methods for all the different parts of
 a hierarchical URI:
public String getAuthority()
public String getFragment()
public String getHost()
public String getPath()
public String getPort()
public String getQuery()
public String getUserInfo()
These methods all return the decoded parts; in other words,
 percent escapes, such as %3C, are changed into the characters they
 represent, such as <. If you want the raw, encoded parts of the
 URI, there are five parallel getRaw
 Foo ()
 methods:
public String getRawAuthority()
public String getRawFragment()
public String getRawPath()
public String getRawQuery()
public String getRawUserInfo()
Remember the URI class differs from the URI specification in that
 non-ASCII characters such as é and ü are never percent-escaped in the
 first place, and thus will still be present in the strings returned by
 the getRaw
 Foo ()
 methods unless the strings originally used to construct the URI object
 were encoded.
Tip
There are no getRawPort()
 and getRawHost() methods because
 these components are always guaranteed to be made up of ASCII
 characters, at least for now. Internationalized domain names are
 coming, and may require this decision to be rethought in future
 versions of Java.

In the event that the specific URI does not contain this
 information—for instance, the URI
 http://www.example.com has no user info, path,
 port, or query string—the relevant methods return null. getPort() is the single exception. Since it's declared to return
 an int, it can't return null. Instead, it returns -1 to indicate an
 omitted port.
For various technical reasons that don't have a lot of practical
 impact, Java can't always initially detect syntax errors in the
 authority component. The immediate symptom of this failing is normally
 an inability to return the individual parts of the authority: port,
 host, and user info. In this event, you can call parseServerAuthority() to force the authority to be reparsed:
public URI parseServerAuthority() throws URISyntaxException
The original URI does not
 change (URI objects are immutable),
 but the URI returned will have
 separate authority parts for user info, host, and port. If the
 authority cannot be parsed, a URISyntaxException is thrown.
Example 7-10 uses
 these methods to split URIs entered on the command line into their
 component parts. It's similar to Example 7-4 but works with any
 syntactically correct URI, not just the ones Java has a protocol
 handler for.
Example 7-10. The parts of a URI
import java.net.*;

public class URISplitter {

 public static void main(String args[]) {

 for (int i = 0; i < args.length; i++) {
 try {
 URI u = new URI(args[i]);
 System.out.println("The URI is " + u);
 if (u.isOpaque()) {
 System.out.println("This is an opaque URI.");
 System.out.println("The scheme is " + u.getScheme());
 System.out.println("The scheme specific part is "
 + u.getSchemeSpecificPart());
 System.out.println("The fragment ID is " + u.getFragment());
 }
 else {
 System.out.println("This is a hierarchical URI.");
 System.out.println("The scheme is " + u.getScheme());
 try {
 u = u.parseServerAuthority();
 System.out.println("The host is " + u.getHost());
 System.out.println("The user info is " + u.getUserInfo());
 System.out.println("The port is " + u.getPort());
 }
 catch (URISyntaxException ex) {
 // Must be a registry based authority
 System.out.println("The authority is " + u.getAuthority());
 }
 System.out.println("The path is " + u.getPath());
 System.out.println("The query string is " + u.getQuery());
 System.out.println("The fragment ID is " + u.getFragment());
 } // end else
 } // end try
 catch (URISyntaxException ex) {
 System.err.println(args[i] + " does not seem to be a URI.");
 }
 System.out.println();
 } // end for

 } // end main

} // end URISplitter

Here's the result of running this against three of the URI
 examples in this section:
% java URISplitter tel:+1-800-9988-9938 \
 http://www.xml.com/pub/a/2003/09/17/stax.html#id=_hbc \
 urn:isbn:1-565-92870-9
The URI is tel:+1-800-9988-9938
This is an opaque URI.
The scheme is tel
The scheme specific part is +1-800-9988-9938
The fragment ID is null

The URI is http://www.xml.com/pub/a/2003/09/17/stax.html#id=_hbc
This is a hierarchical URI.
The scheme is http
The host is www.xml.com
The user info is null
The port is -1
The path is /pub/a/2003/09/17/stax.html
The query string is null
The fragment ID is id=_hbc

The URI is urn:isbn:1-565-92870-9
This is an opaque URI.
The scheme is urn
The scheme specific part is isbn:1-565-92870-9
The fragment ID is null

Resolving Relative URIs

The URI class has three methods for converting back and forth
 between relative and absolute URIs.
public URI resolve(URI uri)

 This method compares the uri argument to this URI and uses it to construct a new
 URI object that wraps an absolute
 URI. For example, consider these three lines of code:
URI absolute = new URI("http://www.example.com/");
URI relative = new URI("images/logo.png");
URI resolved = absolute.resolve(relative);
After they've executed, resolved contains the absolute URI
 http://www.example.com/images/logo.png.
If the invoking URI does
 not contain an absolute URI itself, the resolve() method resolves as much of the
 URI as it can and returns a new relative URI object as a result. For
 example, take these three statements:
URI top = new URI("javafaq/books/");
URI relative = new URI("jnp3/examples/07/index.html");
URI resolved = top.resolve(relative);
After they've executed, resolved now contains the relative URI
 javafaq/books/jnp3/examples/07/index.html with
 no scheme or authority.

public URI resolve(String uri)

 This is a convenience method that simply converts the
 string argument to a URI and then resolves it against the invoking
 URI, returning a new URI object as the result. That is, it's
 equivalent to resolve(new
 URI(str)). Using this method, the
 previous two samples can be rewritten as:
URI absolute = new URI("http://www.example.com/");
URI resolved = absolute.resolve("images/logo.png");
URI top = new URI("javafaq/books/");
resolved = top.resolve("jnp3/examples/07/index.html");

public URI relativize(URI uri)

 It's also possible to reverse this procedure; that is,
 to go from an absolute URI to a relative one. The relativize() method creates a new
 URI object from the uri argument that is relative to the
 invoking URI. The argument is not
 changed. For example:
URI absolute = new URI("http://www.example.com/images/logo.png");
URI top = new URI("http://www.example.com/");
URI relative = top.relativize(absolute);
The URI object relative now contains the relative URI
 images/logo.png.

Utility Methods

The URI class has the usual batch of utility methods: equals(), hashCode(
), toString(), and
 compareTo().
public boolean equals(Object o)

 URIs are tested for equality pretty much as you'd
 expect. It's not a direct string comparison. Equal URIs must both
 either be hierarchical or opaque. The scheme and authority parts are
 compared without considering case. That is,
 http and HTTP are the same
 scheme, and www.example.com is the same
 authority as www.EXAMPLE.com. The rest of the
 URI is case-sensitive, except for hexadecimal digits used to escape
 illegal characters. Escapes are not decoded
 before comparing. http://www.example.com/A and
 http://www.example.com/%41 are unequal
 URIs.

public int hashCode()

The hashCode() method is a usual hashCode(
) method, nothing special. Equal URIs do have the same
 hash code and unequal URIs are fairly unlikely to share the same
 hash code.

public int compareTo(Object o)

 URIs can be ordered. The ordering is based on string
 comparison of the individual parts, in this sequence:
	If the schemes are different, the schemes are compared,
 without considering case.

	Otherwise, if the schemes are the same, a hierarchical URI
 is considered to be less than an opaque URI with the same
 scheme.

	If both URIs are opaque URIs, they're ordered according to
 their scheme-specific parts.

	If both the scheme and the opaque scheme-specific parts
 are equal, the URIs are compared by their fragments.

	If both URIs are hierarchical, they're ordered according
 to their authority components, which are themselves ordered
 according to user info, host, and port, in that order.

	If the schemes and the authorities are equal, the path is
 used to distinguish them.

	If the paths are also equal, the query strings are
 compared.

	If the query strings are equal, the fragments are
 compared.

URIs are not comparable to any type except themselves.
 Comparing a URI to anything
 except another URI causes a
 ClassCastException.

public String toString()

The toString() method returns an unencoded
 string form of the URI. That is,
 characters like é and \ are not percent-escaped unless they were
 percent-escaped in the strings used to construct this URI. Therefore, the result of calling this
 method is not guaranteed to be a syntactically correct URI. This
 form is sometimes useful for display to human beings, but not for
 retrieval.

public String toASCIIString()

The toASCIIString()
 method returns an encoded string
 form of the URI. Characters like
 é and \ are always percent-escaped whether or not they were
 originally escaped. This is the string form of the URI you should
 use most of the time. Even if the form returned by toString() is more legible for humans,
 they may still copy and paste it into areas that are not expecting
 an illegal URI. toASCIIString()
 always returns a syntactically correct URI.

Proxies

Many systems access the Web and sometimes other non-HTTP
 parts of the Internet through proxy servers
 . A proxy server receives a request for a remote server
 from a local client. The proxy server makes the request to the remote
 server and forwards the result back to the local client. Sometimes this
 is done for security reasons, such as to prevent remote hosts from
 learning private details about the local network configuration. Other
 times it's done to prevent users from accessing forbidden sites by
 filtering outgoing requests and limiting which sites can be viewed. For
 instance, an elementary school might want to block access to http://www.playboy.com. And still other times it's done
 purely for performance, to allow multiple users to retrieve the same
 popular documents from a local cache rather than making repeated
 downloads from the remote server.
Java programs based on the URL
 class can work through most common proxy servers and protocols. Indeed,
 this is one reason you might want to choose to use the URL class rather than rolling your own HTTP or
 other client on top of raw sockets.
System Properties

For basic operations, all you have to do is set a few
 system properties to point to the addresses of your local proxy
 servers. If you are using a pure HTTP proxy, set http.proxyHost to the domain name or the IP
 address of your proxy server and http.proxyPort to the port of the proxy
 server (the default is 80). There are several ways to do this,
 including calling System.setProperty() from within your Java
 code or using the -D options when launching the program. This example
 sets the proxy server to 192.168.254.254 and the port to 9000:
% java -Dhttp.proxyHost=192.168.254.254 -Dhttp.proxyPort=9000
 com.domain.Program
If you want to exclude a host from being proxied and connect
 directly instead, set the http.nonProxyHosts system property to its
 hostname or IP address. To exclude multiple hosts, separate their
 names by vertical bars. For example, this code fragment proxies
 everything except java.oreilly.com and
 xml.oreilly.com:
System.setProperty("http.proxyHost", "192.168.254.254");
System.setProperty("http.proxyPort", "9000");
System.setProperty("http.nonProxyHosts", "java.oreilly.com|xml.oreilly.com");
You can also use an asterisk as a wildcard to indicate that all
 the hosts within a particular domain or subdomain should not be
 proxied. For example, to proxy everything except hosts in the
 oreilly.com domain:
% java -Dhttp.proxyHost=192.168.254.254 -Dhttp.nonProxyHosts=*.oreilly.com
 com.domain.Program
If you are using an FTP proxy server, set the ftp.proxyHost, ftp.proxyPort, and ftp.nonProxyHosts properties in the same
 way.
Java does not support any other application layer proxies, but
 if you're using a transport layer SOCKS proxy for all TCP connections,
 you can identify it with the socksProxyHost and socksProxyPort system properties. Java does
 not provide an option for nonproxying with SOCKS. It's an
 all-or-nothing decision.

The Proxy Class

Java 1.5 allows more fine-grained control of proxy
 servers from within a Java program. Specifically, this allows you to
 choose different proxy servers for different remote hosts. The proxies
 themselves are represented by instances of the java.net.Proxy class. There are still only
 three kinds of proxies, HTTP, SOCKS, and direct connections (no proxy
 at all), represented by three constants in the Proxy.Type enum:
	Proxy.Type.DIRECT

	Proxy.Type.HTTP

	Proxy.Type.SOCKS

Besides its type, the other important piece of information about
 a proxy is its address and port, given as a SocketAddress object. For example, this code
 fragment creates a Proxy object
 representing an HTTP proxy server on port 80 of
 proxy.example.com:
SocketAddress address = new InetSocketAddress("proxy.example.com", 80);
Proxy proxy = new Proxy(Proxy.Type.HTTP, address);
Although there are only three kinds of proxy objects, there can
 be many proxies of the same type for different proxy servers on
 different hosts.

The ProxySelector Class

Each running Java 1.5 virtual machine has a single
 java.net.ProxySelector object it
 uses to locate the proxy server for different connections. The default
 ProxySelector merely inspects the
 various system properties and the URL's protocol to decide how to
 connect to different hosts. However, you can install your own subclass
 of ProxySelector in place of the
 default selector and use it to choose different proxies based on
 protocol, host, path, time of day, or other criteria.
The key to this class is the abstract select() method:
public abstract List<Proxy> select(URI uri)
Java passes this method a URI
 object (not a URL object)
 representing the host to which a connection is needed. For a
 connection made with the URL class, this object typically has the form
 http://www.example.com/ or
 ftp://ftp.example.com/pub/files/, or some such.
 For a pure TCP connection made with the Socket class, this URI will
 have the form socket://host:port:, for instance,
 socket://www.example.com:80. The ProxySelector object then chooses the right
 proxies for this type of object and returns them in a List<Proxy>.
The second abstract method in this class you must implement is
 connectFailed():
public void connectFailed(URI uri, SocketAddress address, IOException ex)
This is a callback method used to warn a program that the proxy
 server isn't actually making the connection. Example 7-11 demonstrates with a
 ProxySelector that attempts to use
 the proxy server at proxy.example.com for all
 HTTP connections unless the proxy server has previously failed to
 resolve a connection to a particular URL. In that case, it suggests a
 direct connection instead.
Example 7-11. A ProxySelector that remembers what it can connect to
import java.net.*;
import java.util.*;
import java.io.*;

public class LocalProxySelector extends ProxySelector {

 private List failed = new ArrayList();

 public List<Proxy> select(URI uri) {

 List<Proxy> result = new ArrayList<Proxy>();
 if (failed.contains(uri)
 || "http".equalsIgnoreCase(uri.getScheme())) {
 result.add(Proxy.NO_PROXY);
 }
 else {
 SocketAddress proxyAddress
 = new InetSocketAddress("proxy.example.com", 8000);
 Proxy proxy = new Proxy(Proxy.Type.HTTP, proxyAddress);
 result.add(proxy);
 }

 return result;

 }

 public void connectFailed(URI uri, SocketAddress address, IOException ex) {
 failed.add(uri);
 }

}

As I already said, each running virtual machine has exactly one
 ProxySelector. To change the
 ProxySelector, pass the new
 selector to the static ProxySelector.setDefault() method, like
 so:
ProxySelector selector = new LocalProxySelector():
ProxySelector.setDefault(selector);
From this point forward, all connections opened by that virtual
 machine will ask the ProxySelector
 for the right proxy to use. You normally shouldn't use this in code
 running in a shared environment. For instance, you wouldn't change the
 ProxySelector in a servlet because
 that would change the ProxySelector
 for all servlets running in the same container.

Communicating with Server-Side Programs Through GET

The URL class makes it easy for Java applets and applications to
 communicate with server-side programs such as CGIs, servlets, PHP pages,
 and others that use the GET method.
 (Server-side programs that use the POST method require the URLConnection class and are discussed in Chapter 15.) All you need to know is
 what combination of names and values the program expects to receive, and
 cook up a URL with a query string that provides the requisite names and
 values. All names and values must be x-www-form-url-encoded—as by the
 URLEncoder.encode() method, discussed
 earlier in this chapter.
There are a number of ways to determine the exact syntax for a
 query string that talks to a particular program. If you've written the
 server-side program yourself, you already know the name-value pairs it
 expects. If you've installed a third-party program on your own server,
 the documentation for that program should tell you what it
 expects.
On the other hand, if you're talking to a program on a third-party
 server, matters are a little trickier. You can always ask people at the
 remote server to provide you with the specifications for talking to
 their site. However, even if they don't mind doing this, there's
 probably no single person whose job description includes "telling
 third-party hackers with whom we have no business relationship exactly
 how to access our servers." Thus, unless you happen upon a particularly
 friendly or bored individual who has nothing better to do with their
 time except write long emails detailing exactly how to access their
 server, you're going to have to do a little reverse engineering.
Tip
This is beginning to change. A number of web sites have realized
 the value of opening up their systems to third party developers and
 have begin publishing developers' kits that provide detailed
 information on how to construct URLs to access their services. Sites
 like Safari and Amazon that offer RESTful, URL-based interfaces are
 easily accessed through the URL
 class. SOAP-based services like eBay's and Google's are much more
 difficult to work with.

 Many programs are designed to process form input. If this is
 the case, it's straightforward to figure out what input the program
 expects. The method the form uses should be the value of the METHOD attribute of the FORM element. This value should be either
 GET, in which case you use the
 process described here, or POST, in
 which case you use the process described in Chapter 15. The part of the URL that
 precedes the query string is given by the value of the ACTION attribute of the FORM element. Note that this may be a relative
 URL, in which case you'll need to determine the corresponding absolute
 URL. Finally, the names in the name-value pairs are simply the values of
 the NAME attributes of the INPUT
 elements. The values of the pairs are whatever the user types into the
 form..
For example, consider this HTML form for the local search engine
 on my Cafe con Leche site. You can see that it uses the GET method. The program that processes the
 form is accessed via the URL http://www.google.com/search. It has four separate
 name-value pairs, three of which have default values:
<form name="search" action="http://www.google.com/search" method="get">
 <input name="q" />
 <input type="hidden" value="cafeconleche.org" name="domains" />
 <input type="hidden" name="sitesearch" value="cafeconleche.org" />
 <input type="hidden" name="sitesearch2" value="cafeconleche.org" />

 <input type="image" height="22" width="55"
 src="images/search_blue.gif" alt="search" border="0"
 name="search-image" />
</form>
The type of the INPUT field
 doesn't matter—for instance, it doesn't matter if it's a set of
 checkboxes, a pop-up list, or a text field—only the name of each
 INPUT field and the value you give it
 is significant. The single exception is a submit input that tells the
 web browser when to send the data but does not give the server any extra
 information. In some cases, you may find hidden INPUT fields that must have particular
 required default values. This form has three hidden INPUT fields.
In some cases, the program you're talking to may not be able to
 handle arbitrary text strings for values of particular inputs. However,
 since the form is meant to be read and filled in by human beings, it
 should provide sufficient clues to figure out what input is expected;
 for instance, that a particular field is supposed to be a two-letter
 state abbreviation or a phone number.
A program that doesn't respond to a form is much harder to reverse
 engineer. For example, at http://www.ibiblio.org/nywc/bios.phtml, you'll find a lot
 of links to PHP pages that talk to a database to retrieve a list of
 musical works by a particular composer. However, there's no form
 anywhere that corresponds to this program. It's all done by hardcoded
 URLs. In this case, the best you can do is look at as many of those URLs
 as possible and see whether you can guess what the server expects. If
 the designer hasn't tried to be too devious, this information isn't hard
 to figure out. For example, these URLs are all found on that
 page:
http://www.ibiblio.org/nywc/compositionsbycomposer.phtml?last=Anderson
 &first=Beth&middle=
http://www.ibiblio.org/nywc/compositionsbycomposer.phtml?last=Austin
 &first=Dorothea&middle=
http://www.ibiblio.org/nywc/compositionsbycomposer.phtml?last=Bliss
 &first=Marilyn&middle=
http://www.ibiblio.org/nywc/compositionsbycomposer.phtml?last=Hart
 &first=Jane&middle=Smith
Looking at these, you can guess that this particular program
 expects three inputs named first, middle, and last, with values that
 consist of the first, middle, and last names of a composer,
 respectively. Sometimes the inputs may not have such obvious names. In
 this case, you have to do some experimenting, first copying some
 existing values and then tweaking them to see what values are and aren't
 accepted. You don't need to do this in a Java program. You can simply
 edit the URL in the Address or Location bar of your web browser
 window.
Tip
The likelihood that other hackers may experiment with your own
 server-side programs in such a fashion is a good reason to make them
 extremely robust against unexpected input.

Regardless of how you determine the set of name-value pairs the
 server expects, communicating with it once you know them is simple. All
 you have to do is create a query string that includes the necessary
 name-value pairs, then form a URL that includes that query string. Send
 the query string to the server and read its response using the same
 methods you use to connect to a server and retrieve a static HTML page.
 There's no special protocol to follow once the URL is constructed.
 (There is a special protocol to follow for the POST method, however, which is why discussion
 of that method will have to wait until Chapter 15.)
To demonstrate this procedure, let's write a very simple
 command-line program to look up topics in the Netscape Open Directory (http://dmoz.org/). This site is shown in Figure 7-3 and it has the advantage
 of being really simple.
[image: The basic user interface for the Open Directory]

Figure 7-3. The basic user interface for the Open Directory

The basic Open Directory interface is a simple form with one input
 field named search; input typed in
 this field is sent to a CGI program at http://search.dmoz.org/cgi-bin/search, which does the
 actual search. The HTML for the form looks like this:
<form accept-charset="UTF-8"
 action="http://search.dmoz.org/cgi-bin/search" method="GET">
 <input size=30 name=search>

<input type=submit value="Search">

<small><i>advanced</i></small>
</form>
There are only two input fields in this form: the Submit button
 and a text field named Search. Thus, to submit a search request to the
 Open Directory, you just need to collect the search string, encode it in
 a query string, and send it to http://search.dmoz.org/cgi-bin/search. For example, to
 search for "java", you would open a connection to the URL http://search.dmoz.org/cgi-bin/search?search=java and
 read the resulting input stream. Example 7-12 does exactly
 this.
Example 7-12. Do an Open Directory search
import com.macfaq.net.*;

import java.net.*;
import java.io.*;

public class DMoz {

 public static void main(String[] args) {

 String target = "";

 for (int i = 0; i < args.length; i++) {
 target += args[i] + " ";
 }
 target = target.trim();
 QueryString query = new QueryString("search", target);
 try {
 URL u = new URL("http://search.dmoz.org/cgi-bin/search?" + query);
 InputStream in = new BufferedInputStream(u.openStream());
 InputStreamReader theHTML = new InputStreamReader(in);
 int c;
 while ((c = theHTML.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(ex);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

}

Of course, a lot more effort could be expended on parsing and
 displaying the results. But notice how simple the code was to talk to
 this server. Aside from the funky-looking URL and the slightly greater
 likelihood that some pieces of it need to be x-www-form-url-encoded,
 talking to a server-side program that uses GET is no harder than retrieving any other
 HTML page.

Accessing Password-Protected Sites

Many popular sites, such as The
 Wall Street Journal, require a username and
 password for access. Some sites, such as the W3C member pages, implement
 this correctly through HTTP authentication. Others, such as the Java
 Developer Connection, implement it incorrectly through cookies and HTML
 forms. Java's URL class can access sites that use HTTP authentication,
 although you'll of course need to tell it what username and password to
 use. Java does not provide support for sites that use
 nonstandard, cookie-based authentication, in part because Java doesn't
 really support cookies in Java 1.4 and earlier, in part because this
 requires parsing and submitting HTML forms, and, lastly, because cookies
 are completely contrary to the architecture of the Web. (Java 1.5 does
 add some cookie support, which we'll discuss in the next chapter.
 However, it does not treat authentication cookies differently than any
 other cookies.) You can provide this support yourself using the URLConnection class to read and write the HTTP
 headers where cookies are set and returned. However, doing so is
 decidedly nontrivial and often requires custom code for each site you
 want to connect to. It's really hard to do short of implementing a
 complete web browser with full HTML forms and cookie support. Accessing
 sites protected by standard, HTTP authentication is much easier.
The Authenticator Class

The java.net package
 includes an Authenticator class you
 can use to provide a username and password for sites that protect
 themselves using HTTP authentication:
public abstract class Authenticator extends Object // Java 1.2
Since Authenticator is an
 abstract class, you must subclass it. Different subclasses may
 retrieve the information in different ways. For example, a character
 mode program might just ask the user to type the username and password
 on System.in. A GUI program would
 likely put up a dialog box like the one shown in Figure 7-4. An automated robot
 might read the username out of an encrypted file.
[image: An authentication dialog]

Figure 7-4. An authentication dialog

To make the URL class use the
 subclass, install it as the default authenticator by passing it to the
 static Authenticator.setDefault()
 method:
public static void setDefault(Authenticator a)
For example, if you've written an Authenticator subclass named DialogAuthenticator, you'd install it like
 this:
Authenticator.setDefault(new DialogAuthenticator());
You only need to do this once. From this point forward, when the
 URL class needs a username and
 password, it will ask the DialogAuthenticator using the static
 Authenticator.requestPasswordAuthentication()
 method:
public static PasswordAuthentication requestPasswordAuthentication(
 InetAddress address, int port, String protocol, String prompt, String scheme)
 throws SecurityException
The address argument is the
 host for which authentication is required. The port argument is the port on that host, and
 the protocol argument is the
 application layer protocol by which the site is being accessed. The
 HTTP server provides the prompt.
 It's typically the name of the realm for which authentication is
 required. (Some large web servers such as
 www.ibiblio.org have multiple realms, each of
 which requires different usernames and passwords.) The scheme is the authentication scheme being used. (Here the word
 scheme is not being used as a synonym for
 protocol. Rather it is an HTTP authentication
 scheme, typically basic.)
Untrusted applets are not allowed to ask the user for a name and
 password. Trusted applets can do so, but only if they possess the
 requestPasswordAuthentication
 NetPermission. Otherwise, Authenticator.requestPasswordAuthentication(
) throws a SecurityException.
The Authenticator subclass
 must override the getPasswordAuthentication(
) method. Inside this method, you collect the username and
 password from the user or some other source and return it as an
 instance of the java.net.PasswordAuthentication
 class:
protected PasswordAuthentication getPasswordAuthentication()
If you don't want to authenticate this request, return null, and Java will tell the server it
 doesn't know how to authenticate the connection. If you submit an
 incorrect username or password, Java will call getPasswordAuthentication() again to give
 you another chance to provide the right data. You normally have five
 tries to get the username and password correct; after that, openStream() throws a ProtocolException.
Usernames and passwords are cached within the same virtual
 machine session. Once you set the correct password for a realm, you
 shouldn't be asked for it again unless you've explicitly deleted the
 password by zeroing out the char
 array that contains it.
You can get more details about the request by invoking any of
 these methods inherited from the Authenticator superclass:
protected final InetAddress getRequestingSite()
protected final int getRequestingPort()
protected final String getRequestingProtocol()
protected final String getRequestingPrompt()
protected final String getRequestingScheme()
protected final String getRequestingHost() // Java 1.4
These methods either return the information as given in the last
 call to requestPasswordAuthentication(
) or return null if that
 information is not available. (getRequestingPort() returns -1 if the port
 isn't available.) The last method, getRequestingHost(), is only available in
 Java 1.4 and later; in earlier releases you can call getRequestingSite().getHostName()
 instead.
Java 1.5 adds two more methods to this class:
protected final String getRequestingURL() // Java 1.5
protected Authenticator.RequestorType getRequestorType()
The getRequestingURL()
 method returns the complete URL for which authentication has been
 requested—an important detail if a site uses different names and
 passwords for different files. The getRequestorType() method returns one of
 the two named constants Authenticator.RequestorType.PROXY or
 Authenticator.RequestorType.SERVER
 to indicate whether the server or the proxy server is requesting the
 authentication.

The PasswordAuthentication Class

PasswordAuthentication
 is a very simple final class that supports two
 read-only properties: username and password. The username is a
 String. The password is a char array so that the password can be
 erased when it's no longer needed. A String would have to wait to be garbage
 collected before it could be erased, and even then it might still
 exist somewhere in memory on the local system, possibly even on disk
 if the block of memory that contained it had been swapped out to
 virtual memory at one point. Both username and password are set in the
 constructor:
public PasswordAuthentication(String userName, char[] password)
Each is accessed via a getter
 method:
public String getUserName()
public char[] getPassword()

The JPasswordField Class

One useful tool for asking users for their passwords in a more
 or less secure fashion is the JPasswordField component from Swing:
public class JPasswordField extends JTextField
This lightweight component behaves almost exactly like a text
 field. However, anything the user types into it is echoed as an
 asterisk. This way, the password is safe from anyone looking over the
 user's shoulder at what's being typed on the screen.
JPasswordField also stores
 the passwords as a char array so
 that when you're done with the password you can overwrite it with
 zeros. It provides the getPassword(
) method to return this:
public char[] getPassword()
Otherwise, you mostly use the methods it inherits from the
 JTextField superclass. Example 7-13 demonstrates a
 Swing-based Authenticator subclass
 that brings up a dialog to ask the user for his username and password.
 Most of this code handles the GUI. A JPasswordField collects the password and a
 simple JTextField retrieves the
 username. Figure 7-4 showed
 the rather simple dialog box this produces.
Example 7-13. A GUI authenticator
package com.macfaq.net;

import java.net.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DialogAuthenticator extends Authenticator {

 private JDialog passwordDialog;
 private JLabel mainLabel
 = new JLabel("Please enter username and password: ");
 private JLabel userLabel = new JLabel("Username: ");
 private JLabel passwordLabel = new JLabel("Password: ");
 private JTextField usernameField = new JTextField(20);
 private JPasswordField passwordField = new JPasswordField(20);
 private JButton okButton = new JButton("OK");
 private JButton cancelButton = new JButton("Cancel");

 public DialogAuthenticator() {
 this("", new JFrame());
 }

 public DialogAuthenticator(String username) {
 this(username, new JFrame());
 }

 public DialogAuthenticator(JFrame parent) {
 this("", parent);
 }

 public DialogAuthenticator(String username, JFrame parent) {

 this.passwordDialog = new JDialog(parent, true);
 Container pane = passwordDialog.getContentPane();
 pane.setLayout(new GridLayout(4, 1));
 pane.add(mainLabel);
 JPanel p2 = new JPanel();
 p2.add(userLabel);
 p2.add(usernameField);
 usernameField.setText(username);
 pane.add(p2);
 JPanel p3 = new JPanel();
 p3.add(passwordLabel);
 p3.add(passwordField);
 pane.add(p3);
 JPanel p4 = new JPanel();
 p4.add(okButton);
 p4.add(cancelButton);
 pane.add(p4);
 passwordDialog.pack();

 ActionListener al = new OKResponse();
 okButton.addActionListener(al);
 usernameField.addActionListener(al);
 passwordField.addActionListener(al);
 cancelButton.addActionListener(new CancelResponse());

 }

 private void show() {

 String prompt = this.getRequestingPrompt();
 if (prompt == null) {
 String site = this.getRequestingSite().getHostName();
 String protocol = this.getRequestingProtocol();
 int port = this.getRequestingPort();
 if (site != null & protocol != null) {
 prompt = protocol + "://" + site;
 if (port > 0) prompt += ":" + port;
 }
 else {
 prompt = "";
 }

 }

 mainLabel.setText("Please enter username and password for "
 + prompt + ": ");
 passwordDialog.pack();
 passwordDialog.show();

 }

 PasswordAuthentication response = null;

 class OKResponse implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 passwordDialog.hide();
 // The password is returned as an array of
 // chars for security reasons.
 char[] password = passwordField.getPassword();
 String username = usernameField.getText();
 // Erase the password in case this is used again.
 passwordField.setText("");
 response = new PasswordAuthentication(username, password);

 }

 }

 class CancelResponse implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 passwordDialog.hide();
 // Erase the password in case this is used again.
 passwordField.setText("");
 response = null;

 }

 }

 public PasswordAuthentication getPasswordAuthentication() {

 this.show();
 return this.response;

 }

}

Example 7-14 is a
 revised SourceViewer program that
 asks the user for a name and password using the DialogAuthenticator class.
Example 7-14. A program to download password-protected web pages
import java.net.*;
import java.io.*;
import com.macfaq.net.DialogAuthenticator;

public class SecureSourceViewer {

 public static void main (String args[]) {

 Authenticator.setDefault(new DialogAuthenticator());

 for (int i = 0; i < args.length; i++) {

 try {
 //Open the URL for reading
 URL u = new URL(args[i]);
 InputStream in = u.openStream();
 // buffer the input to increase performance
 in = new BufferedInputStream(in);
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 // print a blank line to separate pages
 System.out.println();

 } // end for

 // Since we used the AWT, we have to explicitly exit.
 System.exit(0);

 } // end main

} // end SecureSourceViewer

Chapter 8. HTML in Swing

As anyone who has ever tried to write code to read
 HTML can tell you, it's a painful experience. The problem is
 that although there is an HTML specification, no web designer or browser
 vendor actually follows it. And the specification itself is extremely
 loose. Element names may be uppercase, lowercase, or mixed case. Attribute
 values may or may not be quoted. If they are quoted, either single or
 double quotes may be used. The <
 sign may be escaped as < or it
 may just be left raw in the file. The <P> tag may be used to begin or end a
 paragraph. Closing </P>, , and </TD> tags may or may not be used. Tags
 may or may not overlap. There are just too many different ways of doing
 the same thing to make parsing HTML an easy task. In fact, the
 difficulties encountered in parsing real-world HTML were one of the prime
 motivators for the invention of the much stricter XML, in which what is
 and is not allowed is precisely specified and all browsers are strictly
 prohibited from accepting documents that don't measure up to the standard
 (as opposed to HTML, where most browsers try to fix up bad HTML, thereby
 leading to the proliferation of nonconformant HTML on the Web, which all
 browsers must then try to parse).
 Fortunately, as of JFC 1.1.1 (included in Java 1.2.2 and
 later), Sun provides classes for basic HTML parsing and display that
 shield Java programmers from most of the tribulations of working with raw
 HTML. The javax.swing.text.html.parser
 package can read HTML documents in more or less their full, nonstandard
 atrocity, while the javax.swing.text.html package can render basic
 HTML in JFC-based applications.
HTML on Components

Most text-based Swing components, such as labels, buttons,
 menu items, tabbed panes, and tool tips, can have their text specified
 as HTML. The component will display it appropriately. If you want the
 label on a JButton to include bold,
 italic, and plain text, the simplest way is to write the label in HTML
 directly in the source code like this:
JButton jb = new JButton("<html><i>Hello World!</i></html>");
The same technique works for JFC-based labels, menu items, tabbed
 panes, and tool tips. Example
 8-1 and Figure 8-1
 show an applet with a multiline JLabel that uses HTML.
Example 8-1. Including HTML in a JLabel
import javax.swing.*;

public class HTMLLabelApplet extends JApplet {

 public void init() {

 JLabel theText = new JLabel(
 "<html>Hello! This is a multiline label with bold "
 + "and <i>italic</i> text. <P> "
 + "It can use paragraphs, horizontal lines, <hr> "
 + "colors "
 + "and most of the other basic features of HTML 3.2</html>");

 this.getContentPane().add(theText);

 }

}

[image: An HTML label]

Figure 8-1. An HTML label

You can actually go pretty far with this. Almost all HTML tags are
 supported, at least partially, including IMG and the various table tags. The only
 completely unsupported HTML 3.2 tags are <APPLET>, <PARAM>, <MAP>, <AREA>, <LINK>, <SCRIPT>, and <STYLE>. The various frame tags
 (technically not part of HTML 3.2, though widely used and implemented)
 are also unsupported. In addition, the various new tags introduced in
 HTML 4.0 such as BDO, BUTTON, LEGEND, and TFOOT, are unsupported.
Furthermore, there are some limitations on other common tags.
 First of all, relative URLs in attribute values are not resolved because
 there's no page for them to be relative to. This most commonly affects
 the SRC attribute of the IMG element. The simplest way around this is
 to store the images in the same JAR archive as the applet or application
 and load them from an absolute jar URL. Links will
 appear as blue underlined text as most users are accustomed to, but
 nothing happens when you click on one. Forms are rendered, but users
 can't type input or submit them. Some CSS Level 1 properties such as
 font-size are supported through the
 style attribute, but STYLE tags and external stylesheets are not.
 In brief, the HTML support is limited to static text and images. After
 all, we're only talking about labels, menu items, and other simple
 components.

JEditorPane

 If you need a more interactive, complete implementation of
 HTML 3.2, you can use a javax.swing.JEditorPane. This class provides
 an even more complete HTML 3.2 renderer that can handle frames, forms,
 hyperlinks, and parts of CSS Level 1. The JEditorPane class also supports plain text and
 basic RTF, though the emphasis in this book will be on using it to
 display HTML.
JEditorPane supports HTML in a
 fairly intuitive way. You simply feed its constructor a URL or a large
 string containing HTML, then display it like any other component.
 There are four constructors in this class:
public JEditorPane()
public JEditorPane(URL initialPage) throws IOException
public JEditorPane(String url) throws IOException
public JEditorPane(String mimeType, String text)
The noargs constructor simply creates a JEditorPane with no initial data. You can
 change this later with the setPage()
 or setText() methods:
public void setPage(URL page) throws IOException
public void setPage(String url) throws IOException
public void setText(String html)
Example 8-2 shows how to
 use this constructor to display a web page. JEditorPane is placed inside a JScrollPane to add scrollbars; JFrame provides
 a home for the JScrollPane. Figure 8-2 shows this program
 displaying the O'Reilly home page.
Example 8-2. Using a JEditorPane to display a web page
import javax.swing.text.*;
import javax.swing.*;
import java.io.*;
import java.awt.*;

public class OReillyHomePage {

 public static void main(String[] args) {

 JEditorPane jep = new JEditorPane();
 jep.setEditable(false);

 try {
 jep.setPage("http://www.oreilly.com");
 }
 catch (IOException ex) {
 jep.setContentType("text/html");
 jep.setText("<html>Could not load http://www.oreilly.com </html>");
 }

 JScrollPane scrollPane = new JScrollPane(jep);
 JFrame f = new JFrame("O'Reilly & Associates");
 f.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 f.setContentPane(scrollPane);
 f.setSize(512, 342);
 f.show();

 }

}

[image: The O'Reilly home page shown in a JEditorPane]

Figure 8-2. The O'Reilly home page shown in a JEditorPane

Figure 8-2 shows how
 good (or bad) Swing really is at displaying HTML. On the whole, it
 correctly renders this page containing tables, images, links, colors,
 fonts, and more with almost no effort from the programmer. However, it
 has some trouble with table widths, and there are a number of artifacts
 I can't explain. Generally, the simpler and more basic the page, the
 better Swing renders it.
What is missing, though, is precisely what's not obvious from this
 static image: the activity. The links are blue and underlined, but
 clicking on one won't change the page that's displayed. JavaScript and
 applets will not run. Shockwave animations and QuickTime movies won't
 play. Password-protected web pages will be off-limits because there's no
 way to provide a username and password. You can add all this yourself,
 but it will require extra code to recognize the relevant parts of the
 HTML and behave accordingly. Different active content requires different
 levels of support. Supporting hypertext linking, for example, is fairly
 straightforward, as we'll explore later. Applets aren't that hard to add
 either, mostly requiring you to simply parse the HTML to find the tags
 and parameters and provide an instance of the AppletContext interface. Adding JavaScript is
 only a little harder, provided that someone has already written a
 JavaScript interpreter you can use. Fortunately, the Mozilla Project has
 written the Open Source Rhino (http://www.mozilla.org/rhino/) JavaScript interpreter,
 which you can use in your own work. Apple's QuickTime for Java (http://www.apple.com/quicktime/qtjava/) makes QuickTime
 support almost a no-brainer on Mac and Windows. (A Unix version is
 sorely lacking, though.) I'm not going to discuss all (or even most) of
 these in this chapter or this book. Nonetheless, they're available if
 you need them.
The second JEditorPane
 constructor accepts a URL object as
 an argument. It connects to the specified URL, downloads the page it
 finds, and attempts to display it. If this attempt fails, an IOException is thrown. For example:
JFrame f = new JFrame("O'Reilly & Associates");

try {
 URL u = new URL("http://www.oreilly.com");
 JEditorPane jep = new JEditorPane(u);
 jep.setEditable(false);
 JScrollPane scrollPane = new JScrollPane(jep);
 f.setContentPane(scrollPane);
}
catch (IOException ex) {
 f.getContentPane().add(
 new Label("Could not load http://www.oreilly.com"));
}

f.setSize(512, 342);
f.show();
The third JEditorPane
 constructor is almost identical to the second except that it takes a
 String form of the URL rather than a
 URL object as an argument. One of the IOExceptions it can throw is a MalformedURLException if it doesn't recognize
 the protocol. Otherwise, its behavior is the same as the second
 constructor. For example:
try {
 JEditorPane jep = new JEditorPane("http://www.oreilly.com");
 jep.setEditable(false);
 JScrollPane scrollPane = new JScrollPane(jep);
 f.setContentPane(scrollPane);
}
catch (IOException ex) {
 f.getContentPane().add(
 new Label("Could not load http://www.oreilly.com"));
}
Neither of these constructors requires you to call setText() or setPage(), since that information is provided
 in the constructor. However, you can still call these methods to change
 the page or text that's displayed.
Constructing HTML User Interfaces on the Fly

 The fourth JEditorPane constructor does not connect to
 a URL. Rather, it gets its data directly from the second argument. The
 MIME type of the data is determined by the first argument. For
 example:
JEditorPane jep = new JEditorPane("text/html",
 "<html><h1>Hello World!</h1> <h2>Goodbye World!</h2></html>");
This may be useful when you want to display HTML created
 programmatically or read from somewhere other than a URL. Example 8-3 shows a program that
 calculates the first 50 Fibonacci numbers and then displays them in an
 HTML ordered list. Figure
 8-3 shows the output.
Example 8-3. Fibonacci sequence displayed in HTML
import javax.swing.text.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.awt.*;

public class Fibonacci {

 public static void main(String[] args) {

 StringBuffer result =
 new StringBuffer("<html><body><h1>Fibonacci Sequence</h1>");

 long f1 = 0;
 long f2 = 1;

 for (int i = 0; i < 50; i++) {
 result.append("");
 result.append(f1);
 long temp = f2;
 f2 = f1 + f2;
 f1 = temp;
 }

 result.append("</body></html>");

 JEditorPane jep = new JEditorPane("text/html", result.toString());
 jep.setEditable(false);

 JScrollPane scrollPane = new JScrollPane(jep);
 JFrame f = new JFrame("Fibonacci Sequence");
 f.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 f.setContentPane(scrollPane);
 f.setSize(512, 342);
 EventQueue.invokeLater(new FrameShower(f));

 }

 // This inner class avoids a really obscure race condition.
 // See http://java.sun.com/developer/JDCTechTips/2003/tt1208.html#1
 private static class FrameShower implements Runnable {

 private final Frame frame;

 FrameShower(Frame frame) {
 this.frame = frame;
 }

 public void run() {
 frame.setVisible(true);
 }

 }

}

[image: The Fibonacci sequence displayed as HTML using a JEditorPane]

Figure 8-3. The Fibonacci sequence displayed as HTML using a
 JEditorPane

The significance of this should be apparent. Your programs now
 have access to a very powerful styled text engine. That the format
 used on the backend is HTML is a nice fringe benefit. It means you can
 use a familiar, easy-to-write format to create a user interface that
 uses styled text. You don't have quite all the power of QuarkXPress
 here (nor should you, since HTML doesn't have it), but this is more
 than adequate for 99% of text display needs, whether those needs are
 simple program output, help files, database reports, or something more
 complex.

Handling Hyperlinks

When the user clicks on a link in a noneditable JEditorPane, the pane fires a HyperlinkEvent. As you might guess, this is
 responded to by any registered HyperlinkListener objects. This follows the same variation of the
 Observer design pattern used for AWT events and JavaBeans. The
 javax.swing.event.HyperlinkListener
 interface defines a single method, hyperlinkUpdate():
public void hyperlinkUpdate(HyperlinkEvent evt)
Inside this method, you'll place the code that responds to the
 HyperlinkEvent. The HyperlinkEvent object passed to this method
 contains the URL of the event, which is returned by its getURL() method:
public URL getURL()
HyperlinkEvents are fired not
 just when the user clicks the link, but also when the mouse enters or
 exits the link area. Thus, you'll want to check the type of the event
 before changing the page with the getEventType() method:
public HyperlinkEvent.EventType getEventType()
This will return one of the three mnemonic constants HyperlinkEvent.EventType.EXITED, HyperlinkEvent.EventTypeENTERED, or HyperlinkEvent.EventType.ACTIVATED. These
 are not numbers but static instances of the EventType inner class in the HyperlinkEvent class. Using these instead of
 integer constants allows for more careful compile-time type
 checking.
Example 8-4 is an
 implementation of the HyperLinkListener interface that checks the
 event fired and, if it's an activated event, switches to the page in
 the link. A reference to the JEditorPane is stored in a private field in
 the class so that a callback to make the switch can be made.
Example 8-4. A basic HyperlinkListener class
import javax.swing.*;
import javax.swing.event.*;

public class LinkFollower implements HyperlinkListener {

 private JEditorPane pane;

 public LinkFollower(JEditorPane pane) {
 this.pane = pane;
 }

 public void hyperlinkUpdate(HyperlinkEvent evt) {

 if (evt.getEventType() == HyperlinkEvent.EventType.ACTIVATED) {
 try {
 pane.setPage(evt.getURL());
 }
 catch (Exception ex) {
 pane.setText("<html>Could not load " + evt.getURL() + "</html>");
 }
 }

 }

}

Example 8-5 is a very
 simple web browser. It registers an instance of the LinkFollower class of Example 8-4 to handle any HyperlinkEvents. It doesn't have a Back
 button, a Location bar, bookmarks, or any frills at all. But it does
 let you surf the Web by following links. The remaining aspects of the
 user interface you'd want in a real browser are mostly just exercises
 in GUI programming, so I'll omit them. But it really is amazing just
 how easy Swing makes it to write a web browser.
Example 8-5. SimpleWebBrowser
import javax.swing.text.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.awt.*;

public class SimpleWebBrowser {

 public static void main(String[] args) {

 // get the first URL
 String initialPage = "http://www.cafeaulait.org/";
 if (args.length > 0) initialPage = args[0];

 // set up the editor pane
 JEditorPane jep = new JEditorPane();
 jep.setEditable(false);
 jep.addHyperlinkListener(new LinkFollower(jep));

 try {
 jep.setPage(initialPage);
 }
 catch (IOException ex) {
 System.err.println("Usage: java SimpleWebBrowser url");
 System.err.println(ex);
 System.exit(-1);
 }

 // set up the window
 JScrollPane scrollPane = new JScrollPane(jep);
 JFrame f = new JFrame("Simple Web Browser");
 f.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 f.setContentPane(scrollPane);
 f.setSize(512, 342);
 EventQueue.invokeLater(new FrameShower(f));

 }

 // Helps avoid a really obscure deadlock condition.
 // See http://java.sun.com/developer/JDCTechTips/2003/tt1208.html#1
 private static class FrameShower implements Runnable {

 private final Frame frame;

 FrameShower(Frame frame) {
 this.frame = frame;
 }

 public void run() {
 frame.setVisible(true);
 }

 }

}

The one thing this browser doesn't do is follow links to named
 anchors inside the body of a particular HTML page. There is a
 protected scrollToReference()
 method in JEditorPane that can find
 the specified named anchor in the currently displayed HTML document
 and reposition the pane at that point; you can use this method to add
 this functionality if you so desire:
protected void scrollToReference(String reference)

Reading HTML Directly

The JEditorPane class mostly assumes that you're going to provide
 either a URL or the string form of
 a URL and let it handle all the details of retrieving the data from
 the network. However, it contains one method that allows you to read
 HTML directly from an input stream. That method is read():
public void read(InputStream in, Object document) throws IOException
This method may be useful if you need to read HTML from a chain
 of filter streams; for instance, unzipping it before you read it. It
 could also be used when you need to perform some custom handshaking
 with the server, such as providing a username and password, rather
 than simply letting the default connection take place.
The first argument is the stream from which the HTML will be
 read. The second argument should be an instance of javax.swing.text.html.HTMLDocument. (You can
 use another type, but if you do, the JEditorPane will treat the stream as plain
 text rather than HTML.) Although you could use the HTMLDocument() noargs constructor to create
 the HTMLDocument object, the
 document it creates is missing a lot of style details. You're better
 off letting a javax.swing.text.html.HTMLEditorKit create
 the document for you. You get an HTMLEditorKit by passing the MIME type you
 want to edit (text/html in this case) to the JEditorPane getEditorKitForContentType() method like
 this:
EditorKit htmlKit = jep.getEditorKitForContentType("text/html");
Finally, before reading from the stream, you have to use the
 JEditorPane's setEditorKit() method to install a javax.swing.text.html.HTMLEditorKit. For
 example:
jep.setEditorKit(htmlKit);
This code fragment uses these techniques to load the web page at
 http://www.elharo.com. Here the stream comes
 from a URL anyway, so this is really more trouble than it's worth
 compared to the alternative. However, this approach would also allow
 you to read from a gzipped file, a file on the local drive, data
 written by another thread, a byte array, or anything else you can hook
 a stream to:
JEditorPane jep = new JEditorPane();
jep.setEditable(false);
EditorKit htmlKit = jep.getEditorKitForContentType("text/html");
HTMLDocument doc = (HTMLDocument) htmlKit.createDefaultDocument();
jep.setEditorKit(htmlKit);

try {
 URL u = new URL("http://www.elharo.com");
 InputStream in = u.openStream();
 jep.read(in, doc);
}
catch (IOException ex) {
 System.err.println(ex);
}

JScrollPane scrollPane = new JScrollPane(jep);
JFrame f = new JFrame("Macfaq");
f.setContentPane(scrollPane);
f.setSize(512, 342);
EventQueue.invokeLater(new FrameShower(f));
This would also be useful if you need to interpose your program
 in the stream to perform some sort of filtering. For example, you
 might want to remove IMG tags from
 the file before displaying it. The methods of the next section can
 help you do this.

Parsing HTML

 Sometimes you want to read HTML, looking for information
 without actually displaying it on the screen. For instance, more than
 one author I know has written a "book ticker" program to track the
 hour-by-hour progress of their books in the Amazon.com bestseller list.
 The hardest part of this program isn't retrieving the HTML. It's reading
 through the HTML to find the one line that contains the book's ranking.
 As another example, consider a Web Whacker-style program that downloads
 a web site or part thereof to a local PC with all links intact.
 Downloading the files once you have the URLs is easy. But reading
 through the document to find the URLs of the linked pages is
 considerably more complex.
Both of these examples are parsing problems. While parsing a
 clearly defined language that doesn't allow syntax errors, such as Java
 or XML, is relatively straightforward, parsing a flexible language that
 attempts to recover from errors, like HTML, is extremely difficult. It's
 easier to write in HTML than it is to write in a strict language like
 XML, but it's much harder to read such a language. Ease of use for the
 page author has been favored at the cost of ease of development for the
 programmer.
Fortunately, the javax.swing.text.html and javax.swing.text.html.parser packages include
 classes that do most of the hard work for you. They're primarily
 intended for the internal use of the JEditorPane class discussed in the last
 section. Consequently, they can be a little tricky to get at. The
 constructors are often not public or hidden inside inner classes, and
 the classes themselves aren't very well documented. But once you've seen
 a few examples, they aren't hard to use.
HTMLEditorKit.Parser

 The main HTML parsing class is the inner class javax.swing.html.HTMLEditorKit.Parser:
public abstract static class HTMLEditorKit.Parser extends Object
Since this is an abstract class, the actual parsing work is
 performed by an instance of its concrete subclass javax.swing.text.html.parser.ParserDelegator:
public class ParserDelegator extends HTMLEditorKit.Parser
An instance of this class reads an HTML document from a Reader. It looks for five things in the
 document: start-tags, end-tags, empty-element tags, text, and
 comments. That covers all the important parts of a common HTML file.
 (Document type declarations and processing instructions are omitted,
 but they're rare and not very important in most HTML files, even when
 they are included.) Every time the parser sees one of these five
 items, it invokes the corresponding callback method in a particular
 instance of the javax.swing.text.html.HTMLEditorKit.ParserCallback
 class. To parse an HTML file, you write a subclass of HTMLEditorKit.ParserCallback that responds
 to text and tags as you desire. Then you pass an instance of your
 subclass to the HTMLEditorKit.Parser's parse() method, along with the Reader from which the HTML will be
 read:
public void parse(Reader in, HTMLEditorKit.ParserCallback callback,
 boolean ignoreCharacterSet) throws IOException
The third argument indicates whether you want to be notified of
 the character set of the document, assuming one is found in a META tag in the HTML header. This will
 normally be true. If it's false, then the parser will throw a javax.swing.text.ChangedCharSetException
 when a META tag in the HTML header
 is used to change the character set. This would give you an
 opportunity to switch to a different Reader that understands that character set
 and reparse the document (this time, setting ignoreCharSet to true since you already know
 the character set).
parse() is the only public
 method in the HTMLEditorKit.Parser
 class. All the work is handled inside the callback methods in the
 HTMLEditorKit.ParserCallback
 subclass. The parse() method
 simply reads from the Reader
 in until it's read the entire
 document. Every time it sees a tag, comment, or block of text, it
 invokes the corresponding callback method in the HTMLEditorKit.ParserCallback instance. If
 the Reader throws an IOException, that exception is passed along.
 Since neither the HTMLEditorKit.Parser nor the HTMLEditorKit.ParserCallback instance is
 specific to one reader, it can be used to parse multiple files simply
 by invoking parse() multiple
 times. If you do this, your HTMLEditorKit.ParserCallback class must be
 fully thread-safe, because parsing takes place in a separate thread
 and the parse() method normally
 returns before parsing is complete.
Before you can do any of this, however, you have to get your
 hands on an instance of the HTMLEditorKit.Parser class, and that's
 harder than it should be. HTMLEditorKit.Parser is an abstract class,
 so it can't be instantiated directly. Its subclass, javax.swing.text.html.parser.ParserDelegator,
 is concrete. However, before you can use it, you have to configure it
 with a DTD, using the protected static methods ParserDelegator.setDefaultDTD() and
 ParserDelegator.createDTD(
):
protected static void setDefaultDTD()
protected static DTD createDTD(DTD dtd, String name)
So to create a ParserDelegator, you first need to have an
 instance of javax.swing.text.html.parser.DTD. This class
 represents a Standardized General Markup Language (SGML) document type
 definition. The DTD class has a
 protected constructor and many protected methods that subclasses can
 use to build a DTD from scratch, but this is an API that only an SGML
 expert could be expected to use. The normal way DTDs are created is by
 reading the text form of a standard DTD published by someone like the
 W3C. You should be able to get a DTD for HTML by using the DTDParser class to parse the W3C's published
 HTML DTD. Unfortunately, the DTDParser class isn't included in the
 published Swing API, so you can't. Thus, you're going to need to go
 through the back door to create an HTMLEditorKit.Parser instance. What we'll do
 is use the HTMLEditorKit.Parser.getParser(
) method instead, which ultimately returns a ParserDelegator after properly initializing
 the DTD for HTML 3.2:
protected HTMLEditorKit.Parser getParser()
Since this method is protected, we'll simply subclass HTMLEditorKit and override it with a public
 version, as Example 8-6
 demonstrates.
Example 8-6. This subclass just makes the getParser() method
 public
import javax.swing.text.html.*;

public class ParserGetter extends HTMLEditorKit {

 // purely to make this method public
 public HTMLEditorKit.Parser getParser(){
 return super.getParser();
 }

}

Now that you've got a way to get a parser, you're ready to parse
 some documents. This is accomplished through the parse() method of HTMLEditorKit.Parser:
public abstract void parse(Reader input, HTMLEditorKit.ParserCallback
 callback, boolean ignoreCharSet) throws IOException
The Reader is
 straightforward. Simply chain an InputStreamReader to the stream reading the
 HTML document, probably one returned by the openStream() method of java.net.URL. For the third argument, you
 can pass true to ignore encoding issues (this generally works only if
 you're pretty sure you're dealing with ASCII text) or false if you
 want to receive a ChangedCharSetException when the document
 has a META tag indicating the
 character set. The second argument is where the action is. You're
 going to write a subclass of HTMLEditorKit.ParserCallback that is
 notified of every start-tag, end-tag, empty-element tag, text,
 comment, and error that the parser encounters.

HTMLEditorKit.ParserCallback

 The ParserCallback
 class is a public inner class inside javax.swing.text.html.HTMLEditorKit:
public static class HTMLEditorKit.ParserCallback extends Object
It has a single, public noargs constructor:
public HTMLEditorKit.ParserCallback()
However, you probably won't use this directly because the
 standard implementation of this class does nothing. It exists to be
 subclassed. It has six callback methods that do nothing. You will
 override these methods to respond to specific items seen in the input
 stream as the document is parsed:
public void handleText(char[] text, int position)
public void handleComment(char[] text, int position)
public void handleStartTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position)
public void handleEndTag(HTML.Tag tag, int position)
public void handleSimpleTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position)
public void handleError(String errorMessage, int position)
There's also a flush()
 method you use to perform any final cleanup. The parser invokes this
 method once after it's finished parsing the document:
public void flush() throws BadLocationException
Let's begin with a simple example. Suppose you want to write a
 program that strips out all the tags and comments from an HTML
 document and leaves only the text. You would write a subclass of
 HTMLEditorKit.ParserCallback that
 overrides the handleText() method
 to write the text on a Writer. You
 would leave the other methods alone. Example 8-7 demonstrates.
Example 8-7. TagStripper
import javax.swing.text.html.*;
import java.io.*;

public class TagStripper extends HTMLEditorKit.ParserCallback {

 private Writer out;

 public TagStripper(Writer out) {
 this.out = out;
 }

 public void handleText(char[] text, int position) {
 try {
 out.write(text);
 out.flush();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }

}

Now let's suppose you want to use this class to actually strip
 the tags from a URL. You begin by retrieving a parser using Example 8-5s ParserGetter class:
ParserGetter kit = new ParserGetter();
HTMLEditorKit.Parser parser = kit.getParser();
Next, construct an instance of your callback class like
 this:
HTMLEditorKit.ParserCallback callback
 = new TagStripper(new OutputStreamWriter(System.out));
Then you get a stream you can read the HTML document from. For
 example:
try {
 URL u = new URL("http://www.oreilly.com");
 InputStream in = new BufferedInputStream(u.openStream());
 InputStreamReader r = new InputStreamReader(in);
Finally, you pass the Reader
 and the HTMLEditorKit.ParserCallback to the HTMLEditorKit.Parser's parse() method, like this:
 parser.parse(r, callback, false);
}
catch (IOException ex) {
 System.err.println(ex);
}
There are a couple of details about the parsing process that are
 not obvious. First, the parser parses in a separate thread. Therefore,
 you should not assume that the document has been parsed when the
 parse() method returns. If you're
 using the same HTMLEditorKit.ParserCallback object for two
 separate parses, you need to make all your callback methods
 thread-safe.
Second, the parser actually skips some of the data in the input.
 In particular, it normalizes and strips whitespace. If the input
 document contains seven spaces in a row, the parser will convert that
 to a single space. Carriage returns, linefeeds, and tabs are all
 converted to a single space, so you lose line breaks. Furthermore,
 most text elements are stripped of all leading
 and trailing whitespace. Elements that contain nothing but space are
 eliminated completely. Thus, suppose the input document contains this
 content:
<H1> Here's the Title </H1>

<P> Here's the text </P>
What actually comes out of the tag stripper is:
Here's the TitleHere's the text
The single exception is the PRE element, which maintains all whitespace
 in its contents unedited. Short of implementing your own parser, I
 don't know of any way to retain all the stripped space. But you can
 include the minimum necessary line breaks and whitespace by looking at
 the tags as well as the text. Generally, you expect a single break in
 HTML when you see one of these tags:

<TR>
You expect a double break (paragraph break) when you see one of
 these tags:
<P>
</H1> </H2> </H3> </H4> </H5> </H6>
<HR>
<DIV>
 </DL>
To include line breaks in the output, you have to look at each
 tag as it's processed and determine whether it falls in one of these
 sets. This is straightforward because the first argument passed to
 each of the tag callback methods is an HTML.Tag object.

HTML.Tag

Tag is a public inner class in the javax.swing.text.html.HTML class.
public static class HTML.Tag extends Object
It has these four methods:
public boolean isBlock()
public boolean breaksFlow()
public boolean isPreformatted()
public String toString()
The breaksFlow() method returns true if the tag should cause a single
 line break. The isBlock()
 method returns true if the tag should cause a double
 line break. The isPreformatted()
 method returns true if the tag indicates that
 whitespace should be preserved. This makes it easy to provide the
 necessary breaks in the output.
Chances are you'll see more tags than you'd expect when you
 parse a file. The parser inserts missing closing tags. In other words,
 if a document contains only a <P> tag, then the parser will report
 both the <P> start-tag and
 the implied </P> end-tag at
 the appropriate points in the document. Example 8-8 is a program that does
 the best job yet of converting HTML to pure text. It looks for the
 empty and end-tags, explicit or implied, and, if the tag indicates
 that line breaks are called for, inserts the necessary number of line
 breaks.
Example 8-8. LineBreakingTagStripper
import javax.swing.text.*;
import javax.swing.text.html.*;
import javax.swing.text.html.parser.*;
import java.io.*;
import java.net.*;

public class LineBreakingTagStripper
 extends HTMLEditorKit.ParserCallback {

 private Writer out;
 private String lineSeparator;

 public LineBreakingTagStripper(Writer out) {
 this(out, System.getProperty("line.separator", "\r\n"));
 }

 public LineBreakingTagStripper(Writer out, String lineSeparator) {
 this.out = out;
 this.lineSeparator = lineSeparator;
 }

 public void handleText(char[] text, int position) {
 try {
 out.write(text);
 out.flush();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }

 public void handleEndTag(HTML.Tag tag, int position) {

 try {
 if (tag.isBlock()) {
 out.write(lineSeparator);
 out.write(lineSeparator);
 }
 else if (tag.breaksFlow()) {
 out.write(lineSeparator);
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }
 public void handleSimpleTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {

 try {
 if (tag.isBlock()) {
 out.write(lineSeparator);
 out.write(lineSeparator);
 }
 else if (tag.breaksFlow()) {
 out.write(lineSeparator);
 }
 else {
 out.write(' ');
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

}

Most of the time, of course, you want to know considerably more
 than whether a tag breaks a line. You want to know what tag it is, and
 behave accordingly. For instance, if you were writing a full-blown
 HTML-to-TeX or HTML-to-RTF converter, you'd want to handle each tag
 differently. You test the type of tag by comparing it against these 73
 mnemonic constants from the HTML.Tag class:
	HTML.Tag.A
	 HTML.Tag.FRAMESET
	 HTML.Tag.PARAM

	HTML.Tag.ADDRESS
	 HTML.Tag.H1

	 HTML.Tag.PRE

	HTML.Tag.APPLET
	 HTML.Tag.H2

	 HTML.Tag.SAMP

	HTML.Tag.AREA
	 HTML.Tag.H3

	 HTML.Tag.SCRIPT

	HTML.Tag.B
	 HTML.Tag.H4

	 HTML.Tag.SELECT

	HTML.Tag.BASE
	 HTML.Tag.H5

	 HTML.Tag.SMALL

	HTML.Tag.BASEFONT
	 HTML.Tag.H6

	 HTML.Tag.STRIKE

	HTML.Tag.BIG
	 HTML.Tag.HEAD

	 HTML.Tag.S

	HTML.Tag.BLOCKQUOTE
	 HTML.Tag.HR

	 HTML.Tag.STRONG

	HTML.Tag.BODY
	 HTML.Tag.HTML

	 HTML.Tag.STYLE

	HTML.Tag.BR
	 HTML.Tag.I

	 HTML.Tag.SUB

	HTML.Tag.CAPTION
	 HTML.Tag.IMG

	 HTML.Tag.SUP

	HTML.Tag.CENTER
	 HTML.Tag.INPUT
	 HTML.Tag.TABLE

	HTML.Tag.CITE
	 HTML.Tag.ISINDEX
	 HTML.Tag.TD

	HTML.Tag.CODE
	 HTML.Tag.KBD

	 HTML.Tag.TEXTAREA

	HTML.Tag.DD
	 HTML.Tag.LI

	 HTML.Tag.TH

	HTML.Tag.DFN
	 HTML.Tag.LINK

	 HTML.Tag.TR

	HTML.Tag.DIR
	 HTML.Tag.MAP

	 HTML.Tag.TT

	HTML.Tag.DIV
	 HTML.Tag.MENU

	 HTML.Tag.U

	HTML.Tag.DL
	 HTML.Tag.META

	 HTML.Tag.UL

	HTML.Tag.DT
	 HTML.Tag.NOFRAMES
	 HTML.Tag.VAR

	HTML.Tag.EM
	 HTML.Tag.OBJECT
	 HTML.Tag.IMPLIED

	HTML.Tag.FONT
	 HTML.Tag.OL

	 HTML.Tag.COMMENT

	HTML.Tag.FORM
	 HTML.Tag.OPTION
	
	HTML.Tag.FRAME
	 HTML.Tag.P

	

These are not int constants.
 They are object constants to allow compile-time type checking.
 You saw this trick once before in the javax.swing.event.HyperlinkEvent class. All
 HTML.Tag elements passed to your
 callback methods by the HTMLEditorKit.Parser will be one of these 73
 constants. They are not just the same as these 73
 objects; they are these 73 objects. There are
 exactly 73 objects in this class; no more, no less. You can test
 against them with == rather than equals(
).
For example, let's suppose you need a program that outlines HTML
 pages by extracting their H1
 through H6 headings while ignoring
 the rest of the document. It organizes the outline as nested lists in
 which each H1 heading is at the top
 level, each H2 heading is one level
 deep, and so on. You would write an HTMLEditorKit.ParserCallback subclass that
 extracted the contents of all H1,
 H2, H3, H4,
 H5, and H6 elements while ignoring all others, as
 Example 8-9
 demonstrates.
Example 8-9. Outliner
import javax.swing.text.*;
import javax.swing.text.html.*;
import javax.swing.text.html.parser.*;
import java.io.*;
import java.net.*;
import java.util.*;

public class Outliner extends HTMLEditorKit.ParserCallback {

 private Writer out;
 private int level = 0;
 private boolean inHeader=false;
 private static String lineSeparator
 = System.getProperty("line.separator", "\r\n");

 public Outliner(Writer out) {
 this.out = out;
 }

 public void handleStartTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {

 int newLevel = 0;
 if (tag == HTML.Tag.H1) newLevel = 1;
 else if (tag == HTML.Tag.H2) newLevel = 2;
 else if (tag == HTML.Tag.H3) newLevel = 3;
 else if (tag == HTML.Tag.H4) newLevel = 4;
 else if (tag == HTML.Tag.H5) newLevel = 5;
 else if (tag == HTML.Tag.H6) newLevel = 6;
 else return;

 this.inHeader = true;
 try {
 if (newLevel > this.level) {
 for (int i = 0; i < newLevel-this.level; i++) {
 out.write("" + lineSeparator + "");
 }
 }
 else if (newLevel < this.level) {
 for (int i =0; i < this.level-newLevel; i++) {
 out.write(lineSeparator + "" + lineSeparator);
 }
 out.write(lineSeparator + "");
 }
 else {
 out.write(lineSeparator + "");
 }
 this.level = newLevel;
 out.flush();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

 public void handleEndTag(HTML.Tag tag, int position) {

 if (tag == HTML.Tag.H1 || tag == HTML.Tag.H2
 || tag == HTML.Tag.H3 || tag == HTML.Tag.H4
 || tag == HTML.Tag.H5 || tag == HTML.Tag.H6) {
 inHeader = false;
 }

 // work around bug in the parser that fails to call flush
 if (tag == HTML.Tag.HTML) this.flush();

 }

 public void handleText(char[] text, int position) {

 if (inHeader) {
 try {
 out.write(text);
 out.flush();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }

 }

 public void flush() {
 try {
 while (this.level-- > 0) {
 out.write(lineSeparator + "");
 }
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 }
 }

 private static void parse(URL url, String encoding) throws IOException {
 ParserGetter kit = new ParserGetter();
 HTMLEditorKit.Parser parser = kit.getParser();
 InputStream in = url.openStream();
 InputStreamReader r = new InputStreamReader(in, encoding);
 HTMLEditorKit.ParserCallback callback = new Outliner
 (new OutputStreamWriter(System.out));
 parser.parse(r, callback, true);
 }

 public static void main(String[] args) {

 ParserGetter kit = new ParserGetter();
 HTMLEditorKit.Parser parser = kit.getParser();

 String encoding = "ISO-8859-1";
 URL url = null;
 try {
 url = new URL(args[0]);
 InputStream in = url.openStream();
 InputStreamReader r = new InputStreamReader(in, encoding);
 // parse once just to detect the encoding
 HTMLEditorKit.ParserCallback doNothing
 = new HTMLEditorKit.ParserCallback();
 parser.parse(r, doNothing, false);
 }
 catch (MalformedURLException ex) {
 System.out.println("Usage: java Outliner url");
 return;
 }
 catch (ChangedCharSetException ex) {
 String mimeType = ex.getCharSetSpec();
 encoding = mimeType.substring(mimeType.indexOf("=") + 1).trim();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 catch (ArrayIndexOutOfBoundsException ex) {
 System.out.println("Usage: java Outliner url");
 return;
 }

 try {
 parse(url, encoding);
 }
 catch(IOException ex) {
 System.err.println(ex);
 }

 }

}

When a heading start-tag is encountered by the handleStartTag() method, the necessary number of , , and tags are emitted. Furthermore,
 the inHeading flag is set to true
 so that the handleText() method
 will know to output the contents of the heading. All start-tags except
 the six levels of headers are simply ignored. The handleEndTag() method likewise considers heading tags only by
 comparing the tag it receives with the seven tags it's interested in.
 If it sees a heading tag, it sets the inHeading flag to false again so that body
 text won't be emitted by the handleText(
) method. If it sees the end of the document via an </html> tag, it flushes out the
 document. Otherwise, it does nothing. The end result is a nicely
 formatted group of nested, unordered lists that outlines the document.
 For example, here's the output of running it against http://www.cafeconleche.org:
% java Outliner http://www.cafeconleche.org/

 Cafe con Leche XML News and Resources
Quote of the Day
Today's News
Recommended Reading
Recent News
XML Overview
Tutorials
Projects
Seminar Notes
Random Notes
Specifications
Books
XML Resources
Development Tools
Validating Parsers
Non-validating Parsers
Online Validators and Syntax Checkers
Formatting Engines
Browsers
Class Libraries
Editors
XML Applications
External Sites

Attributes

 When processing an HTML file, you often need to look at
 the attributes as well as the tags. The second argument to the
 handleStartTag() and handleSimpleTag() callback methods is an
 instance of the javax.swing.text.MutableAttributeSet class.
 This object allows you to see what attributes are attached to a
 particular tag. MutableAttributeSet
 is a subinterface of the javax.swing.text.AttributeSet interface:
public abstract interface MutableAttributeSet extends AttributeSet
Both AttributeSet and
 MutableAttributeSet represent a
 collection of attributes on an HTML tag. The difference is that the
 MutableAttributeSet interface
 declares methods to add attributes to, remove attributes from, and
 inspect the attributes in the set. The attributes themselves are
 represented as pairs of java.lang.Object objects, one for the name
 of the attribute and one for the value. The AttributeSet interface declares these methods:
public int getAttributeCount()
public boolean isDefined(Object name)
public boolean containsAttribute(Object name, Object value)
public boolean containsAttributes(AttributeSet attributes)
public boolean isEqual(AttributeSet attributes)
public AttributeSet copyAttributes()
public Enumeration getAttributeNames()
public Object getAttribute(Object name)
public AttributeSet getResolveParent()
Most of these methods are self-explanatory. The getAttributeCount() method returns the
 number of attributes in the set. The isDefined() method returns true if an
 attribute with the specified name is in the set, false otherwise. The
 containsAttribute(Object name, Object
 value) method returns true if an attribute with the given
 name and value is in the set. The containsAttributes(AttributeSet attributes)
 method returns true if all the attributes in the specified set are in
 this set with the same values; in other words, if the argument is a
 subset of the set on which this method is invoked. The isEqual() method returns true if the
 invoking AttributeSet is the same
 as the argument. The copyAttributes(
) method returns a clone of the current AttributeSet. The getAttributeNames() method returns a
 java.util.Enumeration of all the
 names of the attributes in the set. Once you know the name of one of
 the elements of the set, the getAttribute(
) method returns its value. Finally, the getResolveParent() method returns the
 parent AttributeSet, which will be
 searched for attributes that are not found in the current set. For
 example, given an AttributeSet,
 this method prints the attributes in name=value format:
private void listAttributes(AttributeSet attributes) {
 Enumeration e = attributes.getAttributeNames();
 while (e.hasMoreElements()) {
 Object name = e.nextElement();
 Object value = attributes.getAttribute(name);
 System.out.println(name + "=" + value);
 }
}
Although the argument and return types of these methods are
 mostly declared in terms of java.lang.Object, in practice, all values
 are instances of java.lang.String,
 while all names are instances of the public inner class javax.swing.text.html.HTML.Attribute. Just
 as the HTML.Tag class predefines 73
 HTML tags and uses a private constructor to prevent the creation of
 others, so too does the HTML.Attribute class predefine 80 standard HTML attributes (HTML.Attribute.ACTION, HTML.Attribute.ALIGN, HTML.Attribute.ALINK, HTML.Attribute.ALT, etc.) and prohibits the
 construction of others via a nonpublic constructor. Generally, this
 isn't an issue, since you mostly use getAttribute(), containsAttribute(), and so forth only with
 names returned by getAttributeNames(
). The 80 predefined attributes are:
	 HTML.Attribute.ACTION

	 HTML.Attribute.DUMMY
	 HTML.Attribute.PROMPT

	 HTML.Attribute.ALIGN
	 HTML.Attribute.ENCTYPE

	 HTML.Attribute.REL

	 HTML.Attribute.ALINK
	 HTML.Attribute.ENDTAG

	 HTML.Attribute.REV

	 HTML.Attribute.ALT
	 HTML.Attribute.FACE
	 HTML.Attribute.ROWS

	 HTML.Attribute.ARCHIVE

	 HTML.Attribute.FRAMEBORDER

	 HTML.Attribute.ROWSPAN

	 HTML.Attribute.BACKGROUND

	 HTML.Attribute.HALIGN

	 HTML.Attribute.
 SCROLLING

	 HTML.Attribute.BGCOLOR

	 HTML.Attribute.HEIGHT

	 HTML.Attribute.SELECTED

	 HTML.Attribute.BORDER

	 HTML.Attribute.HREF
	 HTML.Attribute.SHAPE

	 HTML.Attribute.
 CELLPADDING
	 HTML.Attribute.HSPACE

	 HTML.Attribute.SHAPES

	 HTML.Attribute.
 CELLSPACING
	 HTML.Attribute.HTTPEQUIV

	 HTML.Attribute.SIZE

	 HTML.Attribute.CHECKED

	 HTML.Attribute.ID
	 HTML.Attribute.SRC

	 HTML.Attribute.CLASS
	 HTML.Attribute.ISMAP
	 HTML.Attribute.STANDBY

	 HTML.Attribute.CLASSID

	 HTML.Attribute.LANG
	 HTML.Attribute.START

	 HTML.Attribute.CLEAR
	 HTML.Attribute.LANGUAGE

	 HTML.Attribute.STYLE

	 HTML.Attribute.CODE
	 HTML.Attribute.LINK
	 HTML.Attribute.TARGET

	 HTML.Attribute.CODEBASE

	 HTML.Attribute.LOWSRC

	 HTML.Attribute.TEXT

	 HTML.Attribute.CODETYPE

	 HTML.Attribute.
 MARGINHEIGHT
	 HTML.Attribute.TITLE

	 HTML.Attribute.COLOR
	 HTML.Attribute.MARGINWIDTH

	 HTML.Attribute.TYPE

	 HTML.Attribute.COLS
	 HTML.Attribute.MAXLENGTH

	 HTML.Attribute.USEMAP

	 HTML.Attribute.COLSPAN

	 HTML.Attribute.METHOD

	 HTML.Attribute.VALIGN

	 HTML.Attribute.COMMENT

	 HTML.Attribute.MULTIPLE

	 HTML.Attribute.VALUE

	 HTML.Attribute.COMPACT

	 HTML.Attribute.N
	 HTML.Attribute.
 VALUETYPE

	 HTML.Attribute.CONTENT

	 HTML.Attribute.NAME
	 HTML.Attribute.VERSION

	 HTML.Attribute.COORDS

	 HTML.Attribute.NOHREF

	 HTML.Attribute.VLINK

	 HTML.Attribute.DATA
	 HTML.Attribute.NORESIZE

	 HTML.Attribute.VSPACE

	 HTML.Attribute.DECLARE

	 HTML.Attribute.NOSHADE

	 HTML.Attribute.WIDTH

	 HTML.Attribute.DIR
	 HTML.Attribute.NOWRAP

	

The MutableAttributeSet
 interface adds six methods to add attributes to and
 remove attributes from the set:
public void addAttribute(Object name, Object value)
public void addAttributes(AttributeSet attributes)
public void removeAttribute(Object name)
public void removeAttributes(Enumeration names)
public void removeAttributes(AttributeSet attributes)
public void setResolveParent(AttributeSet parent)
Again, the values are strings and the names are HTML.Attribute objects.
One possible use for all these methods is to modify documents
 before saving or displaying them. For example, most web browsers let
 you save a page on your hard drive as either HTML or text. However,
 both these formats lose track of images and relative links. The
 problem is that most pages are full of relative URLs, and these all
 break when you move the page to your local machine. Example 8-10 is an application
 called PageSaver that downloads a
 web page to a local hard drive while keeping all links intact by
 rewriting all relative URLs as absolute URLs.
The PageSaver class reads a series of URLs from the command line. It
 opens each one in turn and parses it. Every tag, text block, comment,
 and attribute is copied into a local file. However, all link
 attributes, such as SRC, LOWSRC, CODEBASE, and HREF, are remapped to an absolute URL. Note
 particularly the extensive use to which the URL and javax.swing.text classes were put; PageSaver could be rewritten with string
 replacements, but that would be considerably more complicated.
Example 8-10. PageSaver
import javax.swing.text.*;
import javax.swing.text.html.*;
import javax.swing.text.html.parser.*;
import java.io.*;
import java.net.*;
import java.util.*;

public class PageSaver extends HTMLEditorKit.ParserCallback {

 private Writer out;
 private URL base;

 public PageSaver(Writer out, URL base) {
 this.out = out;
 this.base = base;
 }

 public void handleStartTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {
 try {
 out.write("<" + tag);
 this.writeAttributes(attributes);
 // for the <APPLET> tag we may have to add a codebase attribute
 if (tag == HTML.Tag.APPLET
 && attributes.getAttribute(HTML.Attribute.CODEBASE) == null) {
 String codebase = base.toString();
 if (codebase.endsWith(".htm") || codebase.endsWith(".html")) {
 codebase = codebase.substring(0, codebase.lastIndexOf('/'));
 }
 out.write(" codebase=\"" + codebase + "\"");
 }
 out.write(">");
 out.flush();
 }
 catch (IOException ex) {
 System.err.println(ex);
 e.printStackTrace();
 }
 }

 public void handleEndTag(HTML.Tag tag, int position) {
 try {
 out.write("</" + tag + ">");
 out.flush();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }

 private void writeAttributes(AttributeSet attributes)
 throws IOException {

 Enumeration e = attributes.getAttributeNames();
 while (e.hasMoreElements()) {
 Object name = e.nextElement();
 String value = (String) attributes.getAttribute(name);
 try {
 if (name == HTML.Attribute.HREF || name == HTML.Attribute.SRC
 || name == HTML.Attribute.LOWSRC
 || name == HTML.Attribute.CODEBASE) {
 URL u = new URL(base, value);
 out.write(" " + name + "=\"" + u + "\"");
 }
 else {
 out.write(" " + name + "=\"" + value + "\"");
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(ex);
 System.err.println(base);
 System.err.println(value);
 ex.printStackTrace();
 }
 }
 }

 public void handleComment(char[] text, int position) {

 try {
 out.write("<!-- ");
 out.write(text);
 out.write(" -->");
 out.flush();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

 public void handleText(char[] text, int position) {

 try {
 out.write(text);
 out.flush();
 }
 catch (IOException ex) {
 System.err.println(ex);
 e.printStackTrace();
 }

 }

 public void handleSimpleTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {
 try {
 out.write("<" + tag);
 this.writeAttributes(attributes);
 out.write(">");
 }
 catch (IOException ex) {
 System.err.println(ex);
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 ParserGetter kit = new ParserGetter();
 HTMLEditorKit.Parser parser = kit.getParser();

 try {
 URL u = new URL(args[i]);
 InputStream in = u.openStream();
 InputStreamReader r = new InputStreamReader(in);
 String remoteFileName = u.getFile();
 if (remoteFileName.endsWith("/")) {
 remoteFileName += "index.html";
 }
 if (remoteFileName.startsWith("/")) {
 remoteFileName = remoteFileName.substring(1);
 }
 File localDirectory = new File(u.getHost());
 while (remoteFileName.indexOf('/') > -1) {
 String part = remoteFileName.substring(0, remoteFileName.
 indexOf('/'));
 remoteFileName =
 remoteFileName.substring(remoteFileName.indexOf('/')+1);
 localDirectory = new File(localDirectory, part);
 }
 if (localDirectory.mkdirs()) {
 File output = new File(localDirectory, remoteFileName);
 FileWriter out = new FileWriter(output);
 HTMLEditorKit.ParserCallback callback = new PageSaver(out, u);
 parser.parse(r, callback, false);
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 e.printStackTrace();
 }

 }

 }

}

The handleEndTag(), handleText(), and handleComment() methods simply copy their
 content from the input into the output. The handleStartTag() and handleSimpleTag() methods write their
 respective tags onto the output but also invoke the private writeAttributes() method. This method loops
 through the attributes in the set and mostly just copies them onto the
 output. However, for a few select attributes, such as SRC and HREF, which typically have URL values, it
 rewrites the values as absolute URLs. Finally, the main() method reads URLs from the command
 line, calculates reasonable names and directories for corresponding
 local files, and starts a new PageSaver for each URL.
In the first edition of this book, I included a similar program
 that downloaded the raw HTML using the URL class and parsed it manually. That
 program was about a third longer than this one and much less robust.
 For instance, it did not support frames or the LOWSRC attributes of IMG tags. It went to great effort to handle
 both quoted and unquoted attribute values and still didn't recognize
 attribute values enclosed in single quotes. By contrast, this program
 needs only one extra line of code to support each additional
 attribute. It is much more robust, much easier to understand (since
 there's not a lot of detailed string manipulation), and much easier to
 extend.
This is just one example of the various HTML filters that the
 javax.swing.text.html package makes
 easy to write. You could, for example, write a filter that
 pretty-prints the HTML by indenting the different levels of tags. You
 could write a program to convert HTML to TeX, XML, RTF, or many other
 formats. You could write a program that spiders a web site,
 downloading all linked pages—and this is just the beginning. All of
 these programs are much easier to write because Swing provides a
 simple-to-use HTML parser. All you have to do is respond to the
 individual elements and attributes that the parser discovers in the
 HTML document. The more difficult problem of parsing the document is
 removed.

Cookies

 Cookies are an atrocious hack perpetrated on the browsing
 world by Netscape. They are completely contrary to the web architecture.
 They attempt to graft state onto the deliberately stateless HTTP
 protocol. Statelessness in HTTP was not a mistake or a design flaw. It
 was a deliberate design decision that helped the Web scale to the
 enormous size it's reached today.
On the server side, cookies are never necessary and always a bad
 idea. There is always a cleaner, simpler, more scalable solution that
 does not involve cookies. Sadly, a lot of server-side developers don't
 know this and go blindly forward developing web sites that require
 client-side developers to support cookies.
Prior to Java 1.5, cookies can be supported only by direct
 manipulation of the HTTP header. When a server sets a cookie, it includes a
 Set-Cookie field like this one in the HTTP header:
Set-Cookie: user=elharo
This sends the browser a cookie with the name "user" and the value
 "elharo". The value of this field is limited to the printable ASCII
 characters (because HTTP header fields are limited to the printable
 ASCII characters). Furthermore, the names may not contain commas,
 semicolons, or whitespace.
A later version of the spec, RFC 2965, uses a Set-Cookie2 HTTP header instead. The most obvious
 difference is that this version of the cookie spec requires a version
 attribute after the name=value pair, like so:
Set-Cookie2: user=elharo; Version=1
The Version attribute simply indicates the version of the
 cookie spec in use. Version 1 and the unmarked original version zero are
 the only ones currently defined. Some servers will send both Set-Cookie
 and Set-Cookie2 headers. If so, the value in Set-Cookie2 takes
 precedence if a client understands both. Set-Cookie2 also allows cookie
 values to be quoted so they can contain internal whitespace. For
 example, this sets the cookie with the name food and the value
 "chocolate ice cream".
Set-Cookie2: food="chocolate ice cream"; Version=1
The quotes are just delimiters. They are not part of the attribute
 value. However, the attribute values are still limited to printable
 ASCII characters.
When requesting a document from the same server, the client echoes
 that cookie back in a Cookie header field in the request it sends to the
 server:
Cookie: user=elharo
If the original cookie was set by Set-Cookie2, this begins with a
 $Version attribute:
Cookie: $Version=1;user=elharo
The $ sign helps distinguish between cookie attributes and the
 main cookie name=value pair.
The client's job is simply to keep track of all the cookies it's
 been sent, and send the right ones back to the original servers at the
 right time. However, this is a little more complicated because cookies
 can have attributes identifying the expiration date, path, domain, port,
 version, and security options.
For example, by default a cookie applies to the server it came
 from. If a cookie is originally set by
 www.foo.example.com, the browser will only send the
 cookie back to www.foo.example.com. However, a site
 can also indicate that a cookie applies within an entire subdomain, not
 just at the original server. For example, this request sets a user
 cookie for the entire.foo.example.com
 domain:
Set-Cookie: user=elharo;Domain=.foo.example.com
The browser will echo this cookie back not just to
 www.foo.example.com but also to
 lothar.foo.example.com,
 eliza.foo.example.com,
 enoch.foo.example.com, and any other host somewhere
 in the foo.example.com domain. However, a
 server can only set cookies for domains it immediately
 belongs to. www.foo.example.com cannot set a cookie
 for www.oreilly.com, http://example.com, or .com, no
 matter how it sets the domain. (In practice, there have been a number of
 holes and workarounds for this, with severe negative impacts on user
 privacy.)
If the cookie was set by Set-Cookie2, the client will include the
 domain that was originally set, like so:
Cookie: $Version=1; user=elharo; $Domain=.foo.example.com
However, if it's a version zero cookie, the domain is not echoed
 back.
Beyond domains, cookies are scoped by path, so they're used for some
 directories on the server, but not all. The default scope is the
 original URL and any subdirectories. For instance, if a cookie is set
 for the URL http://www.cafeconleche.org/XOM/, the
 cookie also applies in http://www.cafeconleche.org/XOM/apidocs/, but not in
 http://www.cafeconleche.org/slides/ or http://www.cafeconleche.org/. However, the default scope
 can be changed using a Path attribute
 in the cookie. For example, this next response sends the browser a
 cookie with the name "user" and the value "elharo" that applies only
 within the server's /restricted subtree, not on the
 rest of the site:
Set-Cookie: user=elharo; $Version=1;Path=/restricted
When requesting a document in the subtree
 /restricted from the same server, the client echoes
 that cookie back. However, it does not use the cookie in other
 directories on the site. Again, if and only if the cookie was originally
 set with Set-Cookie2, the client will include the Path that was
 originally set, like so:
Cookie: user=elharo; $Version=1;$Path=/restricted
A cookie can include both a domain and a path. For instance, this
 cookie applies in the /restricted path on any
 servers within the example.com domain:
Set-Cookie2: $Version=1;user=elharo; $Path=/restricted;$Domain=.example.com
The order of the different cookie attributes doesn't matter, as
 long as they're all separated by semicolons and the cookie's own name
 and value come first. However, this isn't true when the client is
 sending the cookie back to the server. In this case, the path must
 precede the domain, like so:
Cookie: $Version=1;user=elharo; $Path=/restricted;$Domain=.foo.example.com
A version zero cookie can be set to expire at a certain
 point in time by setting the expires
 attribute to a date in the form Wdy, DD-Mon-YYYY HH:MM:SS GMT. Weekday
 and month are given as three-letter abbreviations. The rest are numeric,
 padded with initial zeros if necessary. In the pattern language used by
 java.text.SimpleDateFormat, this is
 "E, dd-MMM-yyyy k:m:s 'GMT'". For
 instance, this cookie expires at 3:23 P.M. on December 21, 2005:
Set-Cookie: user=elharo; expires=Wed, 21-Dec-2005 15:23:00 GMT
The browser should remove this cookie from its cache after that
 date has passed.
Set-Cookie2 use a Max-Age attribute that sets the cookie to expire
 after a certain number of seconds have passed instead of at a specific
 moment. For instance, this cookie expires one hour (3,600 seconds) after
 it's first set:
Set-Cookie2: user="elharo"; $Version=1;Max-Age=3600
The browser should remove this cookie from its cache after this
 amount of time has elapsed.
Because cookies can contain sensitive information such as
 passwords and session keys, some cookie transactions should be secure.
 Exactly what secure means in this context is not specified. Most of the
 time, it means using HTTPS instead of HTTP, but whatever it means, each
 cookie can have the a secure attribute with no value, like so:
Set-Cookie: key=etrogl7*;Domain=.foo.example.com; secure
Browsers are supposed to refuse to send such cookies over insecure
 channels.
Finally, in addition to path, domain, and time, version 1 cookies
 can be scoped by port. This isn't common, but clients are required to
 support it. The Port attribute
 contains a quoted list of whitespace-separated port numbers to which the
 cookie applies:
Set-Cookie2: $Version=1;user=elharo; $Path=/restricted;$Port="8080 8000"
For the response, the order is always path, domain, and port, like
 so:
Cookie: $Version=1;user=elharo; $Path=/restricted; $Domain=.foo.example.com;
$Port="8080 8000"
Multiple cookies can be set in one request by separating the
 name-value pairs with commas. For example, this Set-Cookie header assigns the cookie named
 user the value "elharo" and the cookie named zip the value "10003":
Set-Cookie: user=elharo, zip=10003
Each cookie set in this way can also contain attributes. For
 example, this Set-Cookie header
 scopes the user cookie to the path
 /restricted and the zip cookie to the path /weather:
 Set-Cookie: user=elharo; path=/restricted, zip=10003; path=/weather
I've left out a couple of less important details like comments
 that don't matter much in practice. If you're interested, complete
 details are available in RFC 2965, HTTP State Management
 Mechanism.
That's how cookies work behind the scenes. In theory, this is all
 transparent to the user. In practice, the most sophisticated users
 routinely disable, filter, or inspect cookies to protect their privacy
 and security so cookies are not guaranteed to work.
Let's wrap this all up in a neat class called Cookie , shown in Example
 8-12, with appropriate getter methods for the relevant properties
 and a factory method that parses HTTP header fields that set cookies.
 We'll need this in a minute because even as of Java 1.5 there's
 nothing like this in the standard JDK.
Example 8-11. A cookie class
package com.macfaq.http;

import java.net.URI;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;

public class Cookie {

 private String version = "0";
 private String name;
 private String value;
 private URI uri;
 private String domain;
 private Date expires;
 private String path;
 private boolean secure = false;

 private static DateFormat expiresFormat
 = new SimpleDateFormat("E, dd-MMM-yyyy k:m:s 'GMT'");

 // prevent instantiation
 private Cookie() {}

 public static Cookie bake(String header, URI uri)
 throws CookieException {

 try {
 String[] attributes = header.split(";");
 String nameValue = attributes[0];
 Cookie cookie = new Cookie();
 cookie.uri = uri;
 cookie.name = nameValue.substring(0, nameValue.indexOf('='));
 cookie.value = nameValue.substring(nameValue.indexOf('=')+1);
 cookie.path = "/";
 cookie.domain = uri.getHost();

 if (attributes[attributes.length-1].trim().equals("secure")) {
 cookie.secure = true;
 }

 for (int i=1; i < attributes.length; i++) {
 nameValue = attributes[i].trim();
 int equals = nameValue.indexOf('=');
 if (equals == -1) continue;
 String attributeName = nameValue.substring(0, equals);
 String attributeValue = nameValue.substring(equals+1);
 if (attributeName.equalsIgnoreCase("domain")) {
 String uriDomain = uri.getHost();
 if (uriDomain.equals(attributeValue)) {
 cookie.domain = attributeValue;
 }
 else {
 if (!attributeValue.startsWith(".")) {
 attributeValue = "." + attributeValue;
 }
 uriDomain = uriDomain.substring(uriDomain.indexOf('.'));
 if (!uriDomain.equals(attributeValue)) {
 throw new CookieException(
 "Server tried to set cookie in another domain");
 }
 cookie.domain = attributeValue;
 }
 }
 else if (attributeName.equalsIgnoreCase("path")) {
 cookie.path = attributeValue;
 }
 else if (attributeName.equalsIgnoreCase("expires")) {
 cookie.expires = expiresFormat.parse(attributeValue);
 }
 else if (attributeName.equalsIgnoreCase("Version")) {
 if (!"1".equals(attributeValue)) {
 throw new CookieException("Unexpected version " + attributeValue);
 }
 cookie.version = attributeValue;
 }
 }

 return cookie;
 }
 catch (Exception ex) {
 // ParseException, StringIndexOutOfBoundsException etc.
 throw new CookieException(ex);
 }

 }

 public boolean isExpired() {
 if (expires == null) return false;
 Date now = new Date();
 return now.after(expires);
 }

 public String getName() {
 return name;
 }

 public boolean isSecure() {
 return secure;
 }

 public URI getURI() {
 return uri;
 }

 public String getVersion() {
 return version;
 }

 // should this cookie be sent when retrieving the specified URI?
 public boolean matches(URI u) {

 if (isExpired()) return false;

 String path = u.getPath();
 if (path == null) path = "/";

 if (path.startsWith(this.path)) return true;

 return false;
 }

 public String toExternalForm() {
 StringBuffer result = new StringBuffer(name);
 result.append("=");
 result.append(value);
 if ("1".equals(version)) {
 result.append(" Version=1");
 }
 return result.toString();
 }
}

Prior to Java 1.5, the only way to support cookies is by direct
 inspection of the relevant HTTP headers. The URL class does not support this, but the
 URLConnection class introduced in
 Chapter 15 does. Java 1.5 adds a new java.net.CookieHandler class that makes this process somewhat easier. You
 provide a subclass of this abstract class where Java will store all
 cookies retrieved through the HTTP protocol handler. Once you've done
 this, when you access an HTTP server through a URL object and the server sends a cookie, Java
 automatically puts it in the system default cookie handler. When the
 same VM instance goes back to that server, it sends the cookie.
Warning
I'm writing this section based on betas of Java 1.5. While the
 information about how cookies are handled in HTTP should be accurate,
 it's entirely possible a few of the Java details may change by the
 time Java 1.5 is released. Be sure to compare what you read here with
 the latest documentation from Sun.

The CookieHandler class is
 summarized in Example 8-12.
 As you can see, there are two abstract methods to implement, get() and put() . When Java loads a URL from a server that sets a cookie,
 it passes the URI it was loading and the complete HTTP headers of the
 server response to the put() method.
 The handler can parse the details out of these headers and store them
 somewhere. When Java tries to load an HTTP URL from a server, it passes
 the URL and the request HTTP header to the get(
) method to see if there are any cookies in the store for that
 URL. Sadly, you have to implement the parsing and storage code yourself.
 CookieHandler is an abstract class
 that does not do this for you, even though it's pretty standard
 stuff.
Example 8-12. CookieHandler
package java.net;

public abstract class CookieHandler {

 public CookieHandler()

 public abstract Map<String,List<String>> get(
 URI uri, Map<String,List<String>> requestHeaders)
 throws IOException
 public abstract void put(
 URI uri, Map<String,List<String>> responseHeaders)
 throws IOException

 public static CookieHandler getDefault()
 public static void setDefault(CookieHandler handler)

}

A subclass is most easily implemented by delegating the hard work
 to the Java Collections API, as Example 8-13 demonstrates. Since
 CookieHandler is only available in
 Java 1.5 anyway, I took the opportunity to show off some new features of
 Java 1.5, including generic types and enhanced for loops. This implementation limits itself
 to version 0 cookies, which are far and away the most common kind you'll
 find in practice. If version 1 cookies ever achieve broad adoption, it
 should be easy to extend these classes to support them.
Example 8-13. A CookieHandler implemented on top of the Java Collections
 API
package com.macfaq.http;

import java.io.IOException;
import java.net.*;
import java.util.*;

public class CookieStore extends CookieHandler {

 private List<Cookie> store = new ArrayList<Cookie>();

 public Map<String,List<String>> get(URI uri,
 Map<String,List<String>> requestHeaders)
 throws IOException {

 Map<String,List<String>> result = new HashMap<String,List<String>>();
 StringBuffer cookies = new StringBuffer();
 for (Cookie cookie : store) {
 if (cookie.isExpired()) {
 store.remove(cookie);
 }
 else if (cookie.matches(uri)) {
 if (cookies.length() != 0) cookies.append(", ");
 cookies.append(cookie.toExternalForm());
 }
 }

 if (cookies.length() > 0) {
 List<String> temp = new ArrayList<String>(1);
 temp.add(cookies.toString());
 result.put("Cookie", temp);
 }

 return result;

 }

 public void put(URI uri, Map<String,List<String>> responseHeaders)
 throws IOException {

 List<String> setCookies = responseHeaders.get("Set-Cookie");
 for (String next : setCookies) {
 try {
 Cookie cookie = Cookie.bake(next, uri);
 // Is a cookie with this name and URI already in the list?
 // If so, we replace it
 for (Cookie existingCookie : store) {
 if (cookie.getURI().equals(existingCookie.getURI()) &&
 cookie.getName().equals(existingCookie.getName())) {
 store.remove(existingCookie);
 break;
 }
 }
 store.add(cookie);
 }
 catch (CookieException ex) {
 // Server sent malformed header;
 // log and ignore
 System.err.println(ex);
 }
 }

 }

}

When storing a cookie, the responseHeaders argument to the put() method contains the complete HTTP response header sent by
 the server. From this you need to extract any header fields that set
 cookies (basically, just Set-Cookie
 and Set-Cookie2). The key to this map
 is the field name (Set-Cookie or
 Set-Cookie2). The value of the map
 entry is a list of cookies set in that field. Each separate cookie is a
 separate member of the list. That is, Java does divide the header field
 value along the commas to split up several cookies and pass them in each
 as a separate entry in the list.
In the other direction, when getting a cookie it's necessary to
 consider not only the URI but the path for which the cookie is valid.
 Here, the path is delegated to the Cookie class itself via the matches() method. This is hardly the most efficient implementation
 possible. For each cookie, the store does a linear search through all
 available cookies. A more intelligent implementation would index the
 list by URIs and domains, but for simple purposes this solution suffices
 without being overly complex. A more serious limitation is that this
 store is not persistent. It lasts only until the driving program exits.
 Most web browsers would want to store the cookies in a file so they
 could be reloaded when the browser was relaunched. Nonetheless, this
 class is sufficient to add basic cookie support to the simple web
 browser. All that's required is to add this one line at the beginning of
 the main() method in Example 8-5:
CookieHandler.setDefault(new com.macfaq.http.CookieStore());

Chapter 9. Sockets for Clients

Data is transmitted across the Internet in packets of finite size
 called datagrams . Each datagram contains a header
 and a payload . The header contains the address and port to which the
 packet is going, the address and port from which the packet came, and
 various other housekeeping information used to ensure reliable
 transmission. The payload contains the data itself. However, since
 datagrams have a finite length, it's often necessary to split the data
 across multiple packets and reassemble it at the destination. It's also
 possible that one or more packets may be lost or corrupted in transit and
 need to be retransmitted or that packets arrive out of order and need to
 be reordered. Keeping track of this—splitting the data into packets,
 generating headers, parsing the headers of incoming packets, keeping track
 of what packets have and haven't been received, and so on—is a lot of work
 and requires a lot of intricate code.
Fortunately, you don't have to do the work yourself. Sockets allow the programmer to treat a network connection
 as just another stream onto which bytes can be written and from which
 bytes can be read. Sockets shield the programmer from low-level details of
 the network, such as error detection, packet sizes, packet retransmission,
 network addresses, and more.
Socket Basics

A socket is a connection between two hosts. It can perform seven
 basic operations:
	Connect to a remote machine

	Send data

	Receive data

	Close a connection

	Bind to a port

	Listen for incoming data

	Accept connections from remote machines on the bound
 port

Java's Socket class, which is
 used by both clients and servers, has methods that correspond to the
 first four of these operations. The last three operations are needed
 only by servers, which wait for clients to connect to them. They are
 implemented by the ServerSocket
 class, which is discussed in the next chapter. Java programs normally
 use client sockets in the following fashion:
	The program creates a new socket with a
 constructor.

	The socket attempts to connect to the remote host.

	Once the connection is established, the local and remote hosts
 get input and output streams from the socket and use those streams
 to send data to each other. This connection is
 full-duplex ; both hosts can send and receive data simultaneously.
 What the data means depends on the protocol; different commands are
 sent to an FTP server than to an HTTP server. There will normally be
 some agreed-upon hand-shaking followed by the transmission of data
 from one to the other.

	When the transmission of data is complete, one or both sides
 close the connection. Some protocols, such as HTTP 1.0, require the
 connection to be closed after each request is serviced. Others, such
 as FTP, allow multiple requests to be processed in a single
 connection.

Investigating Protocols with Telnet

In this chapter, you'll see clients that use sockets to
 communicate with a number of well-known Internet services such as HTTP,
 echo, and more. The sockets themselves are simple enough; however, the
 protocols to communicate with different servers make life
 complex.
To get a feel for how a protocol operates, you can use Telnet to connect to a server, type different commands to
 it, and watch its responses. By default, Telnet attempts to connect to
 port 23. To connect to servers on different ports, specify the port you
 want to connect to like this:
% telnet localhost 25
Tip
This example assumes that you're using a Unix system. However,
 Telnet clients are available for all common operating systems, and
 they are all pretty similar; for example, on Windows, you might have
 to type the hostname and the port into a dialog box rather than on the
 command-line, but otherwise, the clients work the same.

This requests a connection to port 25, the SMTP port, on the local
 machine; SMTP is the protocol used to transfer email between servers or
 between a mail client and a server. If you know the commands to interact
 with an SMTP server, you can send email without going through a mail
 program. This trick can be used to forge email. For example, a few years
 ago, the summer students at the National Solar Observatory in Sunspot,
 New Mexico, made it appear that the party one of the scientists was
 throwing after the annual volleyball match between the staff and the
 students was in fact a victory party for the students. (Of course, the
 author of this book had absolutely nothing to do with such despicable
 behavior. ;-)) The interaction with the SMTP server went something like
 this; input the user types is shown in bold (the names have been changed
 to protect the gullible):
flare% telnet localhost 25
Trying 127.0.0.1 ...
Connected to localhost.sunspot.noao.edu.
Escape character is '^]'.
220 flare.sunspot.noao.edu Sendmail 4.1/SMI-4.1 ready at
Fri, 5 Jul 93 13:13:01 MDT
HELO sunspot.noao.edu
250 flare.sunspot.noao.edu Hello localhost [127.0.0.1], pleased to meet you
MAIL FROM: bart
250 bart... Sender ok
RCPT TO: local@sunspot.noao.edu
250 local@sunspot.noao.edu... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself

In a pitiful attempt to reingratiate myself with the students
 after their inevitable defeat of the staff on the volleyball
 court at 4:00 P.M., July 24, I will be throwing a victory
 party for the students at my house that evening at 7:00.
 Everyone is invited.

 Beer and Ben-Gay will be provided so the staff may drown
 their sorrows and assuage their aching muscles after their
 public humiliation.

 Sincerely,

 Bart
 .
250 Mail accepted
QUIT
221 flare.sunspot.noao.edu delivering mail
Connection closed by foreign host.
Several members of the staff asked Bart why he, a staff member,
 was throwing a victory party for the students. The moral of this story
 is that you should never trust email, especially patently ridiculous
 email like this, without independent verification. The other moral of
 this story is that you can use Telnet to simulate a client, see how the
 client and the server interact, and thus learn what your Java program
 needs to do. Although this session doesn't demonstrate all the features
 of the SMTP protocol, it's sufficient to enable you to deduce how a
 simple email client talks to a server.

The Socket Class

The java.net.Socket
 class is Java's fundamental class for performing
 client-side TCP operations. Other client-oriented classes that make TCP
 network connections such as URL,
 URLConnection, Applet, and JEditorPane all ultimately end up invoking the
 methods of this class. This class itself uses native code to communicate
 with the local TCP stack of the host operating system. The methods of
 the Socket class set up and tear down
 connections and set various socket options. Because TCP sockets are more
 or less reliable connections, the interface that the Socket class provides to the programmer is
 streams . The actual reading and writing of data over the socket
 is accomplished via the familiar stream classes.
The Constructors

The nondeprecated public Socket constructors are simple. Each lets
 you specify the host and the port you want to connect to. Hosts may be
 specified as an InetAddress or a
 String. Ports are always specified
 as int values from 0 to 65,535. Two
 of the constructors also specify the local address and local port from
 which data will be sent. You might need to do this when you want to
 select one particular network interface from which to send data on a
 multihomed host.
The Socket class also has two protected constructors (one of which
 is now public in Java 1.4) that create unconnected sockets. These are
 useful when you want to set socket options before making the first
 connection.
public Socket(String host, int port) throws
 UnknownHostException, IOException

This constructor creates a TCP socket to the specified port on
 the specified host and attempts to connect to the remote host. For
 example:
try {
 Socket toOReilly = new Socket("www.oreilly.com", 80);
 // send and receive data...
}
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}
In this constructor, the host argument is just a hostname expressed
 as a String. If the domain name
 server cannot resolve the hostname or is not functioning, the
 constructor throws an UnknownHostException. If the socket cannot
 be opened for some other reason, the constructor throws an IOException. There are many reasons a
 connection attempt might fail: the host you're trying to reach may
 not be accepting connections, a dialup Internet connection may be
 down, or routing problems may be preventing your packets from
 reaching their destination.
Since this constructor doesn't just create a Socket object but also tries to connect
 the socket to the remote host, you can use the object to determine
 whether connections to a particular port are allowed, as in Example 9-1.
Example 9-1. Find out which of the first 1,024 ports seem to be hosting
 TCP servers on a specified host
import java.net.*;
import java.io.*;

public class LowPortScanner {

 public static void main(String[] args) {

 String host = "localhost";

 if (args.length > 0) {
 host = args[0];
 }
 for (int i = 1; i < 1024; i++) {
 try {
 Socket s = new Socket(host, i);
 System.out.println("There is a server on port " + i + " of "
 + host);
 }
 catch (UnknownHostException ex) {
 System.err.println(ex);
 break;
 }
 catch (IOException ex) {
 // must not be a server on this port
 }
 } // end for

 } // end main

} // end PortScanner

Here's the output this program produces on my local host. Your
 results will vary, depending on which ports are occupied. As a rule,
 more ports will be occupied on a Unix workstation than on a PC or a
 Mac:
% java LowPortScanner
There is a server on port 21 of localhost
There is a server on port 22 of localhost
There is a server on port 23 of localhost
There is a server on port 25 of localhost
There is a server on port 37 of localhost
There is a server on port 111 of localhost
There is a server on port 139 of localhost
There is a server on port 210 of localhost
There is a server on port 515 of localhost
There is a server on port 873 of localhost
If you're curious about what servers are running on these
 ports, try experimenting with Telnet. On a Unix system, you may be
 able to find out which services reside on which ports by looking in
 the file /etc/services. If LowPortScanner finds any ports that are
 running servers but are not listed in
 /etc/services, then that's interesting.
Although this program looks simple, it's not without its uses.
 The first step to securing a system is understanding it. This
 program helps you understand what your system is doing so you can
 find (and close) possible entrance points for attackers. You may
 also find rogue servers: for example, LowPortScanner might tell you that there's
 a server on port 800, which, on further investigation, turns out to
 be an HTTP server somebody is running to serve erotic GIFs, and
 which is saturating your T1. However, like most security tools, this
 program can be misused. Don't use LowPortScanner to probe a machine you do
 not own; most system administrators would consider that a hostile
 act.

public Socket(InetAddress host, int port) throws
 IOException

Like the previous constructor, this constructor
 creates a TCP socket to the specified port on the specified host and
 tries to connect. It differs by using an InetAddress object (discussed in Chapter 6) to specify the host rather
 than a hostname. It throws an IOException if it can't connect, but does
 not throw an UnknownHostException; if the host is
 unknown, you will find out when you create the InetAddress object. For example:
try {
 InetAddress oreilly = InetAddress.getByName("www.oreilly.com");
 Socket oreillySocket = new Socket(oreilly , 80);
 // send and receive data...
}
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}
In the rare case where you open many sockets to the same host,
 it is more efficient to convert the hostname to an InetAddress and then repeatedly use that
 InetAddress to create sockets. Example
 9-2 uses this technique to improve on the efficiency of Example 9-1.
Example 9-2. Find out which of the ports at or above 1,024 seem to be
 hosting TCP servers
import java.net.*;
import java.io.*;

public class HighPortScanner {

 public static void main(String[] args) {

 String host = "localhost";

 if (args.length > 0) {
 host = args[0];
 }

 try {
 InetAddress theAddress = InetAddress.getByName(host);
 for (int i = 1024; i < 65536; i++) {
 try {
 Socket theSocket = new Socket(theAddress, i);
 System.out.println("There is a server on port "
 + i + " of " + host);
 }
 catch (IOException ex) {
 // must not be a server on this port
 }
 } // end for
 } // end try
 catch (UnknownHostException ex) {
 System.err.println(ex);
 }

 } // end main

} // end HighPortScanner

The results of this example are similar to the previous ones,
 except that HighPortScanner
 checks ports above 1,023.

public Socket(String host, int port, InetAddress interface,
 int localPort) throws IOException, UnknownHostException

This constructor creates a socket to the specified port on the
 specified host and tries to connect. It connects
 to the host and port specified in the first two
 arguments. It connects from the local network
 interface and port specified by the last two arguments. The network
 interface may be either physical (e.g., a different Ethernet card)
 or virtual (a multihomed host). If 0 is passed for the localPort argument, Java chooses a random
 available port between 1,024 and 65,535.
One situation where you might want to explicitly choose the
 local address would be on a router/firewall that uses dual Ethernet
 ports. Incoming connections would be accepted on one interface,
 processed, and forwarded to the local network from the other
 interface. Suppose you were writing a program to periodically dump
 error logs to a printer or send them over an internal mail server.
 You'd want to make sure you used the inward-facing network interface
 instead of the outward-facing network interface. For example,
try {
 InetAddress inward = InetAddress.getByName("router");
 Socket socket = new Socket("mail", 25, inward, 0);
 // work with the sockets...
}
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}
By passing 0 for the local port number, I say that I don't
 care which port is used but I do want to use the network interface
 bound to the local hostname router.
This constructor can throw an IOException for all the usual reasons
 given in the previous constructors. Furthermore, an UnknownHostException will also be thrown
 if the remote host cannot be located.
Finally, an IOException
 (probably a BindException,
 although again that's just a subclass of IOException and not specifically declared
 in the throws clause of this
 method) will be thrown if the socket is unable to bind to the
 requested local network interface, which tends to limit the
 portability of applications that use this constructor. You could
 take deliberate advantage of this to restrict a compiled program to
 run on only a predetermined host. It would require customizing
 distributions for each computer and is certainly overkill for cheap
 products. Furthermore, Java programs are so easy to disassemble,
 decompile, and reverse engineer that this scheme is far from
 foolproof. Nonetheless, it might be part of a scheme to enforce a
 software license.

public Socket(InetAddress host, int port, InetAddress
 interface, int localPort) throws IOException

This constructor is identical to the previous one except that
 the host to connect to is passed as an InetAddress, not a String. It creates a TCP socket to the
 specified port on the specified host from the specified interface
 and local port, and tries to connect. If it fails, it throws an
 IOException. For example:
try {
 InetAddress inward = InetAddress.getByName("router");
 InetAddress mail = InetAddress.getByName("mail");
 Socket socket = new Socket(mail, 25, inward, 0);
 // work with the sockets...
}
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}

protected Socket()

The Socket class also has
 two (three in Java 1.5) constructors that create an object without
 connecting the socket. You use these if you're subclassing Socket, perhaps to implement a special
 kind of socket that encrypts transactions or understands your local
 proxy server. Most of your implementation of a new socket class will
 be written in a SocketImpl
 object.
The noargs Socket()
 constructor installs the default SocketImpl (from either the factory or a
 java.net.PlainSocketImpl). It
 creates a new Socket without
 connecting it, and is usually called by subclasses of java.net.Socket.
In Java 1.4, this constructor has been made public, and allows
 you to create a socket that is not yet connected to any host. You
 can connect later by passing a SocketAddress to one of the connect() methods. The most common reason
 to create a Socket object without
 connecting is to set socket options; many of these cannot be changed
 after the connection has been made. I'll discuss this soon.

protected Socket(SocketImpl impl)

This constructor installs the SocketImpl object impl when it creates the new Socket object. The Socket object is created but is not
 connected. This constructor is usually called by subclasses of
 java.net.Socket. You can pass
 null to this constructor if you
 don't need a SocketImpl. However,
 in this case, you must override all the base class methods that
 depend on the underlying SocketImpl. This might be necessary if you
 were using JNI to talk to something other than the default native
 TCP stack.

public Socket(Proxy proxy) // Java 1.5

Java 1.5 adds this constructor, which creates an unconnected
 socket that will use the specified proxy server. Normally, the proxy
 server a socket uses is controlled by the socksProxyHost and socksProxyPort system properties, and
 these properties apply to all sockets in the system. However a
 socket created by this constructor will use the specified proxy
 server instead. Most notably, you can pass Proxy.NO_PROXY for the argument to bypass
 all proxy servers completely and connect directly to the remote
 host. Of course, if a firewall prevents such connections, there's
 nothing Java can do about it, and the connection will fail.
If you want to use a particular proxy server, you can specify
 it by its address. For example, this code fragment uses the SOCKS
 proxy server at myproxy.example.com to connect
 to the host login.ibiblio.org:
SocetAddress proxyAddress = new InetSocketAddress("myproxy.example.com", 1080);
Proxy proxy = new Proxy(Proxy.Type.SOCKS, proxyAddress)
Socket s = new Socket(proxy);
SocketAddress remote = new InetSocketAddress("login.ibiblio.org", 25);
s.connect(remote);
SOCKS is the only low-level proxy type Java understands.
 There's also a high-level Proxy.Type.HTTP that works in the
 application layer rather than the transport layer and a Proxy.Type.DIRECT that represents
 proxyless connections.

Getting Information About a Socket

 To the programmer, Socket objects appear to have several
 private fields that are accessible through various getter methods.
 Actually, sockets have only one field, a SocketImpl ; the fields that appear to belong to the Socket actually reflect native code in the
 SocketImpl. This way, socket
 implementations can be changed without disturbing the program—for
 example, to support firewalls and proxy servers. The actual SocketImpl in use is almost completely
 transparent to the programmer.
public InetAddress getInetAddress()

Given a Socket object, the
 getInetAddress() method tells you which remote host the Socket is connected to or, if the
 connection is now closed, which host the Socket was connected to when it was
 connected. For example:
try {
 Socket theSocket = new Socket("java.sun.com", 80);
 InetAddress host = theSocket.getInetAddress();
 System.out.println("Connected to remote host " + host);
} // end try
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}

public int getPort()

The getPort() method tells you which port the Socket is (or was or will be) connected to
 on the remote host. For example:
try {
 Socket theSocket = new Socket("java.sun.com", 80);
 int port = theSocket.getPort();
 System.out.println("Connected on remote port " + port);
} // end try
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}

public int getLocalPort()

There are two ends to a connection: the remote host and the
 local host. To find the port number for the local end of a
 connection, call getLocalPort()
 . For example:
try {
 Socket theSocket = new Socket("java.sun.com", 80, true);
 int localPort = theSocket.getLocalPort();
 System.out.println("Connecting from local port " + localPort);
} // end try
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}
Unlike the remote port, which (for a client socket) is usually
 a "well-known port" that has been preassigned by a standards
 committee, the local port is usually chosen by the system at runtime
 from the available unused ports. This way, many different clients on
 a system can access the same service at the same time. The local
 port is embedded in outbound IP packets along with the local host's
 IP address, so the server can send data back to the right port on
 the client.

public InetAddress getLocalAddress()

The getLocalAddress()
 method tells you which network interface a socket is
 bound to. You normally use this on a multihomed host, or one with
 multiple network interfaces. For example:
try {
 Socket theSocket = new Socket(hostname, 80);
 InetAddress localAddress = theSocket.getLocalAddress();
 System.out.println("Connecting from local address " + localAddress);
} // end try
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}
Example 9-3 reads a
 list of hostnames from the command-line, attempts to open a socket
 to each one, and then uses these four methods to print the remote
 host, the remote port, the local address, and the local port.
Example 9-3. Get a socket's information
import java.net.*;
import java.io.*;

public class SocketInfo {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 Socket theSocket = new Socket(args[i], 80);
 System.out.println("Connected to " + theSocket.getInetAddress()
 + " on port " + theSocket.getPort() + " from port "
 + theSocket.getLocalPort() + " of "
 + theSocket.getLocalAddress());
 } // end try
 catch (UnknownHostException ex) {
 System.err.println("I can't find " + args[i]);
 }
 catch (SocketException ex) {
 System.err.println("Could not connect to " + args[i]);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end for

 } // end main

} // end SocketInfo

Here's the result of a sample run. I included www.oreilly.com on the command
 line twice in order to demonstrate that each connection was assigned
 a different local port, regardless of the remote host; the local
 port assigned to any connection is unpredictable and depends mostly
 on what other ports are in use. The connection to
 login.ibiblio.org failed because that machine
 does not run any servers on port 80:
% java SocketInfo www.oreilly.com www.oreilly.com www.macfaq.com
 login.ibiblio.org
Connected to www.oreilly.com/208.201.239.37 on port 80 from port 49156 of
/192.168.254.25
Connected to www.oreilly.com/208.201.239.37 on port 80 from port 49157 of
/192.168.254.25
Connected to www.macfaq.com/216.254.106.198 on port 80 from port 49158 of
/192.168.254.25
Could not connect to login.ibiblio.org

public InputStream getInputStream() throws
 IOException

The getInputStream()
 method returns an input stream that can read data from the socket
 into a program. You usually chain this InputStream to a filter stream or reader
 that offers more functionality—DataInputStream or InputStreamReader, for example—before
 reading input. For performance reasons, it's also a very good idea
 to buffer the input by chaining it to a BufferedInputStream and/or a BufferedReader.
With an input stream, we can read data from a socket and start
 experimenting with some actual Internet protocols. One of the simplest protocols is
 called daytime, and is defined in RFC 867. There's almost nothing to
 it. The client opens a socket to port 13 on the daytime server. In
 response, the server sends the time in a human-readable format and
 closes the connection. You can test the daytime server with Telnet
 like this:
% telnet vision.poly.edu 13
Trying 128.238.42.35...
Connected to vision.poly.edu.
Escape character is '^]'.
Wed Nov 12 23:39:15 2003
Connection closed by foreign host.
The line "Wed Nov 12 23:39:15 2003" is sent by the daytime
 server. When you read the Socket's InputStream, this is what you will get.
 The other lines are produced either by the Unix shell or by the
 Telnet program.
Example 9-4
 uses the InputStream returned by getInputStream() to read the time sent by
 the daytime server.
Example 9-4. A daytime protocol client
import java.net.*;
import java.io.*;

public class DaytimeClient {

 public static void main(String[] args) {

 String hostname;

 if (args.length > 0) {
 hostname = args[0];
 }
 else {
 hostname = "time.nist.gov";
 }

 try {
 Socket theSocket = new Socket(hostname, 13);
 InputStream timeStream = theSocket.getInputStream();
 StringBuffer time = new StringBuffer();
 int c;
 while ((c = timeStream.read()) != -1) time.append((char) c);
 String timeString = time.toString().trim();
 System.out.println("It is " + timeString + " at " + hostname);
 } // end try
 catch (UnknownHostException ex) {
 System.err.println(ex);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end main

} // end DaytimeClient

DaytimeClient reads the
 hostname of a daytime server from the command line and uses it to
 construct a new Socket that
 connects to port 13 on the server. If the hostname is omitted, the
 National Institute of Standards and Technology's time server at time.nist.gov is
 used. The client then calls theSocket.getInputStream() to get
 theSocket's input stream, which
 is stored in the variable timeStream. Since the daytime protocol
 specifies ASCII, DaytimeClient
 doesn't bother chaining a reader to the stream. Instead, it just
 reads the bytes into a StringBuffer one at a time, breaking when
 the server closes the connection as the protocol requires it to do.
 Here's what happens:
% java DaytimeClient
It is 52956 03-11-13 04:45:28 00 0 0 706.3 UTC(NIST) * at time.nist.gov
% java DaytimeClient vision.poly.edu
It is Wed Nov 12 23:45:29 2003 at vision.poly.edu
You can see that the clocks on
 time.nist.gov and
 vision.poly.edu aren't perfectly synchronized.
 Differences of a few seconds can be caused by the time it takes
 packets to travel across the Internet. For more details about
 network timekeeping, see http://www.boulder.nist.gov/timefreq/service/its.htm.
On top of that problem, the time servers on these two hosts
 use different formats. The daytime protocol doesn't specify the
 format for the time it returns, other than that it be
 human-readable. Therefore, it is difficult to convert the character
 data that the server returns to a Java Date in a reliable fashion. If you want to
 create a Date object based on the
 time at the server, it's easier to use the time protocol from RFC
 868 instead, because it specifies a format for the time.
When reading data from the network, it's important to keep in
 mind that not all protocols use ASCII or even text. For example, the
 time protocol specified in RFC 868 specifies that the
 time be sent as the number of seconds since midnight, January 1,
 1900 Greenwich Mean Time. However, this is not sent as an ASCII
 string like "2,524,521,600" or "-1297728000". Rather, it is sent as
 a 32-bit, unsigned, big-endian binary number.
Tip
The RFC never actually comes out and says that this is the
 format used. It specifies 32 bits and assumes you know that all
 network protocols use big-endian numbers. The fact that the number
 is unsigned can be determined only by calculating the wraparound
 date for signed and unsigned integers and comparing it to the date
 given in the specification (2036). To make matters worse, the
 specification gives an example of a negative time that can't
 actually be sent by time servers that follow the protocol. Time is
 a fairly old protocol, standardized in the early 1980s before the
 IETF was as careful about such issues as it is today. Nonetheless,
 if you find yourself implementing a not particularly
 well-specified protocol, you may have to do a significant amount
 of testing against existing implementations to figure out what you
 need to do. In the worst case, different existing implementations
 may behave differently.

Since this isn't text, you can't easily use Telnet to test
 such a service, and your program can't read the server response with
 a Reader or any sort of readLine() method. A Java program that
 connects to time servers must read the raw bytes and interpret them
 appropriately. In this example, that job is complicated by Java's
 lack of a 32-bit unsigned integer type. Consequently, you have
 to read the bytes one at a time and manually convert them into a
 long using the bitwise operators
 << and |. Example 9-5 demonstrates. When
 speaking other protocols, you may encounter data formats even more
 alien to Java. For instance, a few network protocols use 64-bit
 fixed-point numbers. There's no shortcut to handle all possible
 cases. You simply have to grit your teeth and code the math you need
 to handle the data in whatever format the server sends.
Example 9-5. A time protocol client
import java.net.*;
import java.io.*;
import java.util.*;

public class TimeClient {

 public final static int DEFAULT_PORT = 37;
 public final static String DEFAULT_HOST = "time.nist.gov";

 public static void main(String[] args) {

 String hostname = DEFAULT_HOST ;
 int port = DEFAULT_PORT;

 if (args.length > 0) {
 hostname = args[0];
 }

 if (args.length > 1) {
 try {
 port = Integer.parseInt(args[1]);
 }
 catch (NumberFormatException ex) {
 // Stay with the default port
 }
 }

 // The time protocol sets the epoch at 1900,
 // the Java Date class at 1970. This number
 // converts between them.

 long differenceBetweenEpochs = 2208988800L;

 // If you'd rather not use the magic number, uncomment
 // the following section which calculates it directly.

 /*
 TimeZone gmt = TimeZone.getTimeZone("GMT");
 Calendar epoch1900 = Calendar.getInstance(gmt);
 epoch1900.set(1900, 01, 01, 00, 00, 00);
 long epoch1900ms = epoch1900.getTime().getTime();
 Calendar epoch1970 = Calendar.getInstance(gmt);
 epoch1970.set(1970, 01, 01, 00, 00, 00);
 long epoch1970ms = epoch1970.getTime().getTime();

 long differenceInMS = epoch1970ms - epoch1900ms;
 long differenceBetweenEpochs = differenceInMS/1000;
 */

 InputStream raw = null;
 try {
 Socket theSocket = new Socket(hostname, port);
 raw = theSocket.getInputStream();

 long secondsSince1900 = 0;
 for (int i = 0; i < 4; i++) {
 secondsSince1900 = (secondsSince1900 << 8) | raw.read();
 }

 long secondsSince1970
 = secondsSince1900 - differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);

 System.out.println("It is " + time + " at " + hostname);

 } // end try
 catch (UnknownHostException ex) {
 System.err.println(ex);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 finally {
 try {
 if (raw != null) raw.close();
 }
 catch (IOException ex) {}
 }

 } // end main

} // end TimeClient

Here's the output of this program from a couple of sample
 runs. Since the time protocol specifies Greenwich Mean Time, the
 previous differences between time zones are eliminated. Most of the
 difference that's left simply reflects the clock drift between the
 two machines:
% java TimeClient
It is Wed Nov 12 23:49:15 EST 2003 at time.nist.gov
% java TimeClient vision.poly.edu
It is Wed Nov 12 23:49:20 EST 2003 at vision.poly.edu
Like DaytimeClient,
 TimeClient reads the hostname of
 the server and an optional port from the command-line and uses it to
 construct a new Socket that
 connects to that server. If the user omits the hostname, TimeClient defaults to
 time.nist.gov. The default port is 37. The
 client then calls theSocket.getInputStream(
) to get an input stream, which is stored in the variable
 raw. Four bytes are read from
 this stream and used to construct a long that represents the value
 of those four bytes interpreted as a 32-bit unsigned integer. This
 gives the number of seconds that have elapsed since 12:00 A.M.,
 January 1, 1900 GMT (the time protocol's epoch); 2,208,988,800
 seconds are subtracted from this number to get the number of seconds
 since 12:00 A.M., January 1, 1970 GMT (the Java Date class epoch). This number is
 multiplied by 1,000 to convert it into milliseconds. Finally, that
 number of milliseconds is converted into a Date object, which can be printed to show
 the current time and date.

public OutputStream getOutputStream() throws
 IOException

The getOutputStream()
 method returns a raw OutputStream for writing data from your
 application to the other end of the socket. You usually chain this
 stream to a more convenient class like DataOutputStream or OutputStreamWriter before using it. For
 performance reasons, it's a good idea to buffer it as well. For
 example:
Writer out;
try {
 Socket http = new Socket("www.oreilly.com", 80)
 OutputStream raw = http.getOutputStream();
 OutputStream buffered = new BufferedOutputStream(raw);
 out = new OutputStreamWriter(buffered, "ASCII");
 out.write("GET / HTTP 1.0\r\n\r\n");
 // read the server response...
}
catch (Exception ex) {
 System.err.println(ex);
}
finally {
 try {
 out.close();
 }
 catch (Exception ex) {}
}
The echo protocol, defined in RFC 862, is one of the
 simplest interactive TCP services. The client opens a socket to port
 7 on the echo server and sends data. The server sends the data back.
 This continues until the client closes the connection. The echo
 protocol is useful for testing the network to make sure that data is
 not mangled by a misbehaving router or firewall. You can test echo
 with Telnet like this:
% telnet rama.poly.edu 7
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.
This is a test
This is a test
This is another test
This is another test
9876543210
9876543210
^]
telnet> close
Connection closed.
Example 9-6 uses
 getOutputStream() and getInputStream() to implement a simple
 echo client. The user types input on the command line which is then
 sent to the server. The server echoes it back. The program exits
 when the user types a period on a line by itself. The echo protocol
 does not specify a character encoding. Indeed, what it specifies is
 that the data sent to the server is exactly the data returned by the
 server. The server echoes the raw bytes, not the characters they
 represent. Thus, this program uses the default character encoding
 and line separator of the client system for reading the input from
 System.in, sending the data to
 the remote system, and typing the output on System.out. Since an echo server echoes
 exactly what is sent, it's as if the server dynamically adjusts
 itself to the client system's conventions for character encoding and
 line breaks. Consequently, we can use convenient classes and methods
 such as PrintWriter and readLine() that would normally be too
 unreliable.
Example 9-6. An echo client
import java.net.*;
import java.io.*;

public class EchoClient {

 public static void main(String[] args) {

 String hostname = "localhost";

 if (args.length > 0) {
 hostname = args[0];
 }

 PrintWriter out = null;
 BufferedReader networkIn = null;
 try {
 Socket theSocket = new Socket(hostname, 7);
 networkIn = new BufferedReader(
 new InputStreamReader(theSocket.getInputStream()));
 BufferedReader userIn = new BufferedReader(
 new InputStreamReader(System.in));
 out = new PrintWriter(theSocket.getOutputStream());
 System.out.println("Connected to echo server");

 while (true) {
 String theLine = userIn.readLine();
 if (theLine.equals(".")) break;
 out.println(theLine);
 out.flush();
 System.out.println(networkIn.readLine());
 }

 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 }
 finally {
 try {
 if (networkIn != null) networkIn.close();
 if (out != null) out.close();
 }
 catch (IOException ex) {}
 }

 } // end main

} // end EchoClient

As usual, EchoClient reads
 the name of the host to connect to from the command line. This
 hostname is used to create a new Socket object on port 7, called theSocket. The socket's InputStream is returned by getInputStream() and chained to an
 InputStreamReader, which is
 chained to a BufferedReader
 called networkIn. This reader
 reads the server responses. Since this client also needs to read
 input from the user, it creates a second BufferedReader, this one called userIn, which reads from System.in. Next, EchoClient calls theSocket.getOutputStream() to get
 theSocket's output stream, which
 is used to construct a new PrintWriter called out.
Now that the three streams have been created, it's simply a
 matter of reading the data from userIn and writing that data back out onto
 out. Once data has been sent to
 the echo server, networkIn waits
 for a response. When networkIn
 receives a response, it's printed on System.out. In theory, this client could
 get hung waiting for a response that never comes. However, this is
 unlikely if the connection can be made in the first place, since the
 TCP protocol checks for bad packets and automatically asks the
 server for replacements. When we implement a UDP echo client in
 Chapter 13, we will need a
 different approach because UDP does no error checking. Here's a
 sample run:
% java EchoClient rama.poly.edu
Connected to echo server
Hello
Hello
How are you?
How are you?
I'm fine thank you.
I'm fine thank you.
Goodbye
Goodbye
.
Example 9-7 is
 line-oriented. It reads a line of input from the console, sends it
 to the server, and waits to read a line of output it gets back.
 However, the echo protocol doesn't require this. It echoes each byte
 as it receives it. It doesn't really care whether those bytes
 represent characters in some encoding or are divided into lines.
 Java does not allow you to put the console into "raw" mode, where
 each character is read as soon as it's typed instead of waiting for
 the user to press the Enter key. Consequently, if you want to
 explore the more immediate echo responses, you must provide a
 nonconsole interface. You also have to separate the network input
 from user input and network output. This is because the connection
 is full duplex but may be subject to some delay. If the Internet is
 running slow, the user may be able to type and send several
 characters before the server returns the first one. Then the server
 may return several bytes all at once. Unlike many protocols, echo
 does not specify lockstep behavior in which the client sends a
 request but then waits for the full server response before sending
 any more data. The simplest way to handle such a protocol in Java is
 to place network input and output in separate threads.

Closing the Socket

That's almost everything you need to know about
 client-side sockets. When you're writing a client application, almost
 all the work goes into handling the streams and interpreting the data.
 The sockets themselves are very easy to work with; all the hard parts
 are hidden. That is one reason sockets are such a popular paradigm for
 network programming. After we cover a couple of remaining methods,
 you'll know everything you need to know to write TCP clients.
public void close() throws IOException

 Until now, the examples have assumed that sockets
 close on their own; they haven't done anything to clean up after
 themselves. It is true that a socket closes automatically when one
 of its two streams closes, when the program ends, or when it's
 garbage collected. However, it is a bad practice to assume that the
 system will close sockets for you, especially for programs that may
 run for an indefinite period of time. In a socket-intensive program
 like a web browser, the system may well hit its maximum number of
 open sockets before the garbage collector kicks in. The port scanner
 programs of Example 9-1
 and Example 9-2 are
 particularly bad offenders in this respect, since it may take a long
 time for the program to run through all the ports. Shortly, you'll
 see a new version that doesn't have this problem.
When you're through with a socket, you should call its
 close() method to disconnect.
 Ideally, you put this in a finally block so
 that the socket is closed whether an exception is thrown or not. The
 syntax is straightforward:
Socket connection = null;
try {
 connection = new Socket("www.oreilly.com", 13);
 // interact with the socket...
} // end try
catch (UnknownHostException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}
finally {
 if (connection != null) connection.close();
}
Once a Socket has been
 closed, its InetAddress, port
 number, local address, and local port number are still accessible
 through the getInetAddress(),
 getPort(), getLocalAddress(), and getLocalPort() methods. However, although
 you can still call getInputStream(
) or getOutputStream(
), attempting to read data from the InputStream or write data to the OutputStream throws an IOException.
Example 9-7 is a
 revision of the PortScanner
 program that closes each socket once it's through with it. It does
 not close sockets that fail to connect. Since these are never
 opened, they don't need to be closed. In fact, if the constructor
 failed, connection is actually
 null.
Example 9-7. Look for ports with socket closing
import java.net.*;
import java.io.*;

public class PortScanner {

 public static void main(String[] args) {

 String host = "localhost";

 if (args.length > 0) {
 host = args[0];
 }

 try {
 InetAddress theAddress = InetAddress.getByName(host);
 for (int i = 1; i < 65536; i++) {
 Socket connection = null;
 try {
 connection = new Socket(host, i);
 System.out.println("There is a server on port "
 + i + " of " + host);
 }
 catch (IOException ex) {
 // must not be a server on this port
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) {}
 }
 } // end for
 } // end try
 catch (UnknownHostException ex) {
 System.err.println(ex);
 }

 } // end main

} // end PortScanner

Java 1.4 adds an isClosed()
 method that returns true is the socket has been
 closed, false if it isn't:
public boolean isClosed() // Java 1.4
If you're uncertain about a socket's state, you can check it
 with this method rather than risking an IOException. For example,
if (socket.isClosed()) {
 // do something...
}
else {
 // do something else...
}
However, this is not a perfect test. If the socket has never
 been connected in the first place, isClosed() returns false, even though the
 socket isn't exactly open.
Java 1.4 also adds an isConnected() method:
public boolean isConnected() // Java 1.4
The name is a little misleading. It does not tell you if the
 socket is currently connected to a remote host (that is, if it is
 unclosed). Instead it tells you whether the socket has ever been
 connected to a remote host. If the socket was able to connect to the
 remote host at all, then this method returns true, even after that
 socket has been closed. To tell if a socket is currently open, you
 need to check that isConnected()
 returns true and isClosed()
 returns false. For example:
boolean connected = socket.isConnected() && ! socket.isClosed();
Java 1.4 also adds an isBound() method:
public boolean isBound() // Java 1.4
Whereas isConnected()
 refers to the remote end of the socket, isBound() refers to the local end. It
 tells you whether the socket successfully bound to the outgoing port
 on the local system. This isn't very important in practice. It will
 become more important when we discuss server sockets in the next
 chapter.

Half-closed sockets // Java 1.3

 The close() method
 shuts down both input and output from the socket. On occasion, you
 may want to shut down only half of the connection, either input or
 output. Starting in Java 1.3, the shutdownInput()
 and shutdownOutput() methods let
 you close only half of the connection:
public void shutdownInput() throws IOException // Java 1.3
public void shutdownOutput() throws IOException // Java 1.3
This doesn't actually close the socket. However, it does
 adjust the stream connected to it so that it thinks it's at the end
 of the stream. Further reads from the input stream will return -1.
 Further writes to the output stream will throw an IOException.
Many protocols, such as finger, whois, and HTTP begin with
 the client sending a request to the server, then reading the
 response. It would be possible to shut down the output after the
 client has sent the request. For example, this code fragment sends a
 request to an HTTP server and then shuts down the output, since it
 won't need to write anything else over this socket:
Socket connection = null;
try {
 connection = new Socket("www.oreilly.com", 80);
 Writer out = new OutputStreamWriter(
 connection.getOutputStream(), "8859_1");
 out.write("GET / HTTP 1.0\r\n\r\n");
 out.flush();
 connection.shutdownOutput();
 // read the response...
}
catch (IOException ex) {
}
finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) {}
}
Notice that even though you shut down half or even both halves
 of a connection, you still need to close the socket when you're
 through with it. The shutdown methods simply affect the socket's
 streams. They don't release the resources associated with the socket
 such as the port it occupies.
Java 1.4 adds two methods that tell you whether the input and output
 streams are open or closed:
public boolean isInputShutdown() // Java 1.4
public boolean isOutputShutdown() // Java 1.4
You can use these (rather than isConnected() and isClosed()) to more specifically
 ascertain whether you can read from or write to a socket.

Setting Socket Options

Socket options specify how the native sockets on which
 the Java Socket class relies send
 and receive data. You can set four options in Java 1.1, six in Java
 1.2, seven in Java 1.3, and eight in Java 1.4:
	TCP_NODELAY

	SO_BINDADDR

	SO_TIMEOUT

	SO_LINGER

	SO_SNDBUF (Java 1.2 and later)

	SO_RCVBUF (Java 1.2 and later)

	SO_KEEPALIVE (Java 1.3 and later)

	OOBINLINE (Java 1.4 and later)

The funny-looking names for these options are taken from the
 named constants in the C header files used in Berkeley Unix where
 sockets were invented. Thus they follow classic Unix C naming
 conventions rather than the more legible Java naming conventions. For
 instance, SO_SNDBUF really means "Socket Option Send Buffer
 Size."
TCP_NODELAY

public void setTcpNoDelay(boolean on) throws SocketException
public boolean getTcpNoDelay() throws SocketException
Setting TCP_NODELAY to true ensures that packets are sent as
 quickly as possible regardless of their size. Normally, small
 (one-byte) packets are combined into larger packets before being
 sent. Before sending another packet, the local host waits to receive
 acknowledgment of the previous packet from the remote system. This
 is known as Nagle's algorithm . The problem with Nagle's algorithm is that if the
 remote system doesn't send acknowledgments back to the local system
 fast enough, applications that depend on the steady transfer of
 small bits of information may slow down. This issue is especially
 problematic for GUI programs such as games or network computer
 applications where the server needs to track client-side mouse
 movement in real time. On a really slow network, even simple typing
 can be too slow because of the constant buffering. Setting
 TCP_NODELAY to true defeats this buffering scheme, so that all
 packets are sent as soon as they're ready.
setTcpNoDelay(true)
 turns off buffering for the socket. setTcpNoDelay(false) turns it back on.
 getTcpNoDelay() returns true if
 buffering is off and false if
 buffering is on. For example, the following fragment turns off
 buffering (that is, it turns on TCP_NODELAY) for the socket s if it isn't already off:
if (!s.getTcpNoDelay()) s.setTcpNoDelay(true);
These two methods are each declared to throw a SocketException. They will be thrown only
 if the underlying socket implementation doesn't support the TCP_
 NODELAY option.

SO_LINGER

public void setSoLinger(boolean on, int seconds) throws SocketException
public int getSoLinger() throws SocketException
The SO_LINGER option specifies what to do with datagrams
 that have not yet been sent when a socket is closed. By default, the
 close() method returns
 immediately; but the system still tries to send any remaining data.
 If the linger time is set to zero, any unsent packets are thrown
 away when the socket is closed. If the linger time is any positive
 value, the close() method blocks
 while waiting the specified number of seconds for the data to be
 sent and the acknowledgments to be received. When that number of
 seconds has passed, the socket is closed and any remaining data is
 not sent, acknowledgment or no.
These two methods each throw a SocketException if the underlying socket
 implementation does not support the SO_LINGER option. The setSoLinger() method can also throw an IllegalArgumentException if you try to set
 the linger time to a negative value. However, the getSoLinger() method may return -1 to
 indicate that this option is disabled, and as much time as is needed
 is taken to deliver the remaining data; for example, to set the
 linger timeout for the Socket
 s to four minutes, if it's not
 already set to some other value:
if (s.getTcpSoLinger() == -1) s.setSoLinger(true, 240);
The maximum linger time is 65,535 seconds. Times larger than
 that will be reduced to 65,535 seconds. Frankly, 65,535 seconds
 (more than 18 hours) is much longer than you actually want to wait.
 Generally, the platform default value is more appropriate.

SO_TIMEOUT

public void setSoTimeout(int milliseconds)
 throws SocketException
publicint getSoTimeout() throws SocketException
Normally when you try to read data from a socket, the read() call blocks as long as necessary to
 get enough bytes. By setting SO_TIMEOUT, you ensure that the call will not block
 for more than a fixed number of milliseconds. When the timeout
 expires, an InterruptedIOException is thrown, and you
 should be prepared to catch it. However, the socket is still
 connected. Although this read()
 call failed, you can try to read from the socket again. The next
 call may succeed.
Timeouts are given in milliseconds. Zero is interpreted as an
 infinite timeout; it is the default value. For example, to set the
 timeout value of the Socket
 object s to 3 minutes if it isn't
 already set, specify 180,000 milliseconds:
if (s.getSoTimeout() == 0) s.setSoTimeout(180000);
These two methods each throw a SocketException if the underlying socket
 implementation does not support the SO_TIMEOUT option. The setSoTimeout() method also throws an IllegalArgumentException if the specified
 timeout value is negative.

SO_RCVBUF

 Most TCP stacks use buffers to improve network performance.
 Larger buffers tend to improve performance for reasonably fast (say,
 10Mbps and up) connections while slower, dialup connections do
 better with smaller buffers. Generally, transfers of large,
 continuous blocks of data, which are common in file transfer
 protocols such as FTP and HTTP, benefit from large buffers, while
 the smaller transfers of interactive sessions, such as Telnet and
 many games, do not. Relatively old operating systems designed in the
 age of small files and slow networks, such as BSD 4.2, use
 2-kilobyte buffers. Somewhat newer systems, such as SunOS 4.1.3, use
 larger 4-kilobyte buffers by default. Still newer systems, such as
 Solaris, use 8- or even 16-kilobyte buffers. Starting in Java 1.2,
 there are methods to get and set the suggested receive buffer size
 used for network input:
public void setReceiveBufferSize(int size)// Java 1.2
 throws SocketException, IllegalArgumentException
public int getReceiveBufferSize() throws SocketException // Java 1.2
The getReceiveBufferSize()
 method returns the number of bytes in the buffer that
 can be used for input from this socket. It throws a SocketException if the underlying socket
 implementation does not recognize the SO_RCVBUF option. This might
 happen on a non-POSIX operating system.
The setReceiveBufferSize()
 method suggests a number of bytes to use for
 buffering output on this socket. However, the underlying
 implementation is free to ignore this suggestion. The setReceiveBufferSize() method throws an
 IllegalArgumentException if its
 argument is less than or equal to zero. Although it's declared to
 also throw SocketException, it
 probably won't in practice since a SocketException is thrown for the same
 reason as IllegalArgumentException and the check for
 the IllegalArgument Exception is made first.

SO_SNDBUF

 Starting in Java 1.2, there are methods to get and set
 the suggested send buffer size used for network output:
public void setSendBufferSize(int size) // Java 1.2
 throws SocketException, IllegalArgumentException
public int getSendBufferSize() throws SocketException // Java 1.2
The getSendBufferSize()
 method returns the number of bytes in the buffer used
 for output on this socket. It throws a SocketException if the underlying socket
 implementation doesn't understand the SO_SNDBUF option.
The setSendBufferSize()
 method suggests a number of bytes to use for buffering output on
 this socket. However, again thegggg client is free to ignore this
 suggestion. The setSendBufferSize(
) method also throws a SocketException if the underlying socket
 implementation doesn't understand the SO_SNDBUF option. However, it throws an
 IllegalArgumentException if its
 argument is less than or equal to zero.

SO_KEEPALIVE

If SO_KEEPALIVE is turned on, the client will
 occasionally send a data packet over an idle connection (most
 commonly once every two hours), just to make sure the server hasn't
 crashed. If the server fails to respond to this packet, the client
 keeps trying for a little more than 11 minutes until it receives a
 response. If it doesn't receive a response within 12 minutes, the
 client closes the socket. Without SO_KEEPALIVE, an inactive client
 could live more or less forever without noticing that the server had
 crashed.
Java 1.3 adds methods to turn SO_KEEPALIVE on and off and to
 determine its current state:
public void setKeepAlive(boolean on) throws SocketException // Java 1.3
public boolean getKeepAlive() throws SocketException // Java 1.3
The default for SO_KEEPALIVE is false. This code fragment
 turns SO_KEEPALIVE off, if it's turned on:
if (s.getKeepAlive()) s.setKeepAlive(false);

OOBINLINE // Java 1.4

 TCP includes a feature that sends a single byte of
 "urgent" data. This data is sent immediately. Furthermore, the
 receiver is notified when the urgent data is received and may elect
 to process the urgent data before it processes any other data that
 has already been received.
Java 1.4 adds support for both sending and receiving such
 urgent data. The sending method is named, obviously enough, sendUrgentData() :
public void sendUrgentData(int data) throws IOException // Java 1.4
This method sends the lowest order byte of its argument almost
 immediately. If necessary, any currently cached data is flushed
 first.
How the receiving end responds to urgent data is a little
 confused, and varies from one platform and API to the next. Some
 systems receive the urgent data separately from the regular data.
 However, the more common, more modern approach is to place the
 urgent data in the regular received data queue in its proper order,
 tell the application that urgent data is available, and let it hunt
 through the queue to find it.
By default, Java pretty much ignores urgent data received from
 a socket. However, if you want to receive urgent data inline with
 regular data, you need to set the OOBINLINE option to true using
 these methods:
public void setOOBInline(boolean on) throws SocketException // Java 1.3
public boolean getOOBInline() throws SocketException // Java 1.3
The default for OOBInline is false. This code fragment turns
 OOBInline on, if it's turned off:
if (s.getOOBInline()) s.setOOBInline(true);
Once OOBInline is turned on, any urgent data that arrives will
 be placed on the socket's input stream to be read in the usual way.
 Java does not distinguish it from non-urgent data.

SO_REUSEADDR // Java 1.4

 When a socket is closed, it may not immediately release the
 local address, especially if a connection was open when the socket
 was closed. It can sometimes wait for a small amount of time to make
 sure it receives any lingering packets that were addressed to the
 port that were still crossing the network when the socket was
 closed. The system won't do anything with any of the late packets it
 receives. It just wants to make sure they don't accidentally get fed
 into a new process that has bound to the same port.
This isn't a big problem on a random port, but it can be an
 issue if the socket has bound to a well-known port because it
 prevents any other socket from using that port in the meantime. If
 the SO_REUSEADDR is turned on (it's turned off by default), another
 socket is allowed to bind to the port even while data may be
 outstanding for the previous socket.
In Java this option is controlled by these two methods:
public void setReuseAddress(boolean on) throws SocketException
public boolean getReuseAddress() throws SocketException
For this to work, setReuseAddress() must be called before the new
 socket binds to the port. This means the socket must be created in
 an unconnected state using the no-args constructor; then setReuseAddress(true) is called, and the
 socket is connected using the connect(
) method. Both the socket that was previously connected
 and the new socket reusing the old address must set SO_REUSEADDR to
 true for it to take effect.

Class of Service

 In the last few years, a lot of thought has gone into
 deriving different classes of service for different types of data that
 may be transferred across the Internet. For instance, video needs
 relatively high bandwidth and low latency for good performance,
 whereas email can be passed over low-bandwidth connections and even
 held up for several hours without major harm. It might be wise to
 price the different classes of service differentially so that people
 won't ask for the highest class of service automatically. After all,
 if sending an overnight letter cost the same as sending a package via
 media mail, we'd all just use Fed Ex overnight, which would quickly
 become congested and overwhelmed. The Internet is no different.
Currently, four traffic classes have been defined for TCP data,
 although not all routers and native TCP stacks support them. These
 classes are low cost, high reliability, maximum throughput, and
 minimum delay. Furthermore, they can be combined. For instance, you
 can request the minimum delay available at low cost. These measure are
 all fuzzy and relative, not hard and fast guarantees of
 service.
Java lets you inspect and set the class of service for a socket
 using these two methods:
public int getTrafficClass() throws SocketException
public void setTrafficClass(int trafficClass) throws SocketException
The traffic class is given as an int between 0 and 255. (Values
 outside this range cause IllegalArgumentExceptions.) This int is a
 combination of bit-flags. Specifically:
	0x02: Low cost

	0x04: High reliability

	0x08: Maximum throughput

	0x10: Minimum delay

The lowest order, ones bit must be zero. The other three high
 order bits are not yet used. For example, this code fragment requests
 a low cost connection:
Socket s = new Socket("www.yahoo.com", 80);
s.setTrafficClass(0x02);
This code fragment requests a connection with maximum throughput
 and minimum delay:
Socket s = new Socket("www.yahoo.com", 80);
s.setTrafficClass(0x08 | 0x10);
The underlying socket implementation is not required to respect
 any of these requests. They only provide a hint to the TCP stack about
 the desired policy. Many implementations ignore these values
 completely. If the TCP stack is unable to provide the requested class
 of service, it may but is not required to throw a SocketException.
Java does not provide any means to access pricing information
 for the different classes of service. Be aware that your ISP may
 charge you for faster or more reliable connections using these
 features. (If they make it available at all. This is all still pretty
 bleeding edge stuff.)
Java 1.5 adds a slightly different method to set preferences,
 the setPerformancePreferences()
 method:
public void setPerformancePreferences(int connectionTime,
 int latency, int bandwidth)
This method expresses the relative preferences given to
 connection time, latency, and bandwidth. For instance, if connectionTime is 2 and latency is 1 and bandwidth is 3, then maximum bandwidth is
 the most important characteristic, minimum latency is the least
 important, and connection time is in the middle. Exactly how any given
 VM implements this is implementation-dependent. Indeed, it may be a
 no-op in some implementations. The documentation even suggests using
 non-TCP/IP sockets, though it's not at all clear what that
 means.

The Object Methods

The Socket class overrides only one of the standard methods from
 java.lang.Object, toString(). Since sockets are transitory
 objects that typically last only as long as the connection they
 represent, there's not much need or purpose to storing them in hash
 tables or comparing them to each other. Therefore, Socket does not override equals() or hashCode(), and the semantics for these
 methods are those of the Object
 class. Two Socket objects are equal
 to each other if and only if they are the same socket.
public String toString()

The toString() method
 produces a string that looks like this:
Socket[addr=www.oreilly.com/198.112.208.11,port=80,localport=50055]
This is ugly and useful primarily for debugging. Don't rely on
 this format; it may change in the future. All parts of this string
 are accessible directly through other methods (specifically getInetAddress(), getPort(), and getLocalPort()).

Socket Exceptions

 Most methods of the Socket class are declared to throw IOException or its subclass, java.net.SocketException:
public class SocketException extends IOException
However, knowing that a problem occurred is often not sufficient
 to deal with the problem. Did the remote host refuse the connection
 because it was busy? Did the remote host refuse the connection because
 no service was listening on the port? Did the connection attempt timeout
 because of network congestion or because the host was down? There are
 several subclasses of SocketException
 that provide more information about what went wrong and why:
public class BindException extends SocketException
public class ConnectException extends SocketException
public class NoRouteToHostException extends SocketException
A BindException is thrown if you try to construct a Socket or ServerSocket object on a local port that is in
 use or that you do not have sufficient privileges to use. A ConnectException is thrown when a connection is refused at the remote
 host, which usually happens because the host is busy or no process is
 listening on that port. Finally, a NoRouteToHostException indicates that the connection has timed out.
The java.net package also
 includes ProtocolException, a direct
 subclass of IOException:
public class ProtocolException extends IOException
This is thrown when data is received from the network that somehow
 violates the TCP/IP specification.
None of these exception classes have any special methods you
 wouldn't find in any other exception class, but you can take advantage
 of these subclasses to provide more informative error messages or to
 decide whether retrying the offending operation is likely to be
 successful.

Socket Addresses

The SocketAddress class introduced in Java 1.4 represents a connection
 endpoint. The actual java.net.SocketAddress class is an empty
 abstract class with no methods aside from a default constructor:
package java.net.*;

public abstract class SocketAddress {

 public SocketAddress() {}

}
At least theoretically, this class can be used for both TCP and
 non-TCP sockets. Subclasses of SocketAddress provide more detailed
 information appropriate for the type of socket. In practice, only TCP/IP
 sockets are currently supported.
The primary purpose of the SocketAddress class is to provide a convenient
 store for transient socket connection information such as the IP address
 and port that can be reused to create new sockets, even after the
 original socket is disconnected and garbage collected. To this end, the
 Socket class offers two methods that
 return SocketAddress objects:
 getRemoteSocketAddress() returns the address of the system being connected to and
 getLocalSocketAdddress() returns the
 address from which the connection is made:
public SocketAddress getRemoteSocketAddress()
public SocketAddress getLocalSocketAddress()
Both of these methods return null if the socket is not yet
 connected.
A SocketAddress is necessary to
 connect an unconnected socket via the connect(
) method:
public void connect(SocketAddress endpoint) throws IOException
For example, first you might connect to Yahoo, then store its
 address:
Socket socket = new Socket("www.yahoo.com", 80);
SocketAddress yahoo = socket.getRemoteSocketAddress();
socket.close();
Later, you could reconnect to Yahoo using this address:
socket = new Socket();
socket.connect(yahoo);
Not all socket implementations can use the same subclasses of
 SocketAddress. If an instance of the
 wrong type is passed to connect(),
 it throws an IllegalArgumentException.
You can pass an int as the
 second argument to specify the number of milliseconds to wait before the
 connection times out:
 public void connect(SocketAddress endpoint, int timeout) throws IOException
The default, 0, means wait forever.

Examples

HotJava was one of the first large-scale Java programs; it's a web
 browser that was easily the equal of the early versions of Mosaic.
 HotJava has been discontinued, but there are numerous network-aware
 applications written in Java, including the LimeWire Gnutella client,
 the Eclipse IDE, and the JBoss application server. It is completely
 possible to write commercial-quality applications in Java; and it is
 especially possible to write network-aware applications, both clients
 and servers. This section shows two network clients, finger and whois,
 to illustrate this point. I stop short of what could be done, but only
 in the user interface. All the necessary networking code is present.
 Indeed, once again we find out that network code is easy; it's user
 interfaces that are hard.
Finger

Finger is a straightforward protocol described in RFC 1288. The
 client makes a TCP connection to the server on port 79 and sends a
 one-line query; the server responds to the query and closes the
 connection. The format of the query is precisely defined, the format
 of the response somewhat less so. All data transferred should probably
 be pure printable ASCII text, although unfortunately, the
 specification contradicts itself repeatedly on this point. The
 specification also recommends that clients filter out any non-ASCII
 data they do receive, at least by default. All lines must end with a
 carriage return/linefeed pair (\r\n
 in Java parlance).
Tip
Failure to filter nonprintable characters allows
 mischievous users to configure their .plan files to reset people's terminals,
 switch them into graphics mode, or play other tricks accessible to
 those with intimate knowledge of VT-terminal escape sequences. While
 amusing to experienced users who recognize what's going on and
 appreciate the hack value of such .plan files, these tricks do confuse and
 terrify the uninitiated.

The simplest allowable request from the client is a bare
 carriage return/linefeed pair, which is usually interpreted as a
 request to show a list of the currently logged-in users. For
 example:
% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.

Login Name TTY Idle When Where
jacola Jane Colaginae *pts/7 Tue 08:01 208.34.37.104
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-dialup11.poly.e
matewan Sepin Matewan *pts/17 17: Thu 15:32 128.238.10.177
hengpi Heng Pin *pts/10 Tue 10:36 128.238.18.119
nadats Nabeel Datsun pts/12 56 Mon 10:38 128.238.213.227
matewan Sepin Matewan *pts/8 4 Sun 18:39 128.238.10.177
Connection closed by foreign host.
It is also possible to request information about a specific user
 or username by including that user or username on the query
 line:
% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.
marcus
Login Name TTY Idle When Where
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-dialup11.poly.e
The information that finger servers return typically includes
 the user's full name, where he's connected from, how long he has been
 connected, and any other information he has chosen to make available
 in his .plan file. A few servers put finger to
 other uses; for example, several sites give you a list of recent
 earthquake activity. Vending machines connected to the Internet return
 a list of items available for purchase. It is possible to request
 information about users via their first name, last name, or login
 name. You can also request information about more than one user at a
 time like this:
% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.
marcus nadats matewan
Login Name TTY Idle When Where
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-dialup11.poly.e
nadats Nabeel Datsun pts/12 59 Mon 10:38 128.238.213.227
matewan Sepin Matewan *pts/17 17: Thu 15:32 128.238.10.177
matewan Sepin Matewan *pts/8 8 Sun 18:39 128.238.10.177
Connection closed by foreign host.
In this section, we'll develop a Java finger client that allows
 users to specify a hostname on the command line, followed by zero or
 more usernames. For example, a typical command line will look
 like:
% java FingerClient hostname user1 user2 ...
FingerClient connects to port 79 on the specified host. The socket's
 OutputStream is chained to an
 OutputStreamWriter using the ISO
 8859-1 encoding, which sends a line consisting of all the names on the
 command line, followed by a carriage return and a linefeed. Next, the
 output from the server (which is input to the program) is taken from
 theSocket.getInputStream() and
 chained first to a BufferedInputStream for performance and then
 to an InputStreamReader so the
 server response can be read as text. The server's output is presented
 to the user on System.out. Example
 9-8 shows the code.
Example 9-8. A Java command-line finger client
import java.net.*;
import java.io.*;

public class FingerClient {

 public final static int DEFAULT_PORT = 79;

 public static void main(String[] args) {

 String hostname = "localhost";

 try {
 hostname = args[0];
 }
 catch (ArrayIndexOutOfBoundsException ex) {
 hostname = "localhost";
 }

 Socket connection = null;
 try {
 connection = new Socket(hostname, DEFAULT_PORT);
 Writer out = new OutputStreamWriter(
 connection.getOutputStream(), "8859_1");
 for (int i = 1; i < args.length; i++) out.write(args[i] + " ");
 out.write("\r\n");
 out.flush();
 InputStream raw = connection.getInputStream();
 BufferedInputStream buffer = new BufferedInputStream(raw);
 InputStreamReader in = new InputStreamReader(buffer, "8859_1");
 int c;
 while ((c = in.read()) != -1) {
 // filter non-printable and non-ASCII as recommended by RFC 1288
 if ((c >= 32 && c < 127) || c == '\t' || c == '\r' || c == '\n')
 {
 System.out.write(c);
 }
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) {}
 }

 }

}

Here are some samples of this program running:
D:\JAVA\JNP2\examples\10>java FingerClient rama.poly.edu
Login Name TTY Idle When Where
jacolag Jane Colaginae *pts/7 Tue 08:01 208.34.37.104
hengpi Heng Pin pts/9 5 Tue 14:09 128.238.18.119
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-dialup11.
 poly.e
matewan Sepin Matewan *pts/17 17: Thu 15:32 128.238.10.177
hengpi Heng Pin *pts/10 Tue 10:36 128.238.18.119
nadats Nabeel Datsun pts/12 1:05 Mon 10:38 128.238.213.227
nadats Nabeel Datsun pts/12 1:05 Mon 10:38 128.238.213.227
matewan Sepin Matewan *pts/8 14 Sun 18:39 128.238.10.177

D:\JAVA\JNP2\examples\10>java FingerClient rama.poly.edu marcus
Login Name TTY Idle When Where
Marcus Marcus Tullius pts/15 13d Tue 17:33 farm-dialup11.
 poly.e

Whois

Whois is a simple directory service protocol defined in RFC
 954; it was originally designed to keep track of administrators
 responsible for Internet hosts and domains. A whois client connects to
 one of several central servers and requests directory information for
 a person or persons; it can usually give you a phone number, an email
 address, and a snail mail address (not necessarily current ones,
 though). With the explosive growth of the Internet, flaws have become
 apparent in the whois protocol, most notably its centralized nature. A
 more complex replacement called whois++ is documented in RFCs 1913 and
 1914 but has not been widely implemented.
Let's begin with a simple client to connect to a whois server.
 The basic structure of the whois protocol is:
	The client opens a TCP socket to port 43 on the
 server.

	The client sends a search string terminated by a carriage
 return/linefeed pair (\r\n).
 The search string can be a name, a list of names, or a special
 command, as discussed below. You can also search for domain names,
 like oreilly.com or netscape.com, which give you
 information about a network.

	The server sends an unspecified amount of human-readable
 information in response to the command and closes the
 connection.

	The client displays this information to the user.

The search string the client sends has a fairly simple format.
 At its most basic, it's just the name of the person you're searching
 for. Here's a simple whois search for "Harold":
% telnet whois.internic.net 43
Trying 198.41.0.6...
Connected to whois.internic.net.
Escape character is '^]'.
Harold

Whois Server Version 1.3

Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

HAROLD.NET
HAROLD.COM

To single out one record, look it up with "xxx", where xxx is one of the
of the records displayed above. If the records are the same, look them up
with "=xxx" to receive a full display for each record.

>>> Last update of whois database: Tue, 16 Dec 2003 18:36:16 EST <<<

NOTICE: The expiration date displayed in this record is the date the
registrar's sponsorship of the domain name registration in the registry is
currently set to expire. This date does not necessarily reflect the expiration
date of the domain name registrant's agreement with the sponsoring
registrar. Users may consult the sponsoring registrar's Whois database to
view the registrar's reported date of expiration for this registration.

TERMS OF USE: You are not authorized to access or query our Whois
database through the use of electronic processes that are high-volume and
automated except as reasonably necessary to register domain names or
modify existing registrations; the Data in VeriSign Global Registry
Services' ("VeriSign") Whois database is provided by VeriSign for
information purposes only, and to assist persons in obtaining information
about or related to a domain name registration record. VeriSign does not
guarantee its accuracy. By submitting a Whois query, you agree to abide
by the following terms of use: You agree that you may use this Data only
for lawful purposes and that under no circumstances will you use this Data
to: (1) allow, enable, or otherwise support the transmission of mass
unsolicited, commercial advertising or solicitations via e-mail, telephone,
or facsimile; or (2) enable high volume, automated, electronic processes
that apply to VeriSign (or its computer systems). The compilation,
repackaging, dissemination or other use of this Data is expressly
prohibited without the prior written consent of VeriSign. You agree not to
use electronic processes that are automated and high-volume to access or
query the Whois database except as reasonably necessary to register
domain names or modify existing registrations. VeriSign reserves the right
to restrict your access to the Whois database in its sole discretion to ensure
operational stability. VeriSign may restrict or terminate your access to the
Whois database for failure to abide by these terms of use. VeriSign
reserves the right to modify these terms at any time.

The Registry database contains ONLY .COM, .NET, .EDU domains and
Registrars.
Connection closed by foreign host.
Although the previous input has a pretty clear format, that
 format is regrettably nonstandard. Different whois servers can and do send decidedly different
 output. For example, here are the first couple of results from the
 same search at the main French whois server,
 whois.nic.fr:
% telnet whois.nic.fr 43
telnet whois.nic.fr 43
Trying 192.134.4.18...
Connected to winter.nic.fr.
Escape character is '^]'.
Harold

Tous droits reserves par copyright.
Voir http://www.nic.fr/outils/dbcopyright.html
Rights restricted by copyright.
See http://www.nic.fr/outils/dbcopyright.html

person: Harold Potier
address: ARESTE
address: 154 Avenue Du Brezet
address: 63000 Clermont-Ferrand
address: France
phone: +33 4 73 42 67 67
fax-no: +33 4 73 42 67 67
nic-hdl: HP4305-FRNIC
mnt-by: OLEANE-NOC
changed: hostmaster@oleane.net 20000510
changed: migration-dbm@nic.fr 20001015
source: FRNIC

person: Harold Israel
address: LE PARADIS LATIN
address: 28 rue du Cardinal Lemoine
address: Paris, France 75005 FR
phone: +33 1 43252828
fax-no: +33 1 43296363
e-mail: info@cie.fr
nic-hdl: HI68-FRNIC
notify: info@cie.fr
changed: registrar@ns.il 19991011
changed: migration-dbm@nic.fr 20001015
source: FRNIC
Here each complete record is returned rather than just a list of
 sites. Other whois servers may use still other formats. This protocol
 is not at all designed for machine processing. You pretty much have to
 write new code to handle the output of each different whois server.
 However, regardless of the output format, each response likely
 contains a handle , which in the Internic output is a domain name, and in
 the nic.fr output is in the nic-hdl field. Handles are guaranteed to
 be unique, and are used to get more specific information about a
 person or a network. If you search for a handle, you will get at most
 one match. If your search only has one match, either because you're
 lucky or you're searching for a handle, then the server returns a more
 detailed record. Here's a search for oreilly.com.
 Because there is only one oreilly.com in the
 database, the server returns all the information it has on this
 domain:
% telnet whois.internic.net 43
Trying 198.41.0.6...
Connected to whois.internic.net.
Escape character is '^]'.
oreilly.com

Whois Server Version 1.3

Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

 Domain Name: OREILLY.COM
 Registrar: BULKREGISTER, LLC.
 Whois Server: whois.bulkregister.com
 Referral URL: http://www.bulkregister.com
 Name Server: NS1.SONIC.NET
 Name Server: NS.OREILLY.COM
 Status: ACTIVE
 Updated Date: 17-oct-2002
 Creation Date: 27-may-1997
 Expiration Date: 26-may-2004

>>> Last update of whois database: Tue, 16 Dec 2003 18:36:16 EST <<<
...
Connection closed by foreign host.
It's easy to implement a simple whois client that connects to
 whois.internic.net and searches for names entered
 on the command line. Example
 9-9 is just such a client. The server can be changed using the
 WHOIS_SERVER system property, which can be set on the command line
 using the -D option. I won't claim
 this is an exemplary user interface, but it's simple enough to code
 and lets the example focus more on the interesting network parts of
 the problem.
Example 9-9. A command-line whois client
import java.net.*;
import java.io.*;

public class WhoisClient {

 public final static int DEFAULT_PORT = 43;
 public final static String DEFAULT_HOST = "whois.internic.net";

 public static void main(String[] args) {

 String serverName = System.getProperty("WHOIS_SERVER", DEFAULT_HOST);

 InetAddress server = null;
 try {
 server = InetAddress.getByName(serverName);
 }
 catch (UnknownHostException ex) {
 System.err.println("Error: Could not locate whois server "
 + server);
 System.err.println("Usage: java -DWHOIS_SERVER=hostname
 WhoisClient name");
 return;
 }

 try {
 Socket theSocket = new Socket(server, DEFAULT_PORT);
 Writer out = new OutputStreamWriter(theSocket.getOutputStream(),
 "8859_1");
 for (int i = 0; i < args.length; i++) out.write(args[i] + " ");
 out.write("\r\n");
 out.flush();
 InputStream raw = theSocket.getInputStream();
 InputStream in = new BufferedInputStream(theSocket.getInputStream());
 int c;
 while ((c = in.read()) != -1) System.out.write(c);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

}

The class has two final
 static fields: the DEFAULT_PORT, 43, and the DEFAULT_HOST, whois.internic.net. The host
 can be changed by setting the WHOISE_SERVER system property. The
 main() method begins by opening a
 socket to this whois server on port 43. The Socket's OutputStream is chained to an OutputStreamWriter. Then each argument on
 the command-line is written on this stream and sent out over the
 socket to the whois server. A carriage return/linefeed is written and
 the writer is flushed.
Next, the Socket's InputStream is stored in the variable
 raw, which is buffered using the
 BufferedInputStream in. Since whois is known to use ASCII, bytes
 are read from this stream with read(
) and copied onto System.out until read() returns -1, signaling the end of the
 server's response. Each character is simply copied onto System.out.
The whois protocol supports several flags you can use to
 restrict or expand your search. For example, if you know you want to
 search for a person named "Elliott" but you aren't sure whether he
 spells his name "Elliot", "Elliott", or perhaps even something as
 unlikely as "Elliotte", you would type:
% whois Person Partial Elliot
This tells the whois server that you want only matches for
 people (not domains, gateways, groups, or the like) whose names begin
 with the letters "Elliot". Unfortunately, you need to do a separate
 search if you want to find someone who spells his name "Eliot". The
 rules for modifying a search are summarized in Table 9-1. Each prefix should
 be placed before the search string on the command line.
Table 9-1. Whois prefixes
	Prefix
	Meaning

	Domain
	Find only domain records.

	Gateway
	Find only gateway records.

	Group
	Find only group records.

	Host
	Find only host records.

	Network
	Find only network records.

	Organization
	Find only organization records.

	Person
	Find only person records.

	ASN
	Find only autonomous system number
 records.

	Handle or !
	Search only for matching handles.

	Mailbox or @
	Search only for matching email
 addresses.

	Name or :
	Search only for matching names.

	Expand or *
	Search only for group records and show all
 individuals in that group.

	Full or =
	Show complete record for each
 match.

	Partial or suffix
	Match records that start with the given
 string.

	Summary or $
	Show just the summary, even if there's only one
 match.

	SUBdisplay or %
	Show the users of the specified host, the hosts
 on the specified network, etc.

These keywords are all useful and you could use them with the
 command-line client of Example
 9-9, but they're way too much trouble to remember. In fact,
 most people don't even know that they exist. They just type "whois
 Harold" at the command-line and sort through the mess that comes back.
 A good whois client doesn't rely on users remembering arcane keywords;
 rather, it shows them the options. Supplying this requires a graphical
 user interface for end users and a better API for client
 programmers.
Example 9-10 is a
 more reusable Whois class. Two fields define the state of each Whois object: host, an InetAddress object, and port, an int. Together, these define the server that
 this particular Whois object
 connects to. Five constructors set these fields from various
 combinations of arguments. Furthermore, the host can be changed using
 the setHost() method.
The main functionality of the class is in one method, lookUpNames() . The lookUpNames()
 method returns a String containing
 the whois response to a given query. The arguments specify the string
 to search for, what kind of record to search for, which database to
 search in, and whether an exact match is required. We could have used
 strings or int constants to specify
 the kind of record to search for and the database to search in, but
 since there are only a small number of valid values, lookUpNames() defines public inner classes
 with a fixed number of members instead. This solution provides much
 stricter compile-time type-checking and guarantees the Whois class won't have to handle an
 unexpected value.
Example 9-10. The Whois class
import java.net.*;
import java.io.*;
import com.macfaq.io.SafeBufferedReader;

public class Whois {

 public final static int DEFAULT_PORT = 43;
 public final static String DEFAULT_HOST = "whois.internic.net";

 private int port = DEFAULT_PORT;
 private InetAddress host;

 public Whois(InetAddress host, int port) {
 this.host = host;
 this.port = port;
 }

 public Whois(InetAddress host) {
 this(host, DEFAULT_PORT);
 }

 public Whois(String hostname, int port)
 throws UnknownHostException {
 this(InetAddress.getByName(hostname), port);
 }

 public Whois(String hostname) throws UnknownHostException {
 this(InetAddress.getByName(hostname), DEFAULT_PORT);
 }

 public Whois() throws UnknownHostException {
 this(DEFAULT_HOST, DEFAULT_PORT);
 }

 // Items to search for
 public static class SearchFor {

 public static SearchFor ANY = new SearchFor();
 public static SearchFor NETWORK = new SearchFor();
 public static SearchFor PERSON = new SearchFor();
 public static SearchFor HOST = new SearchFor();
 public static SearchFor DOMAIN = new SearchFor();
 public static SearchFor ORGANIZATION = new SearchFor();
 public static SearchFor GROUP = new SearchFor();
 public static SearchFor GATEWAY = new SearchFor();
 public static SearchFor ASN = new SearchFor();

 private SearchFor() {};

 }

 // Categories to search in
 public static class SearchIn {

 public static SearchIn ALL = new SearchIn();
 public static SearchIn NAME = new SearchIn();
 public static SearchIn MAILBOX = new SearchIn();
 public static SearchIn HANDLE = new SearchIn();

 private SearchIn() {};

 }

 public String lookUpNames(String target, SearchFor category,
 SearchIn group, boolean exactMatch) throws IOException {

 String suffix = "";
 if (!exactMatch) suffix = ".";

 String searchInLabel = "";
 String searchForLabel = "";

 if (group == SearchIn.ALL) searchInLabel = "";
 else if (group == SearchIn.NAME) searchInLabel = "Name ";
 else if (group == SearchIn.MAILBOX) searchInLabel = "Mailbox ";
 else if (group == SearchIn.HANDLE) searchInLabel = "!";

 if (category == SearchFor.NETWORK) searchForLabel = "Network ";
 else if (category == SearchFor.PERSON) searchForLabel = "Person ";
 else if (category == SearchFor.HOST) searchForLabel = "Host ";
 else if (category == SearchFor.DOMAIN) searchForLabel = "Domain ";
 else if (category == SearchFor.ORGANIZATION) {
 searchForLabel = "Organization ";
 }
 else if (category == SearchFor.GROUP) searchForLabel = "Group ";
 else if (category == SearchFor.GATEWAY) {
 searchForLabel = "Gateway ";
 }
 else if (category == SearchFor.ASN) searchForLabel = "ASN ";

 String prefix = searchForLabel + searchInLabel;
 String query = prefix + target + suffix;

 Socket theSocket = new Socket(host, port);
 Writer out
 = new OutputStreamWriter(theSocket.getOutputStream(), "ASCII");
 SafeBufferedReader in = new SafeBufferedReader(new
 InputStreamReader(theSocket.getInputStream(), "ASCII"));
 out.write(query + "\r\n");
 out.flush();
 StringBuffer response = new StringBuffer();
 String theLine = null;
 while ((theLine = in.readLine()) != null) {
 response.append(theLine);
 response.append("\r\n");
 }
 theSocket.close();

 return response.toString();

 }

 public InetAddress getHost() {
 return this.host;
 }

 public void setHost(String host)
 throws UnknownHostException {
 this.host = InetAddress.getByName(host);
 }

}

Figure 9-1 shows one
 possible interface for a graphical whois client that depends on Example 9-11 for the actual
 network connections. This interface has a text field to enter the name
 to be searched for and a checkbox to determine whether the match
 should be exact or partial. A group of radio buttons lets users
 specify which group of records they want to search. Another group of
 radio buttons chooses the fields that should be searched. By default,
 this client searches all fields of all records for an exact
 match.
[image: A graphical whois client]

Figure 9-1. A graphical whois client

When a user enters a string in the Whois: text field and presses
 the Enter or Find button, the program makes a connection to the whois
 server and retrieves records that match that string. These are placed
 in the text area in the bottom of the window. Initially, the server is
 set to whois.internic.net, but the user is free
 to change this setting. Example
 9-11 is the program that produces this interface.
Example 9-11. A graphical Whois client interface
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

public class WhoisGUI extends JFrame {

 private JTextField searchString = new JTextField(30);
 private JTextArea names = new JTextArea(15, 80);
 private JButton findButton = new JButton("Find");;
 private ButtonGroup searchIn = new ButtonGroup();
 private ButtonGroup searchFor = new ButtonGroup();
 private JCheckBox exactMatch = new JCheckBox("Exact Match", true);
 private JTextField chosenServer = new JTextField();
 private Whois server;

 public WhoisGUI(Whois whois) {

 super("Whois");
 this.server = whois;
 Container pane = this.getContentPane();

 Font f = new Font("Monospaced", Font.PLAIN, 12);
 names.setFont(f);
 names.setEditable(false);

 JPanel centerPanel = new JPanel();
 centerPanel.setLayout(new GridLayout(1, 1, 10, 10));
 JScrollPane jsp = new JScrollPane(names);
 centerPanel.add(jsp);
 pane.add("Center", centerPanel);

 // You don't want the buttons in the south and north
 // to fill the entire sections so add Panels there
 // and use FlowLayouts in the Panel
 JPanel northPanel = new JPanel();
 JPanel northPanelTop = new JPanel();
 northPanelTop.setLayout(new FlowLayout(FlowLayout.LEFT));
 northPanelTop.add(new JLabel("Whois: "));
 northPanelTop.add("North", searchString);
 northPanelTop.add(exactMatch);
 northPanelTop.add(findButton);
 northPanel.setLayout(new BorderLayout(2,1));
 northPanel.add("North", northPanelTop);
 JPanel northPanelBottom = new JPanel();
 northPanelBottom.setLayout(new GridLayout(1,3,5,5));
 northPanelBottom.add(initRecordType());
 northPanelBottom.add(initSearchFields());
 northPanelBottom.add(initServerChoice());
 northPanel.add("Center", northPanelBottom);

 pane.add("North", northPanel);

 ActionListener al = new LookupNames();
 findButton.addActionListener(al);
 searchString.addActionListener(al);

 }

 private JPanel initRecordType() {

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(6, 2, 5, 2));
 p.add(new JLabel("Search for:"));
 p.add(new JLabel(""));

 JRadioButton any = new JRadioButton("Any", true);
 any.setActionCommand("Any");
 searchFor.add(any);
 p.add(any);

 p.add(this.makeRadioButton("Network"));
 p.add(this.makeRadioButton("Person"));
 p.add(this.makeRadioButton("Host"));
 p.add(this.makeRadioButton("Domain"));
 p.add(this.makeRadioButton("Organization"));
 p.add(this.makeRadioButton("Group"));
 p.add(this.makeRadioButton("Gateway"));
 p.add(this.makeRadioButton("ASN"));

 return p;

 }

 private JRadioButton makeRadioButton(String label) {

 JRadioButton button = new JRadioButton(label, false);
 button.setActionCommand(label);
 searchFor.add(button);
 return button;

 }

 private JRadioButton makeSearchInRadioButton(String label) {

 JRadioButton button = new JRadioButton(label, false);
 button.setActionCommand(label);
 searchIn.add(button);
 return button;

 }

 private JPanel initSearchFields() {

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(6, 1, 5, 2));
 p.add(new JLabel("Search In: "));

 JRadioButton all = new JRadioButton("All", true);
 all.setActionCommand("All");
 searchIn.add(all);
 p.add(all);

 p.add(this.makeSearchInRadioButton("Name"));
 p.add(this.makeSearchInRadioButton("Mailbox"));
 p.add(this.makeSearchInRadioButton("Handle"));

 return p;

 }

 private JPanel initServerChoice() {

 final JPanel p = new JPanel();
 p.setLayout(new GridLayout(6, 1, 5, 2));
 p.add(new JLabel("Search At: "));

 chosenServer.setText(server.getHost().getHostName());
 p.add(chosenServer);
 chosenServer.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 try {
 InetAddress newHost
 = InetAddress.getByName(chosenServer.getText());
 Whois newServer = new Whois(newHost);
 server = newServer;
 }
 catch (Exception ex) {
 JOptionPane.showMessageDialog(p,
 ex.getMessage(), "Alert", JOptionPane.ERROR_MESSAGE);
 }
 }
 });

 return p;

 }

 class LookupNames implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 Whois.SearchIn group = Whois.SearchIn.ALL;
 Whois.SearchFor category = Whois.SearchFor.ANY;

 String searchForLabel = searchFor.getSelection().getActionCommand();
 String searchInLabel = searchIn.getSelection().getActionCommand();
 if (searchInLabel.equals("Name")) group = Whois.SearchIn.NAME;
 else if (searchInLabel.equals("Mailbox")) {
 group = Whois.SearchIn.MAILBOX;
 }
 else if (searchInLabel.equals("Handle")) {
 group = Whois.SearchIn.HANDLE;
 }

 if (searchForLabel.equals("Network")) {
 category = Whois.SearchFor.NETWORK;
 }
 else if (searchForLabel.equals("Person")) {
 category = Whois.SearchFor.PERSON;
 }
 else if (searchForLabel.equals("Host")) {
 category = Whois.SearchFor.HOST;
 }
 else if (searchForLabel.equals("Domain")) {
 category = Whois.SearchFor.DOMAIN;
 }
 else if (searchForLabel.equals("Organization")) {
 category = Whois.SearchFor.ORGANIZATION;
 }
 else if (searchForLabel.equals("Group")) {
 category = Whois.SearchFor.GROUP;
 }
 else if (searchForLabel.equals("Gateway")) {
 category = Whois.SearchFor.GATEWAY;
 }
 else if (searchForLabel.equals("ASN")) {
 category = Whois.SearchFor.ASN;
 }

 try {
 names.setText("");
 server.setHost(chosenServer.getText());
 String result = server.lookUpNames(searchString.getText(),
 category, group, exactMatch.isSelected());
 names.setText(result);
 }
 catch (IOException ex) {
 JOptionPane.showMessageDialog(WhoisGUI.this,
 ex.getMessage(), "Lookup Failed", JOptionPane.ERROR_MESSAGE);
 }
 }

 }

 public static void main(String[] args) {

 try {
 Whois server = new Whois();
 WhoisGUI a = new WhoisGUI(server);
 a.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 a.pack();
 EventQueue.invokeLater(new FrameShower(a));

 }
 catch (UnknownHostException ex) {
 JOptionPane.showMessageDialog(null, "Could not locate default host "
 + Whois.DEFAULT_HOST, "Error", JOptionPane.ERROR_MESSAGE);
 }

 }

 private static class FrameShower implements Runnable {

 private final Frame frame;

 FrameShower(Frame frame) {
 this.frame = frame;
 }

 public void run() {
 frame.setVisible(true);
 }

 }

}

The main() method is the
 usual block of code to start up a standalone application. It
 constructs a Whois object and, then
 uses that to construct a WhoisGUI
 object. Then the WhoisGUI () constructor sets up the graphical user
 interface. There's a lot of redundant code here, so it's broken out
 into the private methods initSearchFields(
), initServerChoice(),
 makeSearchInRadioButton(), and
 makeSearchForRadioButton(). As
 usual with LayoutManager-based
 interfaces, the setup is fairly involved. Since you'd probably use a
 visual designer to build such an application, I won't describe it in
 detail here.
When the constructor returns, the main(
) method attaches an anonymous inner class to the window
 that will close the application when the window is closed. (This isn't
 in the constructor because other programs that use this class may not
 want to exit the program when the window closes.) main() then packs and shows the window. To
 avoid an obscure race condition that can lead to deadlock this needs
 to be done in the event dispatch thread. Hence the FrameShower inner class that implements
 Runnable and the call to EventQueue.invokeLater(). From that point
 on, all activity takes place in the AWT thread.
The first event this program must respond to is the user's
 typing a name in the Whois: text field and either pressing the Find
 button or hitting Enter. In this case, the LookupNames inner class passes the
 information in the text field and the various radio buttons and
 checkboxes to the server.lookUpNames(
) method. This method returns a String, which is placed in the names text area.
The second event this program must respond to is the user typing
 a new host in the server text field. In this case, an anonymous inner
 class tries to construct a new Whois object and store it in the server
 field. If it fails (e.g., because the user mistyped the hostname), the
 old server is restored. An alert box informs the user of this
 event.
This is not a perfect client by any means. The most glaring
 omission is that it doesn't provide a way to save the data and quit
 the program. Less obvious until you run the program is that
 responsiveness suffers because the network connection is made inside
 the AWT thread. It would be better to place the connections to the
 server in their own thread and use callbacks to place the data in the
 GUI as the data is received. However, implementing callbacks would
 take us too far afield from the topic of network programming, so I
 leave them as exercises for the reader.

Chapter 10. Sockets for Servers

 The last chapter discussed sockets from the standpoint of
 clients: programs that open a socket to a server
 that's listening for connections. However, client sockets themselves
 aren't enough; clients aren't much use unless they can talk to a server,
 and the Socket class discussed in the
 last chapter is not sufficient for writing servers. To create a Socket, you need to know the Internet host to
 which you want to connect. When you're writing a server, you don't know in
 advance who will contact you, and even if you did, you wouldn't know when
 that host wanted to contact you. In other words, servers are like
 receptionists who sit by the phone and wait for incoming calls. They don't
 know who will call or when, only that when the phone rings, they have to
 pick it up and talk to whoever is there. You can't program that behavior
 with the Socket class alone.
For servers that accept connections, Java provides a ServerSocket class that represents server
 sockets. In essence, a server socket's job is to sit by the phone and wait
 for incoming calls. More technically, a server socket runs on the server
 and listens for incoming TCP connections. Each server socket listens on a
 particular port on the server machine. When a client on a remote host
 attempts to connect to that port, the server wakes up, negotiates the
 connection between the client and the server, and returns a regular
 Socket object representing the socket
 between the two hosts. In other words, server sockets wait for connections
 while client sockets initiate connections. Once a ServerSocket has set up the connection, the
 server uses a regular Socket object to
 send data to the client. Data always travels over the regular
 socket.
The ServerSocket Class

The ServerSocket class contains everything needed to write servers in
 Java. It has constructors that create new ServerSocket objects, methods that listen for
 connections on a specified port, methods that configure the various
 server socket options, and the usual miscellaneous methods such as
 toString().
In Java, the basic life cycle of a server program
 is:
	A new ServerSocket is
 created on a particular port using a ServerSocket() constructor.

	The ServerSocket listens
 for incoming connection attempts on that port using its accept() method. accept() blocks until a client attempts
 to make a connection, at which point accept() returns a Socket object connecting the client and
 the server.

	Depending on the type of server, either the Socket's getInputStream() method, getOutputStream() method, or both are
 called to get input and output streams that communicate with the
 client.

	The server and the client interact according to an agreed-upon
 protocol until it is time to close the connection.

	The server, the client, or both close the connection.

	The server returns to step 2 and waits for the next
 connection.

If step 4 is likely to take a long or indefinite amount of
 time, traditional Unix servers such as wu-ftpd create a new process to
 handle each connection so that multiple clients can be serviced at the
 same time. Java programs should spawn a thread to interact with the
 client so that the server can be ready to process the next connection
 sooner. A thread places a far smaller load on the server than a
 complete child process. In fact, the overhead of forking too many
 processes is why the typical Unix FTP server can't handle more than
 roughly 400 connections without slowing to a crawl. On the other hand,
 if the protocol is simple and quick and allows the server to close the
 connection when it's through, then it will be more efficient for the
 server to process the client request immediately without spawning a
 thread.
Tip
Although threads are lighter-weight than processes on most
 systems (Linux is the notable exception), too many threads can still
 be a performance problem. For instance, on most VMs each thread
 requires about a megabyte of RAM above and beyond what the rest of the
 program needs. Thus, on a typical modern server with about a gigabyte
 of RAM, anything close to or beyond a thousand threads is likely to
 slow down dramatically and eventually crash as the CPU violently and
 frequently swaps data into and out of RAM. Spawning too many threads
 is one of the few ways you can reliably crash any Java virtual
 machine.
Java 1.4 introduces a ServerSocketChannel class that provides non-blocking, multiplexed I/O based
 on channels rather than streams. With channels, a single thread can
 process multiple connections, thereby requiring many fewer threads and
 placing a much smaller load on the VM. This can be highly advantageous
 for high volume servers on some operating systems. I'll discuss these
 kinds of servers in Chapter 12.
 For simple, low-volume servers or any servers that need to run with
 Java 1.3 or earlier, the techniques discussed in this chapter should
 be used.

The operating system stores incoming connection requests addressed
 to a particular port in a first-in, first-out queue. The default length
 of the queue is normally 50, although it can vary from operating system
 to operating system. Some operating systems (not Solaris) have a maximum
 queue length, typically five. On these systems, the queue length will be
 the largest possible value less than or equal to 50. After the queue
 fills to capacity with unprocessed connections, the host refuses
 additional connections on that port until slots in the queue open up.
 Many (though not all) clients will try to make a connection multiple
 times if their initial attempt is refused. The operating system manages
 incoming connections and the queue; your program does not need to worry
 about it. Several ServerSocket
 constructors allow you to change the length of the queue if its default
 length isn't large enough; however, you won't be able to increase the
 queue beyond the maximum size that the operating system supports.
The Constructors

There are four public ServerSocket constructors:
public ServerSocket(int port) throws BindException, IOException
public ServerSocket(int port, int queueLength)
 throws BindException, IOException
public ServerSocket(int port, int queueLength, InetAddress bindAddress)
 throws IOException
public ServerSocket() throws IOException // Java 1.4
These constructors let you specify the port, the length of the
 queue used to hold incoming connection requests, and the local network
 interface to bind to. They pretty much all do the same thing, though
 some use default values for the queue length and the address to bind
 to. Let's explore these in order.
public ServerSocket(int port) throws BindException,
 IOException

This constructor creates a server socket on the port specified
 by the argument. If you pass 0 for the port number, the system
 selects an available port for you. A port chosen for you by the
 system is sometimes called an anonymous port
 since you don't know its number. For servers,
 anonymous ports aren't very useful because clients need to know in
 advance which port to connect to; however, there are a few
 situations (which we will discuss later) in which an anonymous port
 might be useful.
For example, to create a server socket that would be used by
 an HTTP server on port 80, you would write:
try {
 ServerSocket httpd = new ServerSocket(80);
}
catch (IOException ex) {
 System.err.println(ex);
}
The constructor throws an IOException (specifically, a BindException) if the socket cannot be
 created and bound to the requested port. An IOException when creating a ServerSocket almost always means one of
 two things. Either another server socket, possibly from a completely
 different program, is already using the requested port, or you're
 trying to connect to a port from 1 to 1,023 on Unix (including Linux
 and Mac OS X) without root (superuser) privileges.
You can use this constructor to write a variation on the
 PortScanner programs of the
 previous chapter. Example
 10-1 checks for ports on the local machine by attempting to
 create ServerSocket objects on
 them and seeing on which ports that fails. If you're using Unix and
 are not running as root, this program works only for ports 1,024 and
 above.
Example 10-1. Look for local ports
import java.net.*;
import java.io.*;

public class LocalPortScanner {

 public static void main(String[] args) {

 for (int port = 1; port <= 65535; port++) {

 try {
 // the next line will fail and drop into the catch block if
 // there is already a server running on the port
 ServerSocket server = new ServerSocket(port);
 }
 catch (IOException ex) {
 System.out.println("There is a server on port " + port + ".");
 } // end catch

 } // end for

 }

}

Here's the output I got when running LocalPortScanner on my Windows NT 4.0
 workstation:
D:\JAVA\JNP2\examples\11>java LocalPortScanner
There is a server on port 135.
There is a server on port 1025.
There is a server on port 1026.
There is a server on port 1027.
There is a server on port 1028.

public ServerSocket(int port, int queueLength) throws
 IOException, BindException

 This constructor opens a server socket on the
 specified port with a queue length of your choosing. If the machine
 has multiple network interfaces or IP addresses, then it listens on
 this port on all those interfaces and IP addresses. The queueLength argument sets the length of
 the queue for incoming connection requests—that is, how many
 incoming connections can be stored at one time before the host
 starts refusing connections. Some operating systems have a maximum
 queue length, typically five. If you try to expand the queue past
 that maximum number, the maximum queue length is used instead. If
 you pass 0 for the port number, the system selects an available
 port.
For example, to create a server socket on port 5,776 that
 would hold up to 100 incoming connection requests in the queue, you
 would write:
try {
 ServerSocket httpd = new ServerSocket(5776, 100);
}
catch (IOException ex) {
 System.err.println(ex);
}
The constructor throws an IOException (specifically, a BindException) if the socket cannot be
 created and bound to the requested port. However, no exception is
 thrown if the queue length is larger than the host OS supports.
 Instead, the queue length is simply set to the maximum size
 allowed.

public ServerSocket(int port, int queueLength, InetAddress
 bindAddress) throws BindException, IOException

This constructor binds a server socket to the
 specified port with the specified queue length. It differs from the
 other two constructors in binding only to the specified local IP
 address. This constructor is useful for servers that run on systems
 with several IP addresses because it allows you to choose the
 address to which you'll listen. That is, the server socket only
 listens for incoming connections on the specified address; it won't
 listen for connections that come in through the host's other
 addresses. The previous two constructors bind to all local IP
 addresses by default.
For example, login.ibiblio.org is a
 particular Linux box in North Carolina. It's connected to the
 Internet with the IP address 152.2.210.122. The same box has a
 second Ethernet card with the local IP address 192.168.210.122 that
 is not visible from the public Internet, only from the local
 network. If for some reason I wanted to run a server on this host
 that only responded to local connections from within the same
 network, I could create a server socket that listens on port 5,776
 of 192.168.210.122 but not on port 5,776 of 152.2.210.122, like
 so:
try {
 ServerSocket httpd = new ServerSocket(5776, 10,
 InetAddress.getByName("192.168.210.122"));
}
catch (IOException ex) {
 System.err.println(ex);
}
The constructor throws an IOException (again, really a BindException) if the socket cannot be
 created and bound to the requested port or network interface.

public ServerSocket() throws IOException // Java 1.4

The public no-args constructor is new in Java 1.4. It
 creates a ServerSocket object but
 does not actually bind it to a port so it cannot initially accept
 any connections. It can be bound later using the bind() methods also introduced in Java
 1.4:
public void bind(SocketAddress endpoint) throws IOException // Java 1.4
public void bind(SocketAddress endpoint, int queueLength) // Java 1.4
 throws IOException
The primary use for this feature is to allow programs to set
 server socket options before binding to a port. Some options are
 fixed after the server socket has been bound. The general pattern
 looks like this:
ServerSocket ss = new ServerSocket();
// set socket options...
SocketAddress http = new InetSocketAddress(80);
ss.bind(http);
You can also past null for the SocketAddress to select an arbitrary port.
 This is like passing 0 for the port number in the other
 constructors.

Accepting and Closing Connections

A ServerSocket customarily operates in a loop that repeatedly accepts
 connections. Each pass through the loop invokes the accept() method. This returns a Socket object representing the connection
 between the remote client and the local server. Interaction with the
 client takes place through this Socket object. When the transaction is
 finished, the server should invoke the Socket object's close() method. If the client closes the
 connection while the server is still operating, the input and/or
 output streams that connect the server to the client throw an InterruptedIOException on the next read or
 write. In either case, the server should then get ready to process the
 next incoming connection . However, when the server needs to shut down and not
 process any further incoming connections, you should invoke the
 ServerSocket object's close() method.
public Socket accept() throws IOException

 When server setup is done and you're ready to accept a
 connection, call the ServerSocket's accept() method. This method "blocks";
 that is, it stops the flow of execution and waits until a client
 connects. When a client does connect, the accept() method returns a Socket object. You use the streams
 returned by this Socket's
 getInputStream() and getOutputStream() methods to communicate
 with the client. For example:
ServerSocket server = new ServerSocket(5776);
while (true) {
 Socket connection = server.accept();
 OutputStreamWriter out
 = new OutputStreamWriter(connection.getOutputStream());
 out.write("You've connected to this server. Bye-bye now.\r\n");
 connection.close();
}
If you don't want the program to halt while it waits for a
 connection, put the call to accept(
) in a separate thread.
Tip
If you're using Java 1.4 or later, you have the option to
 use channels and non-blocking I/O instead of threads. In some (not
 all) virtual machines, this is much faster than using streams and
 threads. These techniques will be discussed in Chapter 12.

When exception handling is added, the code becomes somewhat
 more convoluted. It's important to distinguish between exceptions
 that should probably shut down the server and log an error message,
 and exceptions that should just close that active connection.
 Exceptions thrown by accept() or
 the input and output streams generally should not shut down the
 server. Most other exceptions probably should. To do this, you'll
 need to nest your try
 blocks.
Finally, most servers will want to make sure that all sockets
 they accept are closed when they're finished. Even if the protocol
 specifies that clients are responsible for closing connections,
 clients do not always strictly adhere to the protocol. The call to
 close() also has to be wrapped
 in a try block that catches an
 IOException. However, if you do
 catch an IOException when closing
 the socket, ignore it. It just means that the client closed the
 socket before the server could. Here's a slightly more realistic
 example:
try {
 ServerSocket server = new ServerSocket(5776);
 while (true) {
 Socket connection = server.accept();
 try {
 Writer out
 = new OutputStreamWriter(connection.getOutputStream());
 out.write("You've connected to this server. Bye-bye now.\r\n");
 out.flush();
 connection.close();
 }
 catch (IOException ex) {
 // This tends to be a transitory error for this one connection;
 // e.g. the client broke the connection early. Consequently,
 // you don't want to break the loop or print an error message.
 // However, you might choose to log this exception in an error log.
 }
 finally {
 // Guarantee that sockets are closed when complete.
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) {}
 }
}
catch (IOException ex) {
 System.err.println(ex);
}
Example 10-2
 implements a simple daytime server, as per RFC 867. Since this
 server just sends a single line of text in response to each
 connection, it processes each connection immediately. More complex
 servers should spawn a thread to handle each request. In this case,
 the overhead of spawning a thread would be greater than the time
 needed to process the request.
Tip
If you run this program on Unix (including Linux and Mac OS
 X), you need to run it as root in order to connect to port 13. If
 you don't want to or can't run it as root, change the port number
 to something above 1024—say, 1313.

Example 10-2. A daytime server
import java.net.*;
import java.io.*;
import java.util.Date;

public class DaytimeServer {

 public final static int DEFAULT_PORT = 13;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[0]);
 if (port < 0 || port >= 65536) {
 System.out.println("Port must between 0 and 65535");
 return;
 }
 }
 catch (NumberFormatException ex) {
 // use default port
 }

 }

 try {

 ServerSocket server = new ServerSocket(port);

 Socket connection = null;
 while (true) {

 try {
 connection = server.accept();
 Writer out = new OutputStreamWriter(connection.getOutputStream());
 Date now = new Date();
 out.write(now.toString() +"\r\n");
 out.flush();
 connection.close();
 }
 catch (IOException ex) {}
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) {}
 }

 } // end while

 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 } // end catch

 } // end main

} // end DaytimeServer

Example 10-2 is
 straightforward. The first three lines import the usual packages,
 java.io and java.net, as well as java.util.Date, which provides the time as
 read by the server's internal clock. There is a single public final static int field (i.e., a constant) in the class
 DEFAULT_PORT, which is set to the
 well-known port for a daytime server (port 13). The class has a
 single method, main(), which
 does all the work. If the port is specified on the command line,
 then it's read from args[0].
 Otherwise, the default port is used.
The outer try block traps
 any IOExceptions that may arise
 while the ServerSocket object
 server is constructed on the
 daytime port or when it accepts connections. The inner try block watches for exceptions thrown
 while the connections are accepted and processed. The accept() method is called within an
 infinite loop to watch for new connections; like many servers, this
 program never terminates but continues listening until an exception
 is thrown or you stop it manually.
Tip
The command for stopping a program manually depends
 on your system; under Unix, NT, and many other systems, CTRL-C
 will do the job. If you are running the server in the background
 on a Unix system, stop it by finding the server's process ID and
 killing it with the kill
 command (kill
 pid).

When a client connects, accept(
) returns a Socket,
 which is stored in the local variable connection, and the program continues. It
 calls getOutputStream() to get
 the output stream associated with that Socket and then chains that output stream
 to a new OutputStreamWriter,
 out. A new Date object provides the current time. The
 content is sent to the client by writing its string representation
 on out with write().
Finally, after the data is sent or an exception has been
 thrown, the finally block closes
 the connection. Always close a
 socket when you're finished with it. In the previous
 chapter, I said that a client shouldn't rely on the other side of a
 connection to close the socket: that goes triple for servers.
 Clients time out or crash; users cancel transactions; networks go
 down in high-traffic periods. For any of these or a dozen more
 reasons, you cannot rely on clients to close sockets, even when the
 protocol requires them to, which this one doesn't.
Sending binary, nontext data is not significantly
 harder. Example 10-3
 demonstrates with a time server that follows the time protocol outlined in RFC 868. When a client
 connects, the server sends a 4-byte, big-endian, unsigned integer
 specifying the number of seconds that have passed since 12:00 A.M.,
 January 1, 1900 GMT (the epoch). Once again, the current time is
 found by creating a new Date
 object. However, since the Date
 class counts milliseconds since 12:00 A.M., January 1, 1970 GMT
 rather than seconds since 12:00 A.M., January 1, 1900 GMT, some
 conversion is necessary.
Example 10-3. A time server
import java.net.*;
import java.io.*;
import java.util.Date;

public class TimeServer {

 public final static int DEFAULT_PORT = 37;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[0]);
 if (port < 0 || port >= 65536) {
 System.out.println("Port must between 0 and 65535");
 return;
 }
 }
 catch (NumberFormatException ex) {}
 }

 // The time protocol sets the epoch at 1900,
 // the Date class at 1970. This number
 // converts between them.

 long differenceBetweenEpochs = 2208988800L;

 try {
 ServerSocket server = new ServerSocket(port);
 while (true) {
 Socket connection = null;
 try {
 connection = server.accept();
 OutputStream out = connection.getOutputStream();
 Date now = new Date();
 long msSince1970 = now.getTime();
 long secondsSince1970 = msSince1970/1000;
 long secondsSince1900 = secondsSince1970
 + differenceBetweenEpochs;
 byte[] time = new byte[4];
 time[0]
 = (byte) ((secondsSince1900 & 0x00000000FF000000L) >> 24);
 time[1]
 = (byte) ((secondsSince1900 & 0x0000000000FF0000L) >> 16);
 time[2]
 = (byte) ((secondsSince1900 & 0x000000000000FF00L) >> 8);
 time[3] = (byte) (secondsSince1900 & 0x00000000000000FFL);
 out.write(time);
 out.flush();
 } // end try
 catch (IOException ex) {
 } // end catch
 finally {
 if (connection != null) connection.close();
 }
 } // end while
 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 } // end catch

 } // end main

} // end TimeServer

As with the TimeClient of
 the previous chapter, most of the effort here goes into working with
 a data format (32-bit unsigned integers) that Java doesn't natively
 support.

public void close() throws IOException

 If you're finished with a server socket, you should
 close it, especially if the program is going to continue to run for
 some time. This frees up the port for other programs that may wish
 to use it. Closing a ServerSocket
 should not be confused with closing a Socket. Closing a ServerSocket frees a port on the local
 host, allowing another server to bind to the port; it also breaks
 all currently open sockets that the ServerSocket has accepted.
Server sockets are closed automatically when a program dies,
 so it's not absolutely necessary to close them in programs that
 terminate shortly after the ServerSocket is no longer needed.
 Nonetheless, it doesn't hurt. For example, the main loop of the
 LocalPortScanner program might be
 better written like this so that it doesn't temporarily occupy most
 of the ports on the system:
for (int port = 1; port <= 65535; port++) {

 try {
 // the next line will fail and drop into the catch block if
 // there is already a server running on the port
 ServerSocket server = new ServerSocket(port);
 server.close();
 }
 catch (IOException ex) {
 System.out.println("There is a server on port " + port + ".");
 }

} // end for
After the server socket has been closed, it cannot be
 reconnected, even to the same port.
Java 1.4 adds an isClosed(
) method that returns true if the ServerSocket has been closed, false if it
 hasn't:
public boolean isClosed() // Java 1.4
ServerSocket objects that were created with the no-args ServerSocket() constructor and not yet
 bound to a port are not considered to be closed. Invoking isClosed() on these objects returns
 false. Java 1.4 also adds an isBound(
) method that tells you whether the ServerSocket has been bound to a
 port:
public boolean isBound() // Java 1.4
As with the isBound()
 method of the Socket class
 discussed in the last chapter, the name is a little misleading.
 isBound() returns true if the
 ServerSocket has ever been bound
 to a port, even if it's currently closed. If you need to test
 whether a ServerSocket is open,
 you must check both that isBound(
) returns true and that isClosed(
) returns false. For example:
public static boolean isOpen(ServerSocket ss) {
 return ss.isBound() && ! ss.isClosed();
}

The get Methods

The ServerSocket class provides two getter methods that tell you the
 local address and port occupied by the server socket. These are useful
 if you've opened a server socket on an anonymous port and/or an
 unspecified network interface. This would be the case, for one
 example, in the data connection of an FTP session.
public InetAddress getInetAddress()

 This method returns the address being used by the
 server (the local host). If the local host has a single IP address
 (as most do), this is the address returned by InetAddress.getLocalHost(). If the local
 host has more than one IP address, the specific address returned is
 one of the host's IP addresses. You can't predict which address you
 will get. For example:
ServerSocket httpd = new ServerSocket(80);
InetAddress ia = httpd.getInetAddress();
If the ServerSocket has not
 yet bound to a network interface, this method returns null.

public int getLocalPort()

 The ServerSocket
 constructors allow you to listen on an unspecified port by passing 0
 for the port number. This method lets you find out what port you're
 listening on. You might use this in a peer-to-peer multisocket
 program where you already have a means to inform other peers of your
 location. Or a server might spawn several smaller servers to perform
 particular operations. The well-known server could inform clients
 what ports they can find the smaller servers on. Of course, you can
 also use getLocalPort() to find a
 non-anonymous port, but why would you need to? Example 10-4 demonstrates.
Example 10-4. A random port
import java.net.*;
import java.io.*;

public class RandomPort {

 public static void main(String[] args) {

 try {
 ServerSocket server = new ServerSocket(0);
 System.out.println("This server runs on port "
 + server.getLocalPort());
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

}

Here's the output of several runs:
D:\JAVA\JNP3\examples\10>java RandomPort
This server runs on port 1154
D:\JAVA\JNP3\examples\10>java RandomPort
This server runs on port 1155
D:\JAVA\JNP3\examples\10>java RandomPort
This server runs on port 1156
At least on this VM, the ports aren't really random, but they
 are at least indeterminate until runtime.
If the ServerSocket has not
 yet bound to a port, then this method returns -1.

Socket Options

Java 1.3 only supports one socket option for server sockets,
 SO_TIMEOUT. Java 1.4 adds two more, SO_REUSEADDR and SO_RCVBUF.
SO_TIMEOUT

 SO_TIMEOUT is the amount of time, in milliseconds,
 that accept() waits for an
 incoming connection before throwing a java.io.InterruptedIOException. If
 SO_TIMEOUT is 0, accept() will
 never time out. The default is to never time out.
Using SO_TIMEOUT is rather rare. You might need it if you were
 implementing a complicated and secure protocol that required
 multiple connections between the client and the server where
 responses needed to occur within a fixed amount of time. However,
 most servers are designed to run for indefinite periods of time and
 therefore just use the default timeout value, 0 (never time out). If
 you want to change this, the setSoTimeout(
) method sets the SO_TIMEOUT field for this server socket
 object.
public void setSoTimeout(int timeout) throws SocketException
public int getSoTimeout() throws IOException
The countdown starts when accept() is invoked. When the timeout expires, accept() throws an InterruptedIOException. (In Java 1.4, it
 throws SocketTimeoutException, a
 subclass of InterruptedIOException.) You should set
 this option before calling accept(
); you cannot change the timeout value while accept() is waiting for a connection. The
 timeout argument must be greater
 than or equal to zero; if it isn't, the method throws an IllegalArgumentException. For
 example:
try {
 ServerSocket server = new ServerSocket(2048);
 server.setSoTimeout(30000); // block for no more than 30 seconds
 try {
 Socket s = server.accept();
 // handle the connection
 // ...
 }
 catch (InterruptedIOException ex) {
 System.err.println("No connection within 30 seconds");
 }
 finally {
 server.close();
 }
catch (IOException ex) {
 System.err.println("Unexpected IOException: " + e);
}
The getSoTimeout()
 method returns this server socket's current
 SO_TIMEOUT value. For example:
public void printSoTimeout(ServerSocket server) {

 int timeout = server.getSoTimeOut();
 if (timeout > 0) {
 System.out.println(server + " will time out after "
 + timeout + "milliseconds.");
 }
 else if (timeout == 0) {
 System.out.println(server + " will never time out.");
 }
 else {
 System.out.println("Impossible condition occurred in " + server);
 System.out.println("Timeout cannot be less than zero.");
 }

}

SO_REUSEADDR // Java 1.4

The SO_REUSEADDR option for server sockets is very similar
 to the same option for client sockets, discussed in the last
 chapter. It determines whether a new socket will be allowed to bind
 to a previously used port while there might still be data traversing
 the network addressed to the old socket. As you probably expect,
 there are two methods to get and set this option:
public void setReuseAddress(boolean on) throws SocketException
public boolean getReuseAddress() throws SocketException
The default value is platform-dependent. This code fragment
 determines the default value by creating a new ServerSocket and then calling getReuseAddress():
ServerSocket ss = new ServerSocket(10240);
System.out.println("Reusable: " + ss.getReuseAddress());
On the Linux and Mac OS X boxes where I tested this code,
 server sockets were reusable.

SO_RCVBUF // Java 1.4

The SO_RCVBUF option sets the default receive buffer size
 for client sockets accepted by the server socket. It's read and
 written by these two methods:
public void setReceiveBufferSize(int size) throws SocketException
public int getReceiveBufferSize() throws SocketException
Setting SO_RCVBUF on a server socket is like calling setReceiveBufferSize() on each individual
 socket returned by accept()
 (except that you can't change the receive buffer size after the
 socket has been accepted). Recall from the last chapter that this
 option suggests a value for the size of the individual IP packets in
 the stream. Faster connections will want to use larger packets,
 although most of the time the default value is fine.
You can set this option before or after the server socket is
 bound, unless you want to set a receive buffer size larger than 64K.
 In that case, you must set the option on an unbound ServerSocket before binding it. For
 example:
ServerSocket ss = new ServerSocket();
int receiveBufferSize = ss.getReceiveBufferSize();
if (receiveBufferSize < 131072) {
 ss.setReceiveBufferSize(131072);
}
ss.bind(new InetSocketAddress(8000));
//...

public void setPerformancePreferences(int connectionTime, int
 latency, int bandwidth) // Java 1.5

Java 1.5 adds a slightly different method for setting
 socket options—the setPerformancePreferences() method:
public void setPerformancePreferences(int connectionTime, int latency,
 int bandwidth)
This method expresses the relative preferences given to
 connection time, latency, and bandwidth. For instance, if connectionTime is 2 and latency is 1 and bandwidth is 3, then maximum bandwidth is
 the most important characteristic, minimum latency is the least
 important, and connection time is in the middle. Exactly how any
 given VM implements this is implementation-dependent. Indeed, it may
 be a no-op in some implementations. The API documentation for
 ServerSocket even suggests using
 non-TCP/IP sockets, although it's not at all clear what that
 means.

The Object Methods

ServerSocket overrides only one of the standard methods from
 java.lang.Object, toString(). Thus, equality comparisons test
 for strict identity and server sockets are problematic in hash tables.
 Normally, this isn't a large problem.
public String toString()

A String returned by
 ServerSocket's toString() method looks like this:
ServerSocket[addr=0.0.0.0,port=0,localport=5776]
addr is the address of the
 local network interface to which the server socket is bound. This
 will be 0.0.0.0 if it's bound to all interfaces, as is commonly the
 case. port is always 0. The
 localport is the local port on
 which the server is listening for connections. This method is
 sometimes useful for debugging, but not much more. Don't rely on
 it.

Implementation

The ServerSocket class provides two methods for changing the default
 implementation of server sockets. I'll describe them only briefly
 here, since they're primarily intended for implementers of Java
 virtual machines rather than application programmers.
public static void setSocketFactory(SocketImplFactory
 factory) throws IOException

This method sets the system's server
 SocketImplFactory,
 which is the factory used to create ServerSocket objects. This is not the same
 factory that is used to create client Socket objects, though the syntax is
 similar; you can have one factory for Socket objects and a different factory for
 ServerSocket objects. You can set
 this factory only once in a program, however. A second attempt to
 set the SocketImplFactory throws
 a SocketException.

protected final void implAccept(Socket s) throws
 IOException

 Subclasses of ServerSocket use this method when they
 want to override accept() so
 that it returns an instance of their own custom Socket subclass rather than a plain
 java.net.Socket. The overridden
 accept() method passes its own
 unconnected Socket object to this
 method to actually make the connection. You pass an unconnected
 Socket object to implAccept(). When implAccept() returns, the Socket argument s is connected to a client. For
 example:
 public Socket accept() throws IOException {
 Socket s = new MySocketSubclass();
 implAccept(s);
 return s;
 }
If the server needs to know that the Socket returned by accept() has a more specific type than
 just java.net.Socket, it must
 cast the return value appropriately. For example:
ServerSocket server = new MyServerSocketSubclass(80);
while (true) {
 MySocketSubclass socket = (MySocketSubclass) server.accept();;
 // ...
 }

Some Useful Servers

This section shows several servers you can build with
 server sockets. It starts with a server you can use to test client
 responses and requests, much as you use Telnet to test server behavior.
 Then three different HTTP servers are presented, each with a different
 special purpose and each slightly more complex than the previous
 one.
Client Tester

 In the previous chapter, you learned how to use Telnet
 to experiment with servers. There's no equivalent program to test
 clients, so let's create one. Example 10-5 is a program called
 ClientTester that runs on a port
 specified on the command line, shows all data sent by the client, and
 allows you to send a response to the client by typing it on the
 command line. For example, you can use this program to see the
 commands that Internet Explorer sends to a server.
Tip
Clients are rarely as forgiving about unexpected
 server responses as servers are about unexpected client responses.
 If at all possible, try to run the clients that connect to this
 program on a Unix system or some other platform that is moderately
 crash-proof. Don't run them on Mac OS 9 or Windows ME, which are
 less stable.

This program uses two threads: one to handle input from the
 client and the other to send output from the server. Using two threads
 allows the program to handle input and output simultaneously: it can
 send a response to the client while receiving a request—or, more to
 the point, it can send data to the client while waiting for the client
 to respond. This is convenient because different clients and servers
 talk in unpredictable ways. With some protocols, the server talks
 first; with others, the client talks first. Sometimes the server sends
 a one-line response; often, the response is much larger. Sometimes the
 client and the server talk at each other simultaneously. Other times,
 one side of the connection waits for the other to finish before it
 responds. The program must be flexible enough to handle all these
 cases. Example 10-5 shows
 the code.
Example 10-5. A client tester
import java.net.*;
import java.io.*;
import com.macfaq.io.SafeBufferedReader; // from Chapter 4

public class ClientTester {

 public static void main(String[] args) {

 int port;

 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception ex) {
 port = 0;
 }

 try {
 ServerSocket server = new ServerSocket(port, 1);
 System.out.println("Listening for connections on port "
 + server.getLocalPort());

 while (true) {
 Socket connection = server.accept();
 try {
 System.out.println("Connection established with "
 + connection);
 Thread input = new InputThread(connection.getInputStream());
 input.start();
 Thread output
 = new OutputThread(connection.getOutputStream());
 output.start();
 // wait for output and input to finish
 try {
 input.join();
 output.join();
 }
 catch (InterruptedException ex) {
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) {}
 }
 }
 }
 catch (IOException ex) {
 e.printStackTrace();
 }

 }

}

class InputThread extends Thread {

 InputStream in;

 public InputThread(InputStream in) {
 this.in = in;
 }

 public void run() {

 try {
 while (true) {
 int i = in.read();
 if (i == -1) break;
 System.out.write(i);
 }
 }
 catch (SocketException ex) {
 // output thread closed the socket
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 try {
 in.close();
 }
 catch (IOException ex) {
 }

 }

}

class OutputThread extends Thread {

 private Writer out;

 public OutputThread(OutputStream out) {
 this.out = new OutputStreamWriter(out);
 }

 public void run() {

 String line;
 BufferedReader in
 = new SafeBufferedReader(new InputStreamReader(System.in));
 try {
 while (true) {
 line = in.readLine();
 if (line.equals(".")) break;
 out.write(line +"\r\n");
 out.flush();
 }
 }
 catch (IOException ex) {
 }
 try {
 out.close();
 }
 catch (IOException ex) {
 }

 }

}

The client tester application is split into three classes:
 ClientTester, InputThread, and OutputThread. The ClientTester class reads the port from the
 command line, opens a ServerSocket
 on that port, and listens for incoming connections. Only one
 connection is allowed at a time, because this program is designed for
 experimentation, and a slow human being has to provide all responses.
 Consequently, it sets an unusually short queue length of 1. Further
 connections will be refused until the first one has been
 closed.
An infinite while loop waits
 for connections with the accept()
 method. When a connection is detected, its InputStream is used to construct a new
 InputThread and its OutputStream is used to construct a new
 OutputThread. After starting these
 threads, the program waits for them to finish by calling their
 join() methods.
The InputThread is contained almost entirely in the run() method. It has a single field,
 in, which is the InputStream from which data will be read.
 Data is read from in one byte at a
 time. Each byte read is written on
 System.out. The run() method ends when the end of stream is
 encountered or an IOException is
 thrown. The most likely exception here is a SocketException thrown because the
 corresponding OutputThread closed
 the connection.
The OutputThread reads input from the local user sitting at the terminal
 and sends that data to the client. Its constructor has a single
 argument, an output stream for sending data to the client. OutputThread reads input from the user on
 System.in, which is chained to an
 instance of the SafeBufferedReader
 class developed in Chapter 4. The
 OutputStream that was passed to the
 constructor is chained to an OutputStreamWriter for convenience. The
 run() method for OutputThread reads lines from the SafeBufferedReader and copies them onto the
 OutputStreamWriter, which sends
 them to the client. A period typed on a line by itself signals the end
 of user input. When this occurs, run(
) exits the loop and out
 is closed. This has the effect of also closing the socket so that a
 SocketException is thrown in the
 input thread, which also exits.
For example, here's the output when Netscape Communicator 4.6
 for Windows connected to this server:
D:\JAVA\JNP3\examples\10>java ClientTester 80
Listening for connections on port 80
Connection established with
Socket[addr=localhost/127.0.0.1,port=1033,localport=80]
GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.6 [en] (WinNT; I)
Host: localhost
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

<html><body><h1>Hello Client!</h1></body></html>
.
Even minimal exploration of clients can reveal some surprising
 things. For instance, I didn't know until I wrote this example that
 Netscape Navigator 4.6 can read .gz files just as
 easily as it can read HTML files. That might be useful for serving
 large text files full of redundant data.

HTTP Servers

 HTTP is a large protocol. As you saw in Chapter 3, a full-featured HTTP server
 must respond to requests for files, convert URLs into filenames on the
 local system, respond to POST and GET requests, handle requests for
 files that don't exist, interpret MIME types, and much, much more.
 However, many HTTP servers don't need all of these features. For
 example, many sites simply display an "under construction" message.
 Clearly, Apache is overkill for a site like this. Such a site is a
 candidate for a custom server that does only one thing. Java's network
 class library makes writing simple servers like this almost
 trivial.
Custom servers aren't useful only for small sites.
 High-traffic sites like Yahoo! are also candidates for custom servers
 because a server that does only one thing can often be much faster
 than a general purpose server such as Apache or Microsoft IIS. It is
 easy to optimize a special purpose server for a particular task; the
 result is often much more efficient than a general purpose server that
 needs to respond to many different kinds of requests. For instance,
 icons and images that are used repeatedly across many pages or on
 high-traffic pages might be better handled by a server that read all
 the image files into memory on startup and then served them straight
 out of RAM, rather than having to read them off disk for each request.
 Furthermore, this server could avoid wasting time on logging if you
 didn't want to track the image requests separately from the requests
 for the pages they were included in.
Finally, Java isn't a bad language for full-featured web servers
 meant to compete with the likes of Apache or IIS. Even if you believe
 CPU-intensive Java programs are slower than CPU-intensive C and C++
 programs (something I very much doubt is true in modern VMs), most
 HTTP servers are limited by bandwidth, not by CPU speed.
 Consequently, Java's other advantages, such as its
 half-compiled/half-interpreted nature, dynamic class loading, garbage
 collection, and memory protection really get a chance to shine. In
 particular, sites that make heavy use of dynamic content through
 servlets, PHP pages, or other mechanisms can often run much faster
 when reimplemented on top of a pure or mostly pure Java web server.
 Indeed, there are several production web servers written in Java, such
 as the W3C's testbed server Jigsaw (http://www.w3.org/Jigsaw/). Many other web servers
 written in C now include substantial Java components to support the
 Java Servlet API and Java Server Pages. On many sites, these are
 replacing the traditional CGIs, ASPs, and server-side includes, mostly
 because the Java equivalents are faster and less resource-intensive.
 I'm not going to explore these technologies here since they easily
 deserve a book of their own. I refer interested readers to Jason
 Hunter's Java Servlet Programming (O'Reilly).
 However, it is important to note that servers in general and web
 servers in particular are one area where Java really is competitive
 with C.
A single-file server

Our investigation of HTTP servers begins with a server
 that always sends out the same file, no matter what the request.
 It's called SingleFileHTTPServer
 and is shown in Example 10-6. The filename,
 local port, and content encoding are read from the command line. If
 the port is omitted, port 80 is assumed. If the encoding is omitted,
 ASCII is assumed.
Example 10-6. An HTTP server that chunks out the same file
import java.net.*;
import java.io.*;
import java.util.*;

public class SingleFileHTTPServer extends Thread {

 private byte[] content;
 private byte[] header;
 private int port = 80;

 public SingleFileHTTPServer(String data, String encoding,
 String MIMEType, int port) throws UnsupportedEncodingException {
 this(data.getBytes(encoding), encoding, MIMEType, port);
 }

 public SingleFileHTTPServer(byte[] data, String encoding,
 String MIMEType, int port) throws UnsupportedEncodingException {

 this.content = data;
 this.port = port;
 String header = "HTTP/1.0 200 OK\r\n"
 + "Server: OneFile 1.0\r\n"
 + "Content-length: " + this.content.length + "\r\n"
 + "Content-type: " + MIMEType + "\r\n\r\n";
 this.header = header.getBytes("ASCII");

 }

 public void run() {

 try {
 ServerSocket server = new ServerSocket(this.port);
 System.out.println("Accepting connections on port "
 + server.getLocalPort());
 System.out.println("Data to be sent:");
 System.out.write(this.content);
 while (true) {

 Socket connection = null;
 try {
 connection = server.accept();
 OutputStream out = new BufferedOutputStream(
 connection.getOutputStream()
);
 InputStream in = new BufferedInputStream(
 connection.getInputStream()
);
 // read the first line only; that's all we need
 StringBuffer request = new StringBuffer(80);
 while (true) {
 int c = in.read();
 if (c == '\r' || c == '\n' || c == -1) break;
 request.append((char) c);

 }
 // If this is HTTP/1.0 or later send a MIME header
 if (request.toString().indexOf("HTTP/") != -1) {
 out.write(this.header);
 }
 out.write(this.content);
 out.flush();
 } // end try
 catch (IOException ex) {
 }
 finally {
 if (connection != null) connection.close();
 }

 } // end while
 } // end try
 catch (IOException ex) {
 System.err.println("Could not start server. Port Occupied");
 }

 } // end run

 public static void main(String[] args) {

 try {

 String contentType = "text/plain";
 if (args[0].endsWith(".html") || args[0].endsWith(".htm")) {
 contentType = "text/html";
 }

 InputStream in = new FileInputStream(args[0]);
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 int b;
 while ((b = in.read()) != -1) out.write(b);
 byte[] data = out.toByteArray();

 // set the port to listen on
 int port;
 try {
 port = Integer.parseInt(args[1]);
 if (port < 1 || port > 65535) port = 80;
 }
 catch (Exception ex) {
 port = 80;
 }

 String encoding = "ASCII";
 if (args.length >= 2) encoding = args[2];

 Thread t = new SingleFileHTTPServer(data, encoding,
 contentType, port);
 t.start();

 }
 catch (ArrayIndexOutOfBoundsException ex) {
 System.out.println(
 "Usage: java SingleFileHTTPServer filename port encoding");
 }
 catch (Exception ex) {
 System.err.println(ex);
 }

 }

}

The constructors set up the data to be sent along with an HTTP
 header that includes information about content length and content
 encoding. The header and the body of the response are stored in byte
 arrays in the desired encoding so that they can be blasted to
 clients very quickly.
The SingleFileHTTPServer
 class itself is a subclass of Thread. Its run(
) method processes incoming connections. Chances are this
 server will serve only small files and will support only low-volume
 web sites. Since all the server needs to do for each connection is
 check whether the client supports HTTP/1.0 and spew one or two
 relatively small byte arrays over the connection, chances are this
 will be sufficient. On the other hand, if you find clients are
 getting refused, you could use multiple threads instead. A lot
 depends on the size of the file served, the peak number of
 connections expected per minute, and the thread model of Java on the
 host machine. Using multiple threads would be a clear win for a
 server that was even slightly more sophisticated than this
 one.
The run() method creates a
 ServerSocket on the specified
 port. Then it enters an infinite loop that continually accepts
 connections and processes them. When a socket is accepted, an
 InputStream reads the request
 from the client. It looks at the first line to see whether it
 contains the string HTTP. If it
 sees this string, the server assumes that the client understands
 HTTP/1.0 or later and therefore sends a MIME header for the file;
 then it sends the data. If the client request doesn't contain the
 string HTTP, the server omits the
 header, sending the data by itself. Finally, the server closes the
 connection and tries to accept the next connection.
The main() method
 just reads parameters from the command line. The name of the file to
 be served is read from the first command-line argument. If no file
 is specified or the file cannot be opened, an error message is
 printed and the program exits. Assuming the file
 can be read, its contents are read into the
 byte array data. A reasonable guess is made about the
 content type of the file, and that guess is stored in the contentType variable. Next, the port
 number is read from the second command-line argument. If no port is
 specified or if the second argument is not an integer from 0 to
 65,535, port 80 is used. The encoding is read from the third
 command-line argument, if present. Otherwise, ASCII is assumed.
 (Surprisingly, some VMs don't support ASCII, so you might want to
 pick 8859-1 instead.) Then these values are used to construct a
 SingleFileHTTPServer object and
 start it running. This is only one possible interface. You could
 easily use this class as part of some other program. If you added a
 setter method to change the content, you could easily use it to
 provide simple status information about a running server or system.
 However, that would raise some additional issues of thread safety
 that Example 10-6 doesn't
 have to address because it's immutable.
Here's what you see when you connect to this server via
 Telnet; the specifics depend on the exact server and file:
% telnet macfaq.dialup.cloud9.net 80
Trying 168.100.203.234...
Connected to macfaq.dialup.cloud9.net.
Escape character is '^]'.
GET / HTTP/1.0
HTTP/1.0 200 OK
Server: OneFile 1.0
Content-length: 959
Content-type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<TITLE>Under Construction</TITLE>
</HEAD>

<BODY>
...

A redirector

Redirection is another simple but useful application for a
 special-purpose HTTP server. In this section, we develop a server
 that redirects users from one web site to another—for example, from
 cnet.com to www.cnet.com.
 Example 10-7 reads a URL
 and a port number from the command line, opens a server socket on
 the port, and redirects all requests that it receives to the site
 indicated by the new URL using a 302 FOUND code. Chances are this
 server is fast enough not to require multiple threads. Nonetheless, threads might be mildly advantageous,
 especially for a high volume site on a slow network connection. But
 really for purposes of example more than anything, I've made the
 server multithreaded. In this example, I chose to use a new thread
 rather than a thread pool for each connection. This is perhaps a
 little simpler to code and understand but somewhat less efficient.
 In Example 10-8, we'll
 look at an HTTP server that uses a thread pool.
Example 10-7. An HTTP redirector
import java.net.*;
import java.io.*;
import java.util.*;

public class Redirector implements Runnable {

 private int port;
 private String newSite;

 public Redirector(String site, int port) {
 this.port = port;
 this.newSite = site;
 }

 public void run() {

 try {

 ServerSocket server = new ServerSocket(this.port);
 System.out.println("Redirecting connections on port "
 + server.getLocalPort() + " to " + newSite);

 while (true) {

 try {
 Socket s = server.accept();
 Thread t = new RedirectThread(s);
 t.start();
 } // end try
 catch (IOException ex) {
 }

 } // end while

 } // end try
 catch (BindException ex) {
 System.err.println("Could not start server. Port Occupied");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end run

 class RedirectThread extends Thread {

 private Socket connection;

 RedirectThread(Socket s) {
 this.connection = s;
 }

 public void run() {

 try {

 Writer out = new BufferedWriter(
 new OutputStreamWriter(
 connection.getOutputStream(), "ASCII"
)
);
 Reader in = new InputStreamReader(
 new BufferedInputStream(
 connection.getInputStream()
)
);

 // read the first line only; that's all we need
 StringBuffer request = new StringBuffer(80);
 while (true) {
 int c = in.read();
 if (c == '\r' || c == '\n' || c == -1) break;
 request.append((char) c);
 }
 // If this is HTTP/1.0 or later send a MIME header
 String get = request.toString();
 int firstSpace = get.indexOf(' ');
 int secondSpace = get.indexOf(' ', firstSpace+1);
 String theFile = get.substring(firstSpace+1, secondSpace);
 if (get.indexOf("HTTP") != -1) {
 out.write("HTTP/1.0 302 FOUND\r\n");
 Date now = new Date();
 out.write("Date: " + now + "\r\n");
 out.write("Server: Redirector 1.0\r\n");
 out.write("Location: " + newSite + theFile + "\r\n");
 out.write("Content-type: text/html\r\n\r\n");
 out.flush();
 }
 // Not all browsers support redirection so we need to
 // produce HTML that says where the document has moved to.
 out.write("<HTML><HEAD><TITLE>Document moved</TITLE></HEAD>\r\n");
 out.write("<BODY><H1>Document moved</H1>\r\n");
 out.write("The document " + theFile
 + " has moved to\r\n"
 + newSite + theFile
 + ".\r\n Please update your bookmarks<P>");
 out.write("</BODY></HTML>\r\n");
 out.flush();

 } // end try
 catch (IOException ex) {
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) {}
 }

 } // end run

 }

 public static void main(String[] args) {

 int thePort;
 String theSite;

 try {
 theSite = args[0];
 // trim trailing slash
 if (theSite.endsWith("/")) {
 theSite = theSite.substring(0, theSite.length()-1);
 }
 }
 catch (Exception ex) {
 System.out.println(
 "Usage: java Redirector http://www.newsite.com/ port");
 return;
 }

 try {
 thePort = Integer.parseInt(args[1]);
 }
 catch (Exception ex) {
 thePort = 80;
 }

 Thread t = new Thread(new Redirector(theSite, thePort));
 t.start();

 } // end main

}

In order to start the redirector on port 80 and redirect
 incoming requests to http://www.ibiblio.org/xml/, type:
D:\JAVA\JNP3\examples\10>java Redirector http://www.ibiblio.org/xml/
Redirecting connections on port 80 to http://www.ibiblio.org/xml/
If you connect to this server via Telnet, this is what you'll
 see:
% telnet macfaq.dialup.cloud9.net 80
Trying 168.100.203.234...
Connected to macfaq.dialup.cloud9.net.
Escape character is '^]'.
GET / HTTP/1.0
HTTP/1.0 302 FOUND
Date: Wed Sep 08 11:59:42 PDT 1999
Server: Redirector 1.0
Location: http://www.ibiblio.org/xml/
Content-type: text/html

<HTML><HEAD><TITLE>Document moved</TITLE></HEAD>
<BODY><H1>Document moved</H1>
The document / has moved to
http://www.ibiblio.org/xml/.
 Please update your bookmarks<P></BODY></HTML>
Connection closed by foreign host.
If, however, you connect with a reasonably modern web browser,
 you should be sent to http://www.ibiblio.org/xml/ with only a slight delay.
 You should never see the HTML added after the response code; this is
 only provided to support older browsers that don't do redirection
 automatically.
The main() method
 provides a very simple interface that reads the URL of the new site
 to redirect connections to and the local port to listen on. It uses
 this information to construct a Redirector object. Then it uses the
 resulting Runnable object
 (Redirector implements Runnable) to spawn a new thread and start
 it. If the port is not specified, Redirector listens on port 80. If the site
 is omitted, Redirector prints an
 error message and exits.
The run() method of Redirector binds the server socket to the
 port, prints a brief status message, and then enters an infinite
 loop in which it listens for connections. Every time a connection is
 accepted, the resulting Socket
 object is used to construct a RedirectThread . This RedirectThread is then started. All
 further interaction with the client takes place in this new thread.
 The run() method of Redirector then simply waits for the next
 incoming connection.
The run() method of
 RedirectThread does most of the
 work. It begins by chaining a Writer to the Socket's output stream and a Reader to the Socket's input stream. Both input and
 output are buffered. Then the run(
) method reads the first line the client sends. Although
 the client will probably send a whole MIME header, we can ignore
 that. The first line contains all the information we need. The line
 looks something like this:
GET /directory/filename.html HTTP/1.0
It is possible that the first word will be POST or PUT instead
 or that there will be no HTTP version. The second "word" is the file
 the client wants to retrieve. This must begin
 with a slash (/). Browsers are responsible for converting relative
 URLs to absolute URLs that begin with a slash; the server does not
 do this. The third word is the version of the HTTP protocol the
 browser understands. Possible values are nothing at all
 (pre-HTTP/1.0 browsers), HTTP/1.0, or HTTP/1.1.
To handle a request like this, Redirector ignores the first word. The
 second word is attached to the URL of the target server (stored in
 the field newSite) to give a full
 redirected URL. The third word is used to determine whether to send
 a MIME header; MIME headers are not used for old browsers that do
 not understand HTTP/1.0. If there is a version, a MIME header is
 sent; otherwise, it is omitted.
Sending the data is almost trivial. The Writer out is used. Since all the data we send is
 pure ASCII, the exact encoding isn't too important. The only trick
 here is that the end-of-line character for HTTP requests is \r\n--a carriage return followed by a
 linefeed.
The next lines each send one line of text to the client. The
 first line printed is:
HTTP/1.0 302 FOUND
This is an HTTP/1.0 response code that tells the client to
 expect to be redirected. The second line is a Date: header that gives the current time
 at the server. This line is optional. The third line is the name and
 version of the server; this line is also optional but is used by
 spiders that try to keep statistics about the most popular web
 servers. (It would be very surprising to ever see Redirector break into single digits in
 lists of the most popular servers.) The next line is the Location: header, which is required for
 this server. It tells the client where it is being redirected to.
 Last is the standard Content-type: header. We send the content
 type text/html to indicate that
 the client should expect to see HTML. Finally, a blank line is sent
 to signify the end of the header data.
Everything after this will be HTML, which is processed by the
 browser and displayed to the user. The next several lines print a
 message for browsers that do not support redirection, so those users
 can manually jump to the new site. That message looks like:
<HTML><HEAD><TITLE>Document moved</TITLE></HEAD>
<BODY><H1>Document moved</H1>
The document / has moved to
http://www.ibiblio.org/xml/.
 Please update your bookmarks<P></BODY></HTML>
Finally, the connection is closed and the thread
 dies.

A full-fledged HTTP server

 Enough special-purpose HTTP servers. This next section
 develops a full-blown HTTP server, called JHTTP, that can serve an entire document
 tree, including images, applets, HTML files, text files, and more.
 It will be very similar to the SingleFileHTTPServer, except that it pays
 attention to the GET requests. This server is still fairly
 lightweight; after looking at the code, we'll discuss other features
 we might want to add.
Since this server may have to read and serve large files from
 the filesystem over potentially slow network connections, we'll
 change its approach. Rather than processing each request as it
 arrives in the main thread of execution, we'll place incoming
 connections in a pool. Separate instances of a RequestProcessor class will remove the
 connections from the pool and process them. Example 10-8 shows the main
 JHTTP class. As in the previous
 two examples, the main() method
 of JHTTP handles initialization,
 but other programs can use this class to run basic web
 servers.
Example 10-8. The JHTTP web server
import java.net.*;
import java.io.*;
import java.util.*;

public class JHTTP extends Thread {

 private File documentRootDirectory;
 private String indexFileName = "index.html";
 private ServerSocket server;
 private int numThreads = 50;

 public JHTTP(File documentRootDirectory, int port,
 String indexFileName) throws IOException {

 if (!documentRootDirectory.isDirectory()) {
 throw new IOException(documentRootDirectory
 + " does not exist as a directory");
 }
 this.documentRootDirectory = documentRootDirectory;
 this.indexFileName = indexFileName;
 this.server = new ServerSocket(port);
 }

 public JHTTP(File documentRootDirectory, int port)
 throws IOException {
 this(documentRootDirectory, port, "index.html");
 }

 public JHTTP(File documentRootDirectory) throws IOException {
 this(documentRootDirectory, 80, "index.html");
 }

 public void run() {

 for (int i = 0; i < numThreads; i++) {
 Thread t = new Thread(
 new RequestProcessor(documentRootDirectory, indexFileName));
 t.start();
 }
 System.out.println("Accepting connections on port "
 + server.getLocalPort());
 System.out.println("Document Root: " + documentRootDirectory);
 while (true) {
 try {
 Socket request = server.accept();
 RequestProcessor.processRequest(request);
 }
 catch (IOException ex) {
 }
 }

 }

 public static void main(String[] args) {

 // get the Document root
 File docroot;
 try {
 docroot = new File(args[0]);
 }
 catch (ArrayIndexOutOfBoundsException ex) {
 System.out.println("Usage: java JHTTP docroot port indexfile");
 return;
 }

 // set the port to listen on
 int port;
 try {
 port = Integer.parseInt(args[1]);
 if (port < 0 || port > 65535) port = 80;
 }
 catch (Exception ex) {
 port = 80;
 }

 try {
 JHTTP webserver = new JHTTP(docroot, port);
 webserver.start();
 }
 catch (IOException ex) {
 System.out.println("Server could not start because of an "
 + e.getClass());
 System.out.println(e);
 }

 }

}

The main() method of
 the JHTTP class sets the document
 root directory from args[0]. The
 port is read from args[1] or 80
 is used for a default. Then a new JHTTP thread is constructed and started.
 The JHTTP thread spawns 50
 RequestProcessor threads to
 handle requests, each of which retrieves incoming connection
 requests from the RequestProcessor pool as they become
 available. The JHTTP thread repeatedly accepts incoming connections
 and puts them in the RequestProcessor pool.
Each connection is handled by the run() method of the RequestProcessor class shown in Example 10-9. This method waits
 until it can get a Socket out of
 the pool. Once it does that, it gets input and output streams from
 the socket and chains them to a reader and a writer. The reader
 reads the first line of the client request to determine the version
 of HTTP that the client supports—we want to send a MIME header only
 if this is HTTP/1.0 or later—and the requested file. Assuming the
 method is GET, the file that is
 requested is converted to a filename on the local filesystem. If the
 file requested is a directory (i.e., its name ends with a slash), we
 add the name of an index file. We use the canonical path to make
 sure that the requested file doesn't come from outside the document
 root directory. Otherwise, a sneaky client could walk all over the
 local filesystem by including ..
 in URLs to walk up the directory hierarchy. This is all we'll need
 from the client, although a more advanced web server, especially one
 that logged hits, would read the rest of the MIME header the client
 sends.
Next, the requested file is opened and its contents are read
 into a byte array. If the HTTP version is 1.0 or later, we write the
 appropriate MIME headers on the output stream. To figure out the
 content type, we call the guessContentTypeFromName() method to map
 file extensions such as .html onto MIME types
 such as text/html. The byte array
 containing the file's contents is written onto the output stream and
 the connection is closed. Exceptions may be thrown at various places
 if, for example, the file cannot be found or opened. If an exception
 occurs, we send an appropriate HTTP error message to the client
 instead of the file's contents.
Example 10-9. The thread pool that handles HTTP requests
import java.net.*;
import java.io.*;
import java.util.*;

public class RequestProcessor implements Runnable {

 private static List pool = new LinkedList();
 private File documentRootDirectory;
 private String indexFileName = "index.html";

 public RequestProcessor(File documentRootDirectory,
 String indexFileName) {

 if (documentRootDirectory.isFile()) {
 throw new IllegalArgumentException(
 "documentRootDirectory must be a directory, not a file");
 }
 this.documentRootDirectory = documentRootDirectory;
 try {
 this.documentRootDirectory
 = documentRootDirectory.getCanonicalFile();
 }
 catch (IOException ex) {
 }
 if (indexFileName != null) this.indexFileName = indexFileName;
 }

 public static void processRequest(Socket request) {

 synchronized (pool) {
 pool.add(pool.size(), request);
 pool.notifyAll();
 }

 }

 public void run() {

 // for security checks
 String root = documentRootDirectory.getPath();

 while (true) {
 Socket connection;
 synchronized (pool) {
 while (pool.isEmpty()) {
 try {
 pool.wait();
 }
 catch (InterruptedException ex) {
 }
 }
 connection = (Socket) pool.remove(0);
 }

 try {
 String filename;
 String contentType;
 OutputStream raw = new BufferedOutputStream(
 connection.getOutputStream()
);
 Writer out = new OutputStreamWriter(raw);
 Reader in = new InputStreamReader(
 new BufferedInputStream(
 connection.getInputStream()
),"ASCII"
);
 StringBuffer requestLine = new StringBuffer();
 int c;
 while (true) {
 c = in.read();
 if (c == '\r' || c == '\n') break;
 requestLine.append((char) c);
 }

 String get = requestLine.toString();

 // log the request
 System.out.println(get);

 StringTokenizer st = new StringTokenizer(get);
 String method = st.nextToken();
 String version = "";
 if (method.equals("GET")) {
 filename = st.nextToken();
 if (filename.endsWith("/")) filename += indexFileName;
 contentType = guessContentTypeFromName(filename);
 if (st.hasMoreTokens()) {
 version = st.nextToken();
 }

 File theFile = new File(documentRootDirectory,
 filename.substring(1,filename.length()));
 if (theFile.canRead()
 // Don't let clients outside the document root
 && theFile.getCanonicalPath().startsWith(root)) {
 DataInputStream fis = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream(theFile)
)
);
 byte[] theData = new byte[(int) theFile.length()];
 fis.readFully(theData);
 fis.close();
 if (version.startsWith("HTTP ")) { // send a MIME header
 out.write("HTTP/1.0 200 OK\r\n");
 Date now = new Date();
 out.write("Date: " + now + "\r\n");
 out.write("Server: JHTTP/1.0\r\n");
 out.write("Content-length: " + theData.length + "\r\n");
 out.write("Content-type: " + contentType + "\r\n\r\n");
 out.flush();
 } // end if

 // send the file; it may be an image or other binary data
 // so use the underlying output stream
 // instead of the writer
 raw.write(theData);
 raw.flush();
 } // end if
 else { // can't find the file
 if (version.startsWith("HTTP ")) { // send a MIME header
 out.write("HTTP/1.0 404 File Not Found\r\n");
 Date now = new Date();
 out.write("Date: " + now + "\r\n");
 out.write("Server: JHTTP/1.0\r\n");
 out.write("Content-type: text/html\r\n\r\n");
 }
 out.write("<HTML>\r\n");
 out.write("<HEAD><TITLE>File Not Found</TITLE>\r\n");
 out.write("</HEAD>\r\n");
 out.write("<BODY>");
 out.write("<H1>HTTP Error 404: File Not Found</H1>\r\n");
 out.write("</BODY></HTML>\r\n");
 out.flush();
 }
 }
 else { // method does not equal "GET"
 if (version.startsWith("HTTP ")) { // send a MIME header
 out.write("HTTP/1.0 501 Not Implemented\r\n");
 Date now = new Date();
 out.write("Date: " + now + "\r\n");
 out.write("Server: JHTTP 1.0\r\n");
 out.write("Content-type: text/html\r\n\r\n");
 }
 out.write("<HTML>\r\n");
 out.write("<HEAD><TITLE>Not Implemented</TITLE>\r\n");
 out.write("</HEAD>\r\n");
 out.write("<BODY>");
 out.write("<H1>HTTP Error 501: Not Implemented</H1>\r\n");
 out.write("</BODY></HTML>\r\n");
 out.flush();
 }
 }
 catch (IOException ex) {
 }
 finally {
 try {
 connection.close();
 }
 catch (IOException ex) {}
 }

 } // end while

 } // end run

 public static String guessContentTypeFromName(String name) {
 if (name.endsWith(".html") || name.endsWith(".htm")) {
 return "text/html";
 }
 else if (name.endsWith(".txt") || name.endsWith(".java")) {
 return "text/plain";
 }
 else if (name.endsWith(".gif")) {
 return "image/gif";
 }
 else if (name.endsWith(".class")) {
 return "application/octet-stream";
 }
 else if (name.endsWith(".jpg") || name.endsWith(".jpeg")) {
 return "image/jpeg";
 }
 else return "text/plain";
 }

} // end RequestProcessor

This server is functional but still rather austere. Here are a
 few features that could be added:
	A server administration interface

	Support for CGI programs and/or the Java Servlet
 API

	Support for other request methods, such as POST, HEAD, and
 PUT

	A log file in the common web log file format

	Server-side includes and/or Java Server Pages

	Support for multiple document roots so individual users
 can have their own sites

Finally, spend a little time thinking about ways to optimize
 this server. If you really want to use JHTTP to run a high-traffic site, there
 are a couple of things that can speed this server up. The first and
 most important is to use a Just-in-Time (JIT) compiler such as
 HotSpot. JITs can improve program performance by an order of
 magnitude or more. The second thing to do is implement smart
 caching. Keep track of the requests you've received and store the
 data from the most frequently requested files in a Hashtable so that they're kept in memory.
 Use a low-priority thread to update this cache. Another option for
 developers using Java 1.4 or later is to use non-blocking I/O and
 channels instead of threads and streams. We'll explore this
 possibility in Chapter
 12.

Chapter 11. Secure Sockets

 One of the perennial fears of consumers buying goods over
 the Internet is that some hacker will steal their credit card number and
 run up a several-thousand-dollar bill by calling phone sex lines. In
 reality, it's more likely that a clerk at a department store will read
 their credit card number from a store receipt than that some hacker will
 grab it in transit across the Internet. In fact, as of mid-2004, the major
 online thefts of credit card numbers have been accomplished by stealing
 the information from poorly secured databases and filesystems
 after the information has been safely transmitted
 across the Internet. Nonetheless, to make Internet connections more
 fundamentally secure, sockets can be encrypted. This allows transactions
 to be confidential, authenticated, and accurate.
However, encryption is a complex subject. Performing it properly
 requires a detailed understanding not only of the mathematical algorithms
 used to encrypt data but also of the protocols used to exchange keys and
 encrypted data. Even a small mistake can open a large hole in your armor
 and reveal your communications to an eavesdropper. Consequently, writing
 encryption software is a task best left to experts. Fortunately,
 nonexperts with only a layperson's understanding of the underlying
 protocols and algorithms can secure their communications with software
 designed by experts. Every time you order something from an online store,
 chances are the transaction is encrypted and authenticated using protocols
 and algorithms you need to know next to nothing about. As a programmer who
 wants to write network client software that talks to online stores, you
 need to know a little more about the protocols and algorithms involved but
 not a lot more, provided you can use a class library written by experts
 who do understand the details. If you want to write the server software
 that runs the online store, then you need to know a little bit more but
 still not as much as you would if you were designing all this from scratch
 without reference to other work.
Until recently, such software was subject to the arms control laws
 of the United States. To some extent it still is. Laws about encryption in
 other countries range from much stricter than the U.S.'s to nonexistent.
 This has limited the ability of Sun and other vendors who operate
 internationally to ship strong encryption software. Consequently, such
 capabilities were not built into the standard java.net classes until Java 1.4. Prior to this,
 they were available as a standard extension called the Java Secure Sockets Extension (JSSE). Although JSSE is now
 part of the standard distribution of the JDK, it is still hobbled by
 design decisions made to support earlier, less liberal export control
 regulations, and it is therefore less simple and easy to use than it could
 or should be.
Nonetheless, JSSE can secure network communications using the
 Secure Sockets Layer (SSL) Version 3 and Transport Layer
 Security (TLS) protocols and their associated algorithms. SSL is a
 security protocol that enables web browsers to talk to web servers using
 various levels of confidentiality and authentication.
Secure Communications

Confidential communication through an open channel such as
 the public Internet absolutely requires that data be encrypted. Most
 encryption schemes that lend themselves to computer implementation are
 based on the notion of a key, a slightly more general kind of password
 that's not limited to text. The clear text message is combined with the
 bits of the key according to a mathematical algorithm to produce the
 encrypted cipher text. Using keys with more bits makes messages
 exponentially more difficult to decrypt by brute-force guessing of the
 key.
In traditional secret key (or symmetric) encryption, the
 same key is used for both encrypting and decrypting the data. Both the
 sender and the receiver have to possess the single key. Imagine Angela
 wants to send Gus a secret message. She first sends Gus the key they'll
 use to exchange the secret. But the key can't be encrypted because Gus
 doesn't have the key yet, so Angela has to send the key unencrypted. Now
 suppose Edgar is eavesdropping on the connection between Angela and Gus.
 He will get the key at the same time that Gus does. From that point
 forward, he can read anything Angela and Gus say to each other using
 that key.
In public key (or asymmetric) encryption,
 different keys are used to encrypt and decrypt the data. One key, called
 the public key, is used to encrypt the data. This key can be given to
 anyone. A different key, called the private key, is used to decrypt the data. This must be
 kept secret but needs to be possessed by only one of the correspondents.
 If Angela wants to send a message to Gus, she asks Gus for his public
 key. Gus sends it to her over an unencrypted connection. Angela uses
 Gus's public key to encrypt her message and sends it to him. If Edgar is
 eavesdropping when Gus sends Angela his key, Edgar also gets Gus's
 public key. However, this doesn't allow Edgar to decrypt the message
 Angela sends Gus, since decryption requires Gus's private key. The
 message is safe even if the public key is detected in transit.
Asymmetric encryption can also be used for authentication and message integrity checking. For this
 use, Angela would encrypt a message with her private key before sending
 it. When Gus received it, he'd decrypt it with Angela's public key. If
 the decryption succeeded, Gus would know that the message came from
 Angela. After all, no one else could have produced a message that would
 decrypt properly with her public key. Gus would also know that the
 message wasn't changed en route, either maliciously by Edgar or
 unintentionally by buggy software or network noise, since any such
 change would have screwed up the decryption. With a little more effort,
 Angela can double-encrypt the message, once with her private key, once
 with Gus's public key, thus getting all three benefits of privacy,
 authentication, and integrity.
In practice, public key encryption is much more CPU-intensive and
 much slower than secret key encryption. Therefore, instead of encrypting
 the entire transmission with Gus's public key, Angela encrypts a
 traditional secret key and sends it to Gus. Gus decrypts it with his
 private key. Now Angela and Gus both know the secret key, but Edgar
 doesn't. Therefore, Gus and Angela can now use faster secret-key
 encryption to communicate privately without Edgar listening in.
Edgar still has one good attack on this protocol, however. (Very
 important: the attack is on the protocol used to send and receive
 messages, not on the encryption algorithms used.
 This attack does not require Edgar to break Gus and Angela's encryption
 and is completely independent of key length.) Edgar can not only read
 Gus's public key when he sends it to Angela, but he can also replace it
 with his own public key! Then when Angela thinks she's encrypting a
 message with Gus's public key, she's really using Edgar's. When she
 sends a message to Gus, Edgar intercepts it, decrypts it using his
 private key, encrypts it using Gus's public key, and sends it on to Gus.
 This is called a man-in-the-middle attack
 . Working alone on an insecure channel, Gus and Angela
 have no easy way to protect against this. The solution used in practice
 is for both Gus and Angela to store and verify their public keys with a
 trusted third-party certification authority. Rather than sending each
 other their public keys, Gus and Angela retrieve each other's public key
 from the certification authority. This scheme still isn't
 perfect—Edgar may be able to place himself in between Gus and the
 certification authority, Angela and the certification authority, and Gus
 and Angela—but it makes life harder for Edgar.
Tip
This discussion has been necessarily brief. Many interesting
 details have been skimmed over or omitted entirely. If you want to
 know more, the Crypt Cabal's Cryptography FAQ at http://www.faqs.org/faqs/cryptography-faq/ is a good
 place to start. For an in-depth analysis of protocols and algorithms
 for confidentiality, authentication, and message integrity, Bruce
 Schneier's Applied Cryptography (Wiley &
 Sons) is the standard introductory text. Finally, Jonathan Knudsen's
 Java Cryptography (O'Reilly) and Scott Oak's
 Java Security (O'Reilly) cover the underlying
 cryptography and authentication packages on which the JSSE
 rests.

As this example indicates, the theory and practice of encryption
 and authentication, both algorithms and protocols, is a challenging
 field that's fraught with mines and pitfalls to surprise the amateur
 cryptographer. It is much easier to design a bad encryption algorithm or
 protocol than a good one. And it's not always obvious which algorithms
 and protocols are good and which aren't. Fortunately, you don't have to
 be a cryptography expert to use strong cryptography in Java network
 programs. JSSE shields you from the low-level details of how algorithms
 are negotiated, keys are exchanged, correspondents are authenticated,
 and data is encrypted. JSSE allows you to create sockets and server
 sockets that transparently handle the negotiations and encryption
 necessary for secure communication. All you have to do is send your data
 over the same streams and sockets you're familiar with from previous
 chapters. The Java Secure Socket Extension is divided into four
 packages:
	javax.net.ssl
	The abstract classes that define Java's API for secure
 network communication.

	javax.net
	The abstract socket factory classes used instead of
 constructors to create secure sockets.

	javax.security.cert
	A minimal set of classes for handling public key
 certificates that's needed for SSL in Java 1.1. (In Java 1.2 and
 later, the java.security.cert
 package should be used instead.)

	com.sun.net.ssl
	The concrete classes that implement the encryption
 algorithms and protocols in Sun's reference implementation of the
 JSSE. Technically, these are not part of the JSSE standard. Other
 implementers may replace this package with one of their own; for
 instance, one that uses native code to speed up the CPU-intensive
 key generation and encryption process.

None of these are included as a standard part of the JDK prior to
 Java 1.4. To use these with Java 1.3 and earlier, you have to download
 the JSSE from http://java.sun.com/products/jsse/
 and install it. Third parties have also implemented this API, most
 notably Casey Marshall, who wrote Jessie (http://www.nongnu.org/jessie/), an open source
 implementation of JSSE published under the GPL with library
 exception.
Sun's reference implementation is distributed as a Zip file, which
 you can unpack and place anywhere on your system. In the
 lib directory of this Zip file, you'll find three
 JAR archives: jcert.jar,
 jnet.jar, and jsse.jar. These
 need to be placed in your class path or jre/lib/ext
 directory.
Next you need to register the cryptography provider by
 editing your jre/lib/ext/security/java.security
 file. Open this file in a text editor and look for a line like
 these:
security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
You may have more or fewer providers than this. However many you
 have, add one more line like this:
security.provider.3=com.sun.net.ssl.internal.ssl.Provider
You may have to change the "3" to 2 or 4 or 5 or whatever the next
 number is in the security provider sequence. If you install a
 third-party JSSE implementation, you'll add another line like this with
 the class name as specified by your JSSE implementation's
 documentation.
Tip
 If you use multiple copies of the JRE, you'll need to
 repeat this procedure for each one you use. For reasons that have
 never been completely clear to me, Sun's JDK installer always places
 multiple copies of the JRE on my Windows box: one for compiling and
 one for running. You have to make these changes to both copies to get
 JSSE programs to run.

If you don't get this right, you'll see exceptions like
 "java.net.SocketException: SSL implementation not
 available" when you try to run programs that use the JSSE.
 Alternatively, instead of editing the java.policy
 file, you can add this line to classes that use Sun's implementation of
 the JSSE:
java.security.Security.addProvider(
 new com.sun.net.ssl.internal.ssl.Provider());
This may be useful if you're writing software to run on someone
 else's system and don't want to ask them to modify the
 java.policy file.

Creating Secure Client Sockets

 If you don't care very much about the underlying details,
 using an encrypted SSL socket to talk to an existing secure server is
 truly straightforward. Rather than constructing a java.net.Socket object with a constructor, you
 get one from a javax.net.ssl.SSLSocketFactory using its createSocket() method. SSLSocketFactory is an abstract class that
 follows the abstract factory design pattern:
public abstract class SSLSocketFactory extends SocketFactory
Since the SSLFactorySocket
 class is itself abstract, you get an instance of it by invoking the
 static SSLSocketFactory.getDefault()
 method:
public static SocketFactory getDefault() throws InstantiationException
This either returns an instance of SSLSocketFactory or throws an InstantiationException if no concrete subclass
 can be found. Once you have a reference to the factory, use one of these
 five overloaded createSocket()
 methods to build an SSLSocket:
public abstract Socket createSocket(String host, int port)
 throws IOException, UnknownHostException
public abstract Socket createSocket(InetAddress host, int port)
 throws IOException
public abstract Socket createSocket(String host, int port,
 InetAddress interface, int localPort)
 throws IOException, UnknownHostException
public abstract Socket createSocket(InetAddress host, int port,
 InetAddress interface, int localPort)
 throws IOException, UnknownHostException
public abstract Socket createSocket(Socket proxy, String host, int port,
 boolean autoClose) throws IOException
The first two methods create and return a socket that's connected
 to the specified host and port or throw an IOException if they can't connect. The third
 and fourth methods connect and return a socket that's connected to the
 specified host and port from the specified local network interface and
 port. The last createSocket()
 method, however, is a little different. It begins with an existing
 Socket object that's connected to a
 proxy server. It returns a Socket
 that tunnels through this proxy server to the specified host and port.
 The autoClose argument determines
 whether the underlying proxy socket
 should be closed when this socket is closed. If autoClose is true, the underlying socket will be closed; if
 false, it won't be.
The Socket that all
 these methods return will really be a javax.net.ssl.SSLSocket, a subclass of
 java.net.Socket. However, you don't
 need to know that. Once the secure socket has been created, you use it
 just like any other socket, through its getInputStream(), getOutputStream(), and other methods. For
 example, let's suppose there's a server running on
 login.ibiblio.org on port 7,000 that accepts
 orders. Each order is sent as an ASCII string using a single TCP
 connection. The server accepts the order and closes the connection. (I'm
 leaving out a lot of details that would be
 necessary in a real-world system, such as the server sending a response
 code telling the client whether the order was accepted.) The orders that
 clients send look like this:
Name: John Smith
Product-ID: 67X-89
Address: 1280 Deniston Blvd, NY NY 10003
Card number: 4000-1234-5678-9017
Expires: 08/05
There's enough information in this message to let someone snooping
 packets use John Smith's credit card number for nefarious purposes.
 Consequently, before sending this order, you should encrypt it; the
 simplest way to do that without burdening either the server or the
 client with a lot of complicated, error-prone encryption code is to use
 a secure socket. The following code sends the order over a secure
 socket:
try {

 // This statement is only needed if you didn't add
 // security.provider.3=com.sun.net.ssl.internal.ssl.Provider
 // to your java.security file.
 Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());

 SSLSocketFactory factory
 = (SSLSocketFactory) SSLSocketFactory.getDefault();
 Socket socket = factory.createSocket("login.metalab.unc.edu", 7000);

 Writer out = new OutputStreamWriter(socket.getOutputStream(),
 "ASCII");
 out.write("Name: John Smith\r\n");
 out.write("Product-ID: 67X-89\r\n");
 out.write("Address: 1280 Deniston Blvd, NY NY 10003\r\n");
 out.write("Card number: 4000-1234-5678-9017\r\n");
 out.write("Expires: 08/05\r\n");
 out.flush();
 out.close();
 socket.close();

}
catch (IOException ex) {
 ex.printStackTrace();
}
Only the first three statements are noticeably different from what
 you'd do with an insecure socket. The rest of the code just uses the
 normal methods of the Socket,
 OutputStream, and Writer classes.
Reading input is no harder. Example 11-1 is a simple program
 that connects to a secure HTTP server, sends a simple GET request, and
 prints out the response.
Example 11-1. HTTPSClient
import java.net.*;
import java.io.*;
import java.security.*;
import javax.net.ssl.*;
import com.macfaq.io.*;

public class HTTPSClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.out.println("Usage: java HTTPSClient2 host");
 return;
 }

 int port = 443; // default https port
 String host = args[0];

 try {
 SSLSocketFactory factory
 = (SSLSocketFactory) SSLSocketFactory.getDefault();

 SSLSocket socket = (SSLSocket) factory.createSocket(host, port);

 // enable all the suites
 String[] supported = socket.getSupportedCipherSuites();
 socket.setEnabledCipherSuites(supported);

 Writer out = new OutputStreamWriter(socket.getOutputStream());
 // https requires the full URL in the GET line
 out.write("GET http://" + host + "/ HTTP/1.1\r\n");
 out.write("Host: " + host + "\r\n");
 out.write("\r\n");
 out.flush();

 // read response
 BufferedReader in = new SafeBufferedReader(
 new InputStreamReader(socket.getInputStream()));

 // read the header
 String s;
 while (!(s = in.readLine()).equals("")) {
 System.out.println(s);
 }
 System.out.println();

 // read the length
 String contentLength = in.readLine();
 int length = Integer.MAX_VALUE;
 try {
 length = Integer.parseInt(contentLength.trim(), 16);
 }
 catch (NumberFormatException ex) {
 // This server doesn't send the content-length
 // in the first line of the response body
 }
 System.out.println(contentLength);

 int c;
 int i = 0;
 while ((c = in.read()) != -1 && i++ < length) {
 System.out.write(c);
 }

 System.out.println();
 out.close();
 in.close();
 socket.close();

 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

}

Here are the first few lines of output you get when you connect to
 the U.S. Postal Service's web site:
% java HTTPSClient www.usps.com
HTTP/1.1 200 OK
Server: Netscape-Enterprise/6.0
Date: Wed, 28 Jan 2004 18:13:08 GMT
Content-type: text/html
Set-Cookie: WEBTRENDS_ID=216.254.85.72-1075313584.16566; expires=Fri,
 31-Dec-2010 00:00:00 GMT; path=/
Transfer-Encoding: chunked

b6b
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=UTF-8">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>

 <link rel="stylesheet" href="/common/stylesheets/styles.css"
 type="text/css">
 <TITLE>USPS - The United States Postal Service (U.S. Postal
 Service)</TITLE>
Tip
When this program was tested for this edition, it
 initially refused to connect to www.usps.com because it couldn't
 verify the identity of the remote server. The problem was that the
 root certificates shipped with the version of the JDK I was using
 (1.4.2_02-b3) had expired. Upgrading to the latest minor version
 (1.4.2_03-b2) fixed the problem. If you see any exception messages
 like "No trusted certificate found", try upgrading to the latest minor
 version of either the JDK (if you're using 1.4 or later) or the JSSE
 (if you're using Java 1.3 or earlier).

One thing you may notice when you run this program is that it's
 slower to respond than you might expect. There's a noticeable amount of both CPU and network
 overhead involved in generating and exchanging the public keys. Even
 over a fast connection, it can easily take 10 seconds or more for the
 connection to be established. Consequently, you probably don't want to
 serve all your content over HTTPS, only the content that really needs to
 be private.

Methods of the SSLSocket Class

 Besides the methods we've already discussed and those it
 inherits from java.net.Socket, the
 SSLSocket class has a number of
 methods for configuring exactly how much and what kind of authentication
 and encryption is performed. For instance, you can choose weaker or
 stronger algorithms, require clients to prove their identity, force
 reauthentication of both sides, and more.
Choosing the Cipher Suites

 Different implementations of the JSSE support different combinations of authentication
 and encryption algorithms. For instance, the implementation Sun
 bundles with Java 1.4 only supports 128-bit AES encryption, whereas
 IAIK's iSaSiLk (http://jce.iaik.tugraz.at/products/02_isasilk/)
 supports 256-bit AES encryption. The getSupportedCipherSuites() method tells you which combination of algorithms is
 available on a given socket:
public abstract String[] getSupportedCipherSuites()
However, not all cipher suites that are understood are
 necessarily allowed on the connection. Some may be too weak and
 consequently disabled. The getEnabledCipherSuites() method tells you which suites this socket is willing to
 use:
public abstract String[] getEnabledCipherSuites()
The actual suite used is negotiated between the client and
 server at connection time. It's possible that the client and the
 server won't agree on any suite. It's also possible that although a
 suite is enabled on both client and server, one or the other or both
 won't have the keys and certificates needed to use the suite. In
 either case, the createSocket()
 method will throw an SSLException,
 a subclass of IOException. You can
 change the suites the client attempts to use via the setEnabledCipherSuites() method:
public abstract void setEnabledCipherSuites(String[] suites)
The argument to this method should be a list of the suites you
 want to use. Each name must be one of the suites listed by getSupportedCipherSuites(). Otherwise, an
 IllegalArgumentException will be
 thrown. Sun's JDK 1.4 supports these 23 cipher suites:
	SSL_RSA_WITH_RC4_128_MD5

	SSL_RSA_WITH_RC4_128_SHA

	TLS_RSA_WITH_AES_128_CBC_SHA

	TLS_DHE_RSA_WITH_AES_128_CBC_SHA

	TLS_DHE_DSS_WITH_AES_128_CBC_SHA

	SSL_RSA_WITH_3DES_EDE_CBC_SHA

	SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

	SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

	SSL_RSA_WITH_DES_CBC_SHA

	SSL_DHE_RSA_WITH_DES_CBC_SHA

	SSL_DHE_DSS_WITH_DES_CBC_SHA

	SSL_RSA_EXPORT_WITH_RC4_40_MD5

	SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

	SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

	SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

	SSL_RSA_WITH_NULL_MD5

	SSL_RSA_WITH_NULL_SHA

	SSL_DH_anon_WITH_RC4_128_MD5

	TLS_DH_anon_WITH_AES_128_CBC_SHA

	SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

	SSL_DH_anon_WITH_DES_CBC_SHA

	SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

	SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

Each name has an algorithm divided into four parts: protocol,
 key exchange algorithm, encryption algorithm, and checksum. For
 example, the name SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
 means Secure Sockets Layer Version 3;
 Diffie-Hellman method for key agreement; no authentication; Data
 Encryption Standard encryption with 40-bit keys; Cipher Block
 Chaining, and the Secure Hash Algorithm checksum.
By default, the JDK 1.4 implementation enables all the encrypted
 authenticated suites (the first 15 members of this list). If you want
 nonauthenticated transactions or authenticated but unencrypted
 transactions, you must enable those suites explicitly with the
 setEnabledCipherSuites()
 method.
 Besides key lengths, there's an important difference
 between DES/AES and RC4-based ciphers. DES and AES are block ciphers;
 that is, they encrypt a certain number of bits at a time. DES always
 encrypts 64 bits. If 64 bits aren't available, the encoder has to pad
 the input with extra bits. AES can encrypt blocks of 128, 192, or 256
 bits, but still has to pad the input if it doesn't come out to an even
 multiple of the block size. This isn't a problem for file transfer
 applications such as secure HTTP and FTP, where more or less all the
 data is available at once. However, it's problematic for user-centered
 protocols such as chat and Telnet. RC4 is a stream cipher that can
 encrypt one byte at a time and is more appropriate for protocols that
 may need to send a single byte at a time.
For example, let's suppose that Edgar has some fairly powerful
 parallel computers at his disposal and can quickly break any
 encryption that's 64 bits or less and that Gus and Angela know this.
 Furthermore, they suspect that Edgar can blackmail one of their ISPs
 or the phone company into letting him tap the line, so they want to
 avoid anonymous connections that are vulnerable to man-in-the-middle
 attacks. To be safe, Gus and Angela decide to use at least 111-bit,
 authenticated encryption. It then behooves them to enable only the
 strongest available algorithms. This code fragment accomplishes
 that:
String[] strongSuites = {"SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA",
 "SSL_RSA_WITH_RC4_128_MD5", "SSL_RSA_WITH_RC4_128_SHA",
 "SSL_RSA_WITH_3DES_EDE_CBC_SHA"};
socket.setEnabledCipherSuites(strongSuites);
If the other side of the connection doesn't support strong
 encryption, the socket will throw an exception when they try to read
 from or write to it, thus ensuring that no confidential information is
 accidentally transmitted over a weak channel.

Event Handlers

Network communications are slow compared to the speed of
 most computers. Authenticated network communications are even slower.
 The necessary key generation and setup for a secure connection can
 easily take several seconds. Consequently, you may want to deal with
 the connection asynchronously. JSSE uses the standard event model
 introduced in Java 1.1 to notify programs when the handshaking between
 client and server is complete. The pattern is a familiar one. In order
 to get notifications of handshake-complete events, simply implement
 the HandshakeCompletedListener
 interface:
public interface HandshakeCompletedListener
 extends java.util.EventListener
This interface declares the handshakeCompleted() method:
public void handshakeCompleted(HandshakeCompletedEvent event)
This method receives as an argument a HandshakeCompletedEvent:
public class HandshakeCompletedEvent extends java.util.EventObject
The HandshakeCompletedEvent
 class provides four methods for getting information
 about the event:
public SSLSession getSession()
public String getCipherSuite()
public X509Certificate[] getPeerCertificateChain()
 throws SSLPeerUnverifiedException
public SSLSocket getSocket()
Particular HandshakeCompletedListener objects register
 their interest in handshake-completed events from a particular
 SSLSocket via its addHandshakeCompletedListener() and
 removeHandshakeCompletedListener()
 methods:
public abstract void addHandshakeCompletedListener(
 HandshakeCompletedListener listener)
public abstract void removeHandshakeCompletedListener(
 HandshakeCompletedListener listener) throws IllegalArgumentException

Session Management

 SSL is commonly used on web servers, and for good
 reason. Web connections tend to be transitory; every page requires a
 separate socket. For instance, checking out of Amazon.com on its
 secure server requires seven separate page loads, more if you have to
 edit an address or choose gift-wrapping. Imagine if every one of those
 pages took an extra 10 seconds or more to negotiate a secure
 connection. Because of the high overhead involved in handshaking
 between two hosts for secure communications, SSL allows
 sessions to be established that extend over
 multiple sockets. Different sockets within the same session use the
 same set of public and private keys. If the secure connection to
 Amazon.com takes seven sockets, all seven will be established within
 the same session and use the same keys. Only the first socket within
 that session will have to endure the overhead of key generation and
 exchange.
As a programmer using JSSE, you don't need to do anything extra
 to take advantage of sessions. If you open multiple secure sockets to
 one host on one port within a reasonably short period of time, JSSE
 will reuse the session's keys automatically. However, in high-security
 applications, you may want to disallow session-sharing between sockets
 or force reauthentication of a session. In the JSSE, sessions are
 represented by instances of the SSLSession interface; you can use the methods of this interface to
 check the times the session was created and last accessed, invalidate
 the session, and get various information about the session:
public byte[] getId()
public SSLSessionContext getSessionContext()
public long getCreationTime()
public long getLastAccessedTime()
public void invalidate()
public void putValue(String name, Object value)
public Object getValue(String name)
public void removeValue(String name)
public String[] getValueNames()
public X509Certificate[] getPeerCertificateChain()
 throws SSLPeerUnverifiedException
public String getCipherSuite()
public String getPeerHost()
The getSession() method of SSLSocket
 returns the Session this socket
 belongs to:
public abstract SSLSession getSession()
However, sessions are a trade-off between performance and
 security. It is more secure to renegotiate the key for each and every
 transaction. If you've got really spectacular hardware and are trying
 to protect your systems from an equally determined, rich, motivated,
 and competent adversary, you may want to avoid sessions. To prevent a
 socket from creating a session that passes false to setEnableSessionCreation(), use:
public abstract void setEnableSessionCreation(boolean allowSessions)
The getEnableSessionCreation() method returns true
 if multisocket sessions are allowed, false if they're not:
public abstract boolean getEnableSessionCreation()
On rare occasions, you may even want to reauthenticate a
 connection; that is, throw away all the certificates and keys that
 have previously been agreed to and start over with a new session. The
 startHandshake() method does this:
public abstract void startHandshake() throws IOException

Client Mode

It's a rule of thumb that in most secure communications,
 the server is required to authenticate itself using the appropriate
 certificate. However, the client is not. That is, when I buy a book
 from Amazon using its secure server, it has to prove to my browser's
 satisfaction that it is indeed Amazon and not Joe Random Hacker.
 However, I do not have to prove to Amazon that I am Elliotte Rusty
 Harold. For the most part, this is as it should be, since purchasing
 and installing the trusted certificates necessary for authentication
 is a fairly user-hostile experience that readers shouldn't have to go
 through just to buy the latest Nutshell handbook. However, this
 asymmetry can lead to credit card fraud. To avoid problems like this,
 sockets can be required to authenticate themselves. This strategy
 wouldn't work for a service open to the general public. However, it
 might be reasonable in certain internal, high-security
 applications.
The setUseClientMode()
 method determines whether the socket needs to use
 authentication in its first handshake. The name of the method is a
 little misleading. It can be used for both client- and server-side
 sockets. However, when true is
 passed in, it means the socket is in client mode (whether it's on the
 client side or not) and will not offer to authenticate itself. When
 false is passed, it will try to
 authenticate itself:
public abstract void setUseClientMode(boolean mode)
 throws IllegalArgumentException
This property can be set only once for any given socket.
 Attempting to set it a second time throws an IllegalArgumentException.
The getUseClientMode()
 method simply tells you whether this socket will use
 authentication in its first handshake:
public abstract boolean getUseClientMode()
A secure socket on the server side (that is, one returned by the
 accept() method of an SSLServerSocket) uses the setNeedClientAuth() method to require that all clients connecting to it
 authenticate themselves (or not):
public abstract void setNeedClientAuth(boolean needsAuthentication)
 throws IllegalArgumentException
This method throws an IllegalArgumentException if the socket is
 not on the server side.
The getNeedClientAuth()
 method returns true
 if the socket requires authentication from the client side, false otherwise:
public abstract boolean getNeedClientAuth()

Creating Secure Server Sockets

fSecure client sockets are only half of the equation. The
 other half is SSL-enabled server sockets. These are instances of the
 javax.net.SSLServerSocket class:
public abstract class SSLServerSocket extends ServerSocket
Like SSLSocket, all the
 constructors in this class are protected. Like SSLSocket, instances of SSLServerSocket are created by an abstract
 factory class, javax.net.SSLServerSocketFactory:
public abstract class SSLServerSocketFactory
 extends ServerSocketFactory
Also like SSLSocketFactory, an
 instance of SSLServerSocketFactory is
 returned by a static SSLServerSocketFactory.getDefault()
 method:
public static ServerSocketFactory getDefault()
And like SSLSocketFactory,
 SSLServerSocketFactory has three
 overloaded createServerSocket()
 methods that return instances of SSLServerSocket and are easily understood by
 analogy with the java.net.ServerSocket constructors:
public abstract ServerSocket createServerSocket(int port)
 throws IOException
public abstract ServerSocket createServerSocket(int port,
 int queueLength) throws IOException
public abstract ServerSocket createServerSocket(int port,
 int queueLength, InetAddress interface) throws IOException
If that were all there was to creating secure server sockets, they
 would be quite straightforward and simple to use. Unfortunately, that's
 not all there is to it. The factory that SSLServerSocketFactory.getDefault() returns
 generally only supports server authentication. It does not support
 encryption. To get encryption as well, server-side secure sockets
 require more initialization and setup. Exactly how this setup is
 performed is implementation-dependent. In Sun's reference
 implementation, a com.sun.net.ssl.SSLContext object is
 responsible for creating fully configured and initialized secure server
 sockets. The details vary from JSSE implementation to JSSE
 implementation, but to create a secure server socket in the reference
 implementation, you have to:
	Generate public keys and certificates using keytool.

	Pay money to have your certificates authenticated by a trusted
 third party such as Verisign.

	Create an SSLContext for
 the algorithm you'll use.

	Create a TrustManagerFactory for the source of
 certificate material you'll be using.

	Create a KeyManagerFactory
 for the type of key material you'll be using.

	Create a KeyStore object
 for the key and certificate database. (Sun's default is JKS.)

	Fill the KeyStore object
 with keys and certificates; for instance, by loading them from the
 filesystem using the pass phrase they're encrypted with.

	Initialize the KeyManagerFactory with the KeyStore and its pass phrase.

	Initialize the context with the necessary key managers from
 the KeyManagerFactory, trust
 managers from the TrustManagerFactory, and a source of
 randomness. (The last two can be null if you're willing to accept
 the defaults.)

Example 11-2
 demonstrates this procedure with a complete SecureOrderTaker for accepting orders and
 printing them on System.out. Of
 course, in a real application, you'd do something more interesting with
 the orders.
Example 11-2. SecureOrderTaker
import java.net.*;
import java.io.*;
import java.util.*;
import java.security.*;
import javax.net.ssl.*;
import javax.net.*;

public class SecureOrderTaker {

 public final static int DEFAULT_PORT = 7000;
 public final static String algorithm = "SSL";

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[0]);
 if (port < 0 || port >= 65536) {
 System.out.println("Port must between 0 and 65535");
 return;
 }
 }
 catch (NumberFormatException ex) {}
 }

 try {

 SSLContext context = SSLContext.getInstance(algorithm);

 // The reference implementation only supports X.509 keys
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");

 // Sun's default kind of key store
 KeyStore ks = KeyStore.getInstance("JKS");

 // For security, every key store is encrypted with a
 // pass phrase that must be provided before we can load
 // it from disk. The pass phrase is stored as a char[] array
 // so it can be wiped from memory quickly rather than
 // waiting for a garbage collector. Of course using a string
 // literal here completely defeats that purpose.
 char[] password = "2andnotafnord".toCharArray();
 ks.load(new FileInputStream("jnp3e.keys"), password);
 kmf.init(ks, password);

 //
 context.init(kmf.getKeyManagers(), null, null);

 SSLServerSocketFactory factory
 = context.getServerSocketFactory();

 SSLServerSocket server
 = (SSLServerSocket) factory.createServerSocket(port);

 String[] supported = server.getSupportedCipherSuites();
 String[] anonCipherSuitesSupported = new String[supported.length];
 int numAnonCipherSuitesSupported = 0;
 for (int i = 0; i < supported.length; i++) {
 if (supported[i].indexOf("_anon_") > 0) {
 anonCipherSuitesSupported[numAnonCipherSuitesSupported++] =
 supported[i];
 }
 }

 String[] oldEnabled = server.getEnabledCipherSuites();
 String[] newEnabled = new String[oldEnabled.length
 + numAnonCipherSuitesSupported];
 System.arraycopy(oldEnabled, 0, newEnabled, 0, oldEnabled.length);
 System.arraycopy(anonCipherSuitesSupported, 0, newEnabled,
 oldEnabled.length, numAnonCipherSuitesSupported);

 server.setEnabledCipherSuites(newEnabled);
 // Now all the set up is complete and we can focus
 // on the actual communication.
 try {
 while (true) {
 // This socket will be secure,
 // but there's no indication of that in the code!
 Socket theConnection = server.accept();
 InputStream in = theConnection.getInputStream();
 int c;
 while ((c = in.read()) != -1) {
 System.out.write(c);
 }
 theConnection.close();
 } // end while
 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 } // end catch

 } // end try
 catch (IOException ex) {
 ex.printStackTrace();
 } // end catch
 catch (KeyManagementException ex) {
 ex.printStackTrace();
 } // end catch
 catch (KeyStoreException ex) {
 ex.printStackTrace();
 } // end catch
 catch (NoSuchAlgorithmException ex) {
 ex.printStackTrace();
 } // end catch
 catch (java.security.cert.CertificateException ex) {
 ex.printStackTrace();
 } // end catch
 catch (UnrecoverableKeyException ex) {
 ex.printStackTrace();
 } // end catch

 } // end main

} // end server

This example loads the necessary keys and certificates from a file
 named jnp3e.keys in the current working directory
 protected with the password "2andnotafnord". What this example doesn't
 show you is how that file was created. It was built with the
 keytool program that's bundled with the JDK like
 this:
D:\JAVA>keytool -genkey -alias ourstore -keystore jnp3e.keys
Enter keystore password: 2andnotafnord
What is your first and last name?
 [Unknown]: Elliotte
What is the name of your organizational unit?
 [Unknown]: Me, Myself, and I
What is the name of your organization?
 [Unknown]: Cafe au Lait
What is the name of your City or Locality?
 [Unknown]: Brooklyn
What is the name of your State or Province?
 [Unknown]: New York
What is the two-letter country code for this unit?
 [Unknown]: NY
Is <CN=Elliotte, OU="Me, Myself, and I", O=Cafe au Lait, L=Brooklyn,
ST=New York, C=NY> correct?
 [no]: y

Enter key password for <ourstore>
 (RETURN if same as keystore password):
When this is finished, you'll have a file named
 jnp3e.keys, which contains your public keys.
 However, no one will believe that these are your public keys unless you
 have them certified by a trusted third party such as Verisign (http://www.verisign.com/). Unfortunately, this
 certification costs money. The cheapest option is $14.95 per year for a
 Class 1 Digital ID. Verisign hides the sign-up form for this kind of ID
 deep within its web site, apparently to get you to sign up for the much
 more expensive options that are prominently featured on its home page.
 At the time of this writing, the sign-up form is at https://www.verisign.com/client/. Verisign has changed
 this URL several times in the past, making it much harder to find than
 its more expensive options. In the more expensive options, Verisign goes
 to greater lengths to guarantee that you are who you say you are. Before
 signing up for any kind of digital ID, you should be aware that
 purchasing one has potentially severe legal consequences. In some
 jurisdictions, poorly thought-out laws make digital ID owners liable for
 all purchases made and contracts signed using their digital ID,
 regardless of whether the ID was stolen or forged. If you just want to
 explore the JSSE before deciding whether to go through the hassle,
 expense, and liability of purchasing a verified certificate, Sun
 includes a verified keystore file called testkeys,
 protected with the password "passphrase", that has some JSSE samples
 (http://java.sun.com/products/jsse/). However,
 this isn't good enough for real work.
For more information about exactly what's going on and what the
 various options are, as well as other ways to create key and certificate
 files, consult the online documentation for the
 keytool utility that came with your JDK, the Java
 Cryptography Architecture guide at http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html,
 or the previously mentioned books Java
 Cryptography, by Jonathan Knudsen, or Java
 Security, by Scott Oaks (both from O'Reilly).
Another approach is to use cipher suites that don't require
 authentication. There are six of these in Sun's JDK 1.4:
 SSL_DH_anon_WITH_RC4_128_MD5, TLS_DH_anon_WITH_AES_128_CBC_SHA,
 SSL_DH_anon_WITH_3DES_EDE_CBC_SHA, SSL_DH_anon_WITH_DES_CBC_SHA,
 SSL_DH_anon_EXPORT_WITH_RC4_40_MD5, and
 SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA.
These are not enabled by default because they're vulnerable to a
 man-in-the-middle attack, but at least they allow you to write simple
 programs without paying Verisign any money.

Methods of the SSLServerSocket Class

Once you've successfully created and initialized an
 SSLServerSocket, there are a lot of
 applications you can write using nothing more than the methods inherited
 from java.net.ServerSocket. However,
 there are times when you need to adjust its behavior a little. Like
 SSLSocket, SSLServerSocket provides methods to choose
 cipher suites, manage sessions, and establish whether clients are
 required to authenticate themselves. Most of these methods are very
 similar to the methods of the same name in SSLSocket. The difference is that they work on
 the server side and set the defaults for sockets accepted by an SSLServerSocket. In some cases, once an
 SSLSocket has been accepted, you can
 still use the methods of SSLSocket to
 configure that one socket rather than all sockets accepted by this
 SSLServerSocket.
Choosing the Cipher Suites

The SSLServerSocket
 class has the same three methods for determining which
 cipher suites are supported and enabled as SSLSocket does:
public abstract String[] getSupportedCipherSuites()
public abstract String[] getEnabledCipherSuites()
public abstract void setEnabledCipherSuites(String[] suites)
These methods use the same suite names as the similarly named
 methods in SSLSocket. The
 difference is that these methods apply to all sockets accepted by the
 SSLServerSocket rather than to just
 one SSLSocket. For example, this
 code fragment has the effect of enabling anonymous, unauthenticated
 connections on the SSLServerSocket
 server. It relies on the names of
 these suites containing the string "_anon_". This is true for Sun's
 reference implementations, though there's no guarantee that other
 implementers will follow this convention:
String[] supported = server.getSupportedCipherSuites();
String[] anonCipherSuitesSupported = new String[supported.length];
int numAnonCipherSuitesSupported = 0;
for (int i = 0; i < supported.length; i++) {
 if (supported[i].indexOf("_anon_") > 0) {
 anonCipherSuitesSupported[numAnonCipherSuitesSupported++]
 = supported[i];
 }
}

String[] oldEnabled = server.getEnabledCipherSuites();
String[] newEnabled = new String[oldEnabled.length
 + numAnonCipherSuitesSupported];
System.arraycopy(oldEnabled, 0, newEnabled, 0, oldEnabled.length);
System.arraycopy(anonCipherSuitesSupported, 0, newEnabled,
 oldEnabled.length, numAnonCipherSuitesSupported);

server.setEnabledCipherSuites(newEnabled);
This fragment retrieves the list of both supported and enabled
 cipher suites using getSupportedCipherSuites(
) and getEnabledCipherSuites(
). It looks at the name of every supported suite to see
 whether it contains the substring "_anon_". If the suite name does
 contain this substring, the suite is added to a list of anonymous
 cipher suites. Once the list of anonymous cipher suites is built, it's
 combined in a new array with the previous list of enabled cipher
 suites. The new array is then passed to setEnabledCipherSuites() so that both the
 previously enabled and the anonymous cipher suites can now be
 used.

Session Management

 Both client and server must agree to establish a
 session. The server side uses the setEnableSessionCreation() method to
 specify whether this will be allowed and the getEnableSessionCreation() method to determine whether this is currently
 allowed:
public abstract void setEnableSessionCreation(boolean allowSessions)
public abstract boolean getEnableSessionCreation()
Session creation is enabled by default. If the server disallows
 session creation, then a client that wants a session will still be
 able to connect. It just won't get a session and will have to
 handshake again for every socket. Similarly, if the client refuses
 sessions but the server allows them, they'll still be able to talk to
 each other but without sessions.

Client Mode

The SSLServerSocket
 class has two methods for determining and specifying
 whether client sockets are required to authenticate themselves to the
 server. By passing true to the
 setNeedClientAuth() method, you specify that only connections in which the
 client is able to authenticate itself will be accepted. By passing
 false, you specify that
 authentication is not required of clients. The default is false. If for some reason you need to know
 what the current state of this property is, the getNeedClientAuth() method will tell you:
public abstract void setNeedClientAuth(boolean flag)
public abstract boolean getNeedClientAuth()
The setUseClientMode()
 method allows a program to indicate that even though it has created an
 SSLServerSocket, it is and should
 be treated as a client in the communication with respect to
 authentication and other negotiations. For example, in an FTP session,
 the client program opens a server socket to receive data from the
 server, but that doesn't make it less of a client. The getUseClientMode() method returns true if the SSLServerSocket is in client mode, false otherwise:
public abstract void setUseClientMode(boolean flag)
public abstract boolean getUseClientMode()

Chapter 12. Non-Blocking I/O

 Compared to CPUs and memory or even disks, networks are
 slow. A high-end modern PC is capable of moving data between the CPU and
 main memory at speeds of around six gigabytes per second. It can move data
 to and from disk at the much slower but still respectable speed of about
 150 megabytes per second.[1] By contrast, the theoretical maximum on today's fastest
 local area networks tops out at 120 megabytes per second, though most LANs
 only support speeds ten to a hundred times slower than that. And
 the speed across the public Internet is generally at least
 an order of magnitude smaller than what you see across a LAN. My faster
 than average SDSL line promises 96 kilobytes per second, but normally
 delivers only about two-thirds of that. And as I type this, my router has
 died and I've been reduced to a dialup connection whose bandwidth is less
 than six kilobytes per second. CPUs, disks, and networks are all speeding
 up over time. These numbers are all substantially higher than I could have
 reported in the first couple of editions of this book. Nonetheless, CPUs
 and disks are likely to remain several orders of magnitude faster than
 networks for the foreseeable future. The last thing you want to do in
 these circumstances is make the blazingly fast CPU wait for the
 (relatively) molasses-slow network.
The traditional Java solution for allowing the CPU to race ahead of the network is a combination of
 buffering and multithreading. Multiple threads can generate data for
 several different connections at once and store that data in buffers until
 the network is actually ready to send it; this approach works well for
 fairly simple servers and clients without extreme performance needs.
 However, the overhead of spawning multiple threads and switching between
 them is nontrivial. For instance, each thread requires about one extra
 megabyte of RAM. On a large server that may be processing thousands of
 requests a second, it's better not to assign a thread to each connection,
 even if threads for subsequent requests can be reused, as discussed in
 Chapter 5. The overhead of thread
 management severely degrades system performance. It's faster if one thread
 can take responsibility for multiple connections, pick one that's ready to
 receive data, fill it with as much data as that connection can manage as
 quickly as possible, then move on to the next ready connection.
To really work well, this approach needs to be supported by the
 underlying operating system. Fortunately, pretty much every modern
 operating system you're likely to be using as a high-volume server
 supports such non-blocking I/O. However, it might not be well-supported on
 some client systems of interest, such as PDAs, cell phones, and the like
 (i.e., J2ME environments). Indeed, the java.nio package that provides this support is
 not part of any current or planned J2ME profiles. However, the whole new
 I/O API is designed for and only really matters on servers, which is why I
 haven't done more than allude to it until we began talking about servers.
 Client and even peer-to-peer systems rarely need to process so many
 simultaneous connections that multithreaded, stream-based I/O becomes a
 noticeable bottleneck. There are some exceptions—a web spider such as
 Google that downloads millions of pages simultaneously could certainly use
 the performance boost the new I/O APIs provide—but for most clients the
 new I/O API is overkill, and not worth the extra complexity it
 entails.
An Example Client

 Although the new I/O APIs aren't specifically designed for
 clients, they do work for them. I'm going to begin with a client program
 using the new I/O APIs because it's a little simpler. In particular,
 many clients can be implemented with one connection at a time, so I can
 introduce channels and buffers before talking about selectors and
 non-blocking I/O.
To demonstrate the basics, I'll implement a simple client for the
 character generator protocol defined in RFC 864. This
 protocol is designed for testing clients. The server listens for
 connections on port 19. When a client connects, the server sends a
 continuous sequence of characters until the client disconnects. Any
 input from the client is ignored. The RFC does not specify which
 character sequence to send, but recommends that the server use a
 recognizable pattern. One common pattern is rotating, 72-character
 carriage return/linefeed delimited lines of the 95 ASCII printing
 characters, like this:
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij
$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk
%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm
I picked this protocol for the examples in this chapter because
 both the protocol for transmitting the data and the algorithm to
 generate the data are simple enough that they won't obscure the I/O.
 However, chargen can transmit a lot of data over a relatively few
 connections and quickly saturate a network connection. It's thus a good
 candidate for the new I/O APIs.
When implementing a client that takes advantage of Java
 1.4's new I/O APIs, begin by invoking the static factory method SocketChannel.open() to create a new java.nio.channels.SocketChannel object. The
 argument to this method is a java.net.SocketAddress object indicating the
 host and port to connect to. For example, this fragment connects the
 channel to rama.poly.edu on port 19:
SocketAddress rama = new InetSocketAddress("rama.poly.edu", 19);
SocketChannel client = SocketChannel .open(rama);
The channel is opened in blocking mode, so the next line of code
 won't execute until the connection is established. If the connection
 can't be established, an IOException
 is thrown.
If this were a traditional client, you'd now ask for the socket's
 input and/or output streams. However, it's not. With a channel you write directly to the channel itself. Rather
 than writing byte arrays, you write ByteBuffer objects.
 We've got a pretty good idea that the lines of text are 74 ASCII
 characters long (72 printable characters followed by a carriage
 return/linefeed pair) so we'll create a ByteBuffer that has a 74-byte capacity using
 the static allocate() method:
ByteBuffer buffer= ByteBuffer.allocate(74);
Pass this ByteBuffer object to
 the channel's read() method. The
 channel fills this buffer with the data it reads from the socket. It
 returns the number of bytes it successfully read and stored in the
 buffer:
int bytesRead = client.read(buffer);
By default, this will read at least one byte or return -1 to
 indicate the end of the data, exactly as an InputStream does. It will often read more
 bytes if more bytes are available to be read. Shortly you'll see how to
 put this client in non-blocking mode where it will return 0 immediately
 if no bytes are available, but for the moment this code blocks just like
 an InputStream. As you could probably
 guess, this method can also throw an IOException if anything goes wrong with the
 read.
Assuming there is some data in the buffer—that is, n > 0—this
 data can be copied to System.out.
 There are ways to extract a byte array from a ByteBuffer that can then be written on a
 traditional OutputStream such as
 System.out. However, it's more
 informative to stick with a pure, channel-based solution. Such a
 solution requires wrapping the OutputStream System.out in a channel using the Channels utility class, specifically, its newChannel() method:
WritableByteChannel output = Channels.newChannel(System.out);
You can then write the data that was read onto this output channel
 connected to System.out. However,
 before you do that you have to flip the buffer so that the output channel starts from the
 beginning of the data that was read rather than the end:
buffer.flip();
output.write(buffer);
You don't have to tell the output channel how many bytes to write.
 Buffers keep track of how many bytes they contain. However, in general,
 the output channel is not guaranteed to write all the bytes in the
 buffer. In this specific case, though, it's a blocking channel and it
 will either do so or throw an IOException.
You shouldn't create a new buffer for each read and write. That
 would kill the performance. Instead, reuse the existing buffer. You'll need to clear the buffer before reading
 into it again:
buffer.clear();
This is a little different than flipping. Flipping leaves the data
 in the buffer intact, but prepares it for writing rather than reading.
 Clearing resets the buffer to a pristine state.[2]
Example 12-1 puts this
 together into a complete client. Because chargen is by design an endless
 protocol, you'll need to kill the program using Ctrl-C.
Example 12-1. A channel-based chargen client
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.io.IOException;

public class ChargenClient {

 public static int DEFAULT_PORT = 19;

 public static void main(String[] args) {

 if (args.length == 0) {
 System.out.println("Usage: java ChargenClient host [port]");
 return;
 }

 int port;
 try {
 port = Integer.parseInt(args[1]);
 }
 catch (Exception ex) {
 port = DEFAULT_PORT;
 }

 try {
 SocketAddress address = new InetSocketAddress(args[0], port);
 SocketChannel client = SocketChannel.open(address);

 ByteBuffer buffer = ByteBuffer.allocate(74);
 WritableByteChannel out = Channels.newChannel(System.out);

 while (client.read(buffer) != -1) {
 buffer.flip();
 out.write(buffer);
 buffer.clear();
 }
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }

 }

}

Here's the output from a sample run:
$ java ChargenClient rama.poly.edu
 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefg
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij
$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk
%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm
...
So far, this is just an alternate vision of a program that could
 have easily been written using streams. The really new feature comes if
 you want the client to do something besides copying all input to output.
 You can run this connection in either blocking or non-blocking mode in
 which read() returns immediately
 even if no data is available. This allows the program to do something
 else before it attempts to read. It doesn't have to wait for a slow
 network connection. To change the blocking mode, pass true (block) or false (don't block) to the configureBlocking() method. Let's make this
 connection non-blocking:
client.configureBlocking(false);
In non-blocking mode, read() may return 0 because it doesn't read
 anything. Therefore the loop needs to be a little different:
while (true) {
 // Put whatever code here you want to run every pass through the loop
 // whether anything is read or not
 int n = client.read(buffer);
 if (n > 0) {
 buffer.flip();
 out.write(buffer);
 buffer.clear();
 }
 else if (n == -1) {
 // This shouldn't happen unless the server is misbehaving.
 break;
 }
}
There's not a lot of call for this in a one-connection client like
 this one. Perhaps you could check to see if the user has done something
 to cancel input, for example. However, as you'll see in the next
 section, when a program is processing multiple connections, this enables
 code to run very quickly on the fast connections and more slowly on the
 slow ones. Each connection gets to run at its own speed without being
 held up behind the slowest driver on the one-lane road.

[1] These are rough, theoretical maximum numbers. Nonetheless, it's
 worth pointing out that I'm using megabyte to mean 1,024*1,024 bytes
 and gigabyte to mean 1,024 megabytes. Manufacturers often round the
 size of a gigabyte down to 1,000 megabytes and the size of a megabyte
 down to 1,000,000 bytes to make their numbers sound more impressive.
 Furthermore, networking speeds are often referred to in kilo/mega/giga
 bits per second rather than bytes per second.
 Here I'm reporting all numbers in bytes so I can compare hard drive,
 memory, and network bandwidths.

[2] Actually that's a tad simplistic. The old data is still
 present. It's not overwritten, but it will be overwritten with new
 data read from the source as soon as possible.

An Example Server

 Clients are well and good, but channels and buffers are
 really intended for server systems that need to process many
 simultaneous connections efficiently. Handling servers requires a third
 new piece in addition to the buffers and channels used for the client.
 Specifically, you need selectors that allow the server to find all the
 connections that are ready to receive output or send input.
To demonstrate the basics, I'll implement a simple server for the
 character generator protocol. When implementing a server that takes
 advantage of Java 1.4's new I/O APIs, begin by calling the static
 factory method ServerSocketChannel.open() method to create a new ServerSocketChannel object:
ServerSocketChannel serverChannel = ServerSocketChannel .open();
Initially this channel is not actually listening on any port. To
 bind it to a port, retrieve its ServerSocket peer object with the socket() method and then use the bind() method on that peer. For example, this
 code fragment binds the channel to a server socket on port 19:
ServerSocket ss = serverChannel.socket();
ss.bind(new InetSocketAddress(19));
As with regular server sockets, binding to port 19 requires you to
 be root on Unix (including Linux and Mac OS X). Nonroot users can only
 bind to ports 1024 and higher.
The server socket channel is now listening for incoming
 connections on port 19. To accept one, call the ServerSocketChannel accept() method, which returns a SocketChannel object:
SocketChannel clientChannel = serverChannel.accept();
On the server side, you'll definitely want to make the client
 channel non-blocking to allow the server to process multiple
 simultaneous connections:
clientChannel.configureBlocking(false);
You may also want to make the ServerSocketChannel non-blocking. By default, this accept() method blocks until there's an
 incoming connection, like the accept(
) method of ServerSocket.
 To change this, simply call configureBlocking(false) before calling
 accept():
serverChannel.configureBlocking(false);
A non-blocking accept()
 returns null almost immediately if there are no incoming connections. Be
 sure to check for that or you'll get a nasty NullPointerException when trying to use the
 socket.
There are now two open channels: a server channel and a client
 channel. Both need to be processed. Both can run indefinitely.
 Furthermore, processing the server channel will create more open client
 channels. In the traditional approach, you assign each connection a
 thread, and the number of threads climbs rapidly as clients connect.
 Instead, in the new I/O API, you create a Selector that enables the program to iterate
 over all the connections that are ready to be processed. To construct a
 new Selector , just call the static Selector.open() factory method:
Selector selector = Selector.open();
Next you need to register each channel with the selector that monitors it using the
 channel's register() method. When
 registering, specify the operation you're interested in using a named
 constant from the SelectionKey
 class. For the server socket, the only operation of
 interest is OP_ACCEPT; that is, is the server socket channel ready to
 accept a new connection?
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
For the client channels, you want to know something a little
 different, specifically, whether they're ready to have data written onto
 them. For this, use the OP_WRITE key:
SelectionKey key = clientChannel.register(selector, SelectionKey.OP_WRITE);
Both register() methods return
 a SelectionKey object. However, we're
 only going to need to use that key for the client channels, because
 there can be more than one of them. Each SelectionKey has an attachment of arbitrary
 Object type. This is normally used to
 hold an object that indicates the current state of the connection. In
 this case, we can store the buffer that the channel writes onto the
 network. Once the buffer is fully drained, we'll refill it. Fill an
 array with the data that will be copied into each buffer. Rather than
 writing to the end of the buffer, then rewinding to the beginning of the
 buffer and writing again, it's easier just to start with two sequential
 copies of the data so every line is available as a contiguous sequence
 in the array:
byte[] rotation = new byte[95*2];
for (byte i = ' '; i <= '~'; i++) {
 rotation[i-' '] = i;
 rotation[i+95-' '] = i;
}
Because this array will only be read from after it's been
 initialized, you can reuse it for multiple channels. However, each
 channel will get its own buffer filled with the contents of this array.
 We'll stuff the buffer with the first 72 bytes of the rotation array,
 then add a carriage return/linefeed pair to break the line. Then we'll
 flip the buffer so it's ready for draining, and attach it to the
 channel's key:
ByteBuffer buffer = ByteBuffer.allocate(74);
buffer.put(rotation, 0, 72);
buffer.put((byte) '\r');
buffer.put((byte) '\n');
buffer.flip();
key2.attach(buffer);
To check whether anything is ready to be acted on, call the
 selector's select()
 method. For a long-running server, this normally goes in an infinite
 loop:
while (true) {
 selector.select ();
 // process selected keys...
}
Assuming the selector does find a ready channel, its selectedKeys() method returns a java.util.Set containing one SelectionKey object for each ready channel.
 Otherwise it returns an empty set. In either case, you can loop through
 this with a java.util.Iterator:
Set readyKeys = selector.selectedKeys();
Iterator iterator = readyKeys.iterator();
while (iterator.hasNext()) {
 SelectionKey key = (SelectionKey) (iterator.next());
 // Remove key from set so we don't process it twice
 iterator.remove();
 // operate on the channel...
}
Removing the key from the set tells the selector that we've dealt
 with it, and the Selector doesn't
 need to keep giving it back to us every time we call select(). The Selector will add the channel back into the
 ready set when select() is called
 again if the channel becomes ready again. It's really important to
 remove the key from the ready set here, though.
If the ready channel is the server channel, the program accepts a
 new socket channel and adds it to the selector. If the ready channel is
 a socket channel, the program writes as much of the buffer as it can
 onto the channel. If no channels are ready, the selector waits for one.
 One thread, the main thread, processes multiple simultaneous
 connections.
In this case, it's easy to tell whether a client or a server
 channel has been selected because the server channel will only be ready
 for accepting and the client channels will only be ready for writing.
 Both of these are I/O operations, and both can throw IOExceptions for a variety of reasons, so
 you'll want to wrap this all in a try
 block.
try {
 if (key.isAcceptable()) {
 ServerSocketChannel server = (ServerSocketChannel)
 key.channel();
 SocketChannel connection = server.accept();
 connection.configureBlocking(false);
 connection.register(selector,
 SelectionKey.OP_WRITE);
 // set up the buffer for the client...
 }
 else if (key.isWritable()) {
 SocketChannel client = (SocketChannel) key.channel();
 // write data to client...
 }
}
Writing the data onto the channel is easy. Retrieve the key's
 attachment, cast it to ByteBuffer
 , and call hasRemaining() to check whether there's any
 unwritten data left in the buffer. If there is, write it. Otherwise,
 refill the buffer with the next line of data from the rotation array and write that.
ByteBuffer buffer = (ByteBuffer) key.attachment();
if (!buffer.hasRemaining()) {
 // Refill the buffer with the next line
 // Figure out where the last line started
 buffer.rewind();
 int first = buffer.get();
 // Increment to the next character
 buffer.rewind();
 int position = first - ' ' + 1;
 buffer.put(rotation, position, 72);
 buffer.put((byte) '\r');
 buffer.put((byte) '\n');
 buffer.flip();
}
client.write(buffer);
The algorithm that figures out where to grab the next line of data
 relies on the characters being stored in the rotation array in ASCII order. It should be
 familiar to anyone who learned C from Kernighan and Ritchie, but for the
 rest of us it needs a little explanation. buffer.get() reads the first byte of data from
 the buffer. From this number we subtract the space character (32)
 because that's the first character in the rotation array. This tells us which index in
 the array the buffer currently starts at. We add 1 to find the start of
 the next line and refill the buffer.
In the chargen protocol, the server never closes the connection.
 It waits for the client to break the socket. When this happens, an
 exception will be thrown. Cancel the key and close the corresponding
 channel:
catch (IOException ex) {
 key.cancel();
 try {
 // You can still get the channel from the key after cancelling the key.
 key.channel().close();
 }
 catch (IOException cex) {
 }
}
Example 12-2 puts this
 all together in a complete chargen server that processes multiple connections
 efficiently in a single thread.
Example 12-2. A non-blocking chargen server
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.util.*;
import java.io.IOException;

public class ChargenServer {

 public static int DEFAULT_PORT = 19;

 public static void main(String[] args) {

 int port;
 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception ex) {
 port = DEFAULT_PORT;
 }
 System.out.println("Listening for connections on port " + port);

 byte[] rotation = new byte[95*2];
 for (byte i = ' '; i <= '~'; i++) {
 rotation[i-' '] = i;
 rotation[i+95-' '] = i;
 }

 ServerSocketChannel serverChannel;
 Selector selector;
 try {
 serverChannel = ServerSocketChannel.open();
 ServerSocket ss = serverChannel.socket();
 InetSocketAddress address = new InetSocketAddress(port);
 ss.bind(address);
 serverChannel.configureBlocking(false);
 selector = Selector.open();
 serverChannel.register(selector, SelectionKey.OP_ACCEPT);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 return;
 }

 while (true) {

 try {
 selector.select();
 }
 catch (IOException ex) {
 ex.printStackTrace();
 break;
 }

 Set readyKeys = selector.selectedKeys();
 Iterator iterator = readyKeys.iterator();
 while (iterator.hasNext()) {

 SelectionKey key = (SelectionKey) iterator.next();
 iterator.remove();
 try {
 if (key.isAcceptable()) {
 ServerSocketChannel server = (ServerSocketChannel) key.channel();
 SocketChannel client = server.accept();
 System.out.println("Accepted connection from " + client);
 client.configureBlocking(false);
 SelectionKey key2 = client.register(selector, SelectionKey.
 OP_WRITE);
 ByteBuffer buffer = ByteBuffer.allocate(74);
 buffer.put(rotation, 0, 72);
 buffer.put((byte) '\r');
 buffer.put((byte) '\n');
 buffer.flip();
 key2.attach(buffer);
 }
 else if (key.isWritable()) {
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer buffer = (ByteBuffer) key.attachment();
 if (!buffer.hasRemaining()) {
 // Refill the buffer with the next line
 buffer.rewind();
 // Get the old first character
 int first = buffer.get();
 // Get ready to change the data in the buffer
 buffer.rewind();
 // Find the new first characters position in rotation
 int position = first - ' ' + 1;
 // copy the data from rotation into the buffer
 buffer.put(rotation, position, 72);
 // Store a line break at the end of the buffer
 buffer.put((byte) '\r');
 buffer.put((byte) '\n');
 // Prepare the buffer for writing
 buffer.flip();
 }
 client.write(buffer);
 }
 }
 catch (IOException ex) {
 key.cancel();
 try {
 key.channel().close();
 }
 catch (IOException cex) {}
 }

 }

 }

 }

}

This example only uses one thread. There are situations where you
 might still want to use multiple threads, especially if different
 operations have different priorities. For instance, you might want to
 accept new connections in one high priority thread and service existing
 connections in a lower priority thread. However, you're no longer
 required to have a 1:1 ratio between threads and connections, which
 dramatically improves the scalability of servers written in Java.
It may also be important to use multiple threads for maximum
 performance. Multiple threads allow the server to take advantage of
 multiple CPUs. Even with a single CPU, it's often a good idea to
 separate the accepting thread from the processing threads. The thread
 pools discussed in Chapter 5 are
 still relevant even with the new I/O model. The thread that accepts the
 connections can add the connections it's accepted into the queue for
 processing by the threads in the pool. This is still faster than doing
 the same thing without selectors because select() ensures you're never wasting any time
 on connections that aren't ready to receive data. On the other hand, the
 synchronization issues here are quite tricky, so don't attempt this
 solution until profiling proves there is a bottleneck.

Buffers

 In Chapter 4, I
 recommended that you always buffer your streams. Almost nothing has a
 greater impact on the performance of network programs than a big enough buffer. In the new I/O
 model, however, you're no longer given the choice. All I/O is buffered.
 Indeed the buffers are fundamental parts of the API. Instead of writing
 data onto output streams and reading data from input streams, you read
 and write data from buffers. Buffers may appear to be just an array of
 bytes as in buffered streams. However, native implementations can
 connect them directly to hardware or memory or use other, very efficient
 implementations.
From a programming perspective, the key difference between
 streams and channels is that streams are byte-based while
 channels are block-based. A stream is designed to provide one byte after
 the other, in order. Arrays of bytes can be passed for performance.
 However, the basic notion is to pass data one byte at a time. By
 contrast, a channel passes blocks of data around in buffers. Before
 bytes can be read from or written to a channel, the bytes have to be
 stored in a buffer, and the data is written or read one buffer at a
 time.
The second key difference between streams and channels/buffers is
 that channels and buffers tend to support both reading and writing on
 the same object. This isn't always true. For instance, a channel that
 points to a file on a CD-ROM can be read but not written. A channel
 connected to a socket that has shutdown input could be written but not
 read. If you try to write to a read-only channel or read from a
 write-only channel, an UnsupportedOperationException will be thrown.
 However, more often that not network programs can read from and write to
 the same channels.
Without worrying too much about the underlying details (which can
 vary hugely from one implementation to the next, mostly a result of
 being tuned very closely to the host operating system and hardware), you
 can think of a buffer as a fixed-size list of elements of a particular,
 normally primitive data type, like an array. However, it's not
 necessarily an array behind the scenes. Sometimes it is; sometimes it
 isn't. There are specific subclasses of Buffer for all of Java's primitive data types except boolean:
 ByteBuffer, CharBuffer, ShortBuffer, IntBuffer, LongBuffer, FloatBuffer, and DoubleBuffer. The methods in each subclass
 have appropriately typed return values and argument lists. For example,
 the DoubleBuffer class has methods to
 put and get doubles. The IntBuffer
 class has methods to put and get ints. The common Buffer superclass only provides methods that
 don't need to know the type of the data the buffer contains. (The lack
 of primitive-aware generics really hurts here.) Network programs use
 ByteBuffer almost exclusively,
 although occasionally one program might use a view that overlays the
 ByteBuffer with one of the other
 types.
Besides its list of data, each buffer tracks four key
 pieces of information. All buffers have the same methods to set and get these values,
 regardless of the buffer's type:
	position
	The next location in the buffer that will be read
 from or written to. Like most indexes in Java, this starts
 counting at 0 and has a maximum value one less than the size of
 the buffer. It can be set or gotten with these two methods:
public final int position()
public final Buffer position(int newPosition)

	capacity
	The maximum number of elements the buffer can hold.
 This is set when the buffer is created and cannot be changed
 thereafter. It can be read with this method:
public final int capacity()

	limit
	The last location in the buffer that can hold data. You
 cannot write or read past this point without changing the limit,
 even if the buffer has more capacity. It is set and gotten with
 these two methods:
public final int limit()
public final Buffer limit(int newLimit)

	mark
	A client-specified index in the buffer. It is set at the
 current position by invoking the mark() method. The current position is set to the marked
 position by invoking reset(
):
public final Buffer mark()
public final Buffer reset()
Tip
No, I can't explain why these methods (and several similar
 methods in the java.nio
 packages) don't follow the standard Java get Foo
 ()/set Foo
 () naming convention. Blame
 it on the smoke-filled chat rooms in the Java Community
 Process.

Unlike reading from an InputStream, reading from a buffer does not
 actually change the buffer's data in any way. It's possible to set the
 position either forwards or backwards so you can start reading from a
 particular place in the buffer. Similarly, a program can adjust the
 limit to control the end of the data that will be read. Only the
 capacity is fixed.
The common Buffer superclass
 also provides a few other methods that operate by reference to these
 common properties.
The clear() method "empties" the buffer by setting the
 position to zero and the limit to the capacity. This allows the buffer
 to be completely refilled:
public final Buffer clear()
However, the clear() method
 does not remove the old data from the buffer. It's still present and
 could be read using absolute get methods or changing the limit and
 position again.
The rewind() method sets
 the position to zero, but does not change the limit:
public final Buffer rewind()
This allows the buffer to be reread.
The flip() method sets
 the limit to the current position and the position to zero:
public final Buffer flip()
It is called when you want to drain a buffer you've just
 filled.
Finally, there are two methods that return information about the
 buffer but don't change it. The remaining() method returns the number of elements in the buffer
 between the current position and the limit. The hasRemaining() method
 returns true if the number of remaining elements is greater than
 zero:
public final int remaining()
public final boolean hasRemaining()
Creating Buffers

The buffer class hierarchy is based on inheritance but not
 really on polymorphism, at least not at the top level. You normally
 need to know whether you're dealing with an IntBuffer or a ByteBuffer or a CharBuffer or something else. You write code
 to one of these subclasses, not to the common Buffer superclass. However, at the level of
 IntBuffer/ByteBuffer/CharBuffer, etc., the classes are
 polymorphic. These classes are abstract too, and you use a factory
 method to retrieve an implementation-specific subclass such as
 java.nio.HeapByteBuffer. However,
 you only treat the actual object as an instance of its superclass,
 ByteBuffer in this case.
Each typed buffer class has several factory methods that create
 implementation-specific subclasses of that type in various ways. Empty
 buffers are normally created by allocate
 methods. Buffers that are prefilled with data are
 created by wrap methods. The allocate methods are often useful for
 input while the wrap methods are normally used for output.
Allocation

The basic allocate(
) method simply returns a new, empty buffer with a
 specified fixed capacity. For example, these lines create byte and
 int buffers, each with a size of 100:
ByteBuffer buffer1 = ByteBuffer.allocate(100);
IntBuffer buffer2 = IntBuffer.allocate(100);
The cursor is positioned at the beginning of the buffer; that
 is, the position is 0. A buffer created by allocate() will be implemented on top of
 a Java array, which can be accessed by the array() and arrayOffset() methods. For example, you
 could read a large chunk of data into a buffer using a channel and
 then retrieve the array from the buffer to pass to other
 methods:
byte[] data1 = buffer1.array();
int[] data2 = buffer2.array();
The array() method does
 expose the buffer's private data, so use it with caution. Changes to
 the backing array are reflected in the buffer and vice versa. The
 normal pattern here is to fill the buffer with data, retrieve its
 backing array, and then operate on the array. This isn't a problem
 as long as you don't write to the buffer after you've started
 working with the array.

Direct allocation

The ByteBuffer
 class (but not the other buffer classes) has an additional allocateDirect() method that may not create a backing array for the
 buffer. The VM may implement a directly allocated ByteBuffer using direct memory access to
 the buffer on an Ethernet card, kernel memory, or something else.
 It's not required, but it's allowed, and this can improve
 performance for I/O operations. From an API perspective, the
 allocateDirect() is used exactly
 like allocate():
ByteBuffer buffer1 = ByteBuffer.allocateDirect(100);
Invoking array() and
 arrayOffset() on a direct buffer
 will throw an UnsupportedOperationException. Direct
 buffers may be faster on some virtual machines, especially if the
 buffer is large (roughly a megabyte or more). However, direct
 buffers are more expensive to create than indirect buffers, so they
 should only be allocated when the buffer is expected to be around
 for awhile. The details are highly VM-dependent. As is generally
 true for most performance advice, you probably shouldn't even
 consider using direct buffers until measurements prove performance
 is an issue.

Wrapping

If you already have an array of data that you want to
 output, you'll normally wrap a buffer around it, rather than
 allocating a new buffer and copying its components into the buffer
 one at a time. For example:
byte[] data = "Some data".getBytes("UTF-8");
ByteBuffer buffer1 = ByteBuffer.wrap(data);
char[] text = "Some text".toCharArray();
CharBuffer buffer2 = CharBuffer.wrap(text);
Here, the buffer contains a reference to the array, which
 serves as its backing array. Buffers created by wrapping are never
 direct. Again, changes to the array are reflected in the buffer and
 vice versa, so don't wrap the array until you're finished with
 it.

Filling and Draining

Buffers are designed for sequential access. Besides its
 list of data, each buffer has a cursor indicating its current
 position. The cursor is an int that counts from zero to the number of
 elements in the buffer; the cursor is incremented by one when an
 element is read from or written to the buffer. It can also be
 positioned manually. For example, suppose you want to reverse the
 characters in a string. There are at least a dozen different ways to
 do this, including using string buffers,[3] char[] arrays, linked
 lists, and more. However, if we were to do it with a CharBuffer, we might begin by filling a
 buffer with the data from the string:
String s = "Some text";
CharBuffer buffer = CharBuffer.wrap(s);
We can only fill the buffer up to its capacity. If we tried to
 fill it past its initially set capacity, the put() method would throw a BufferOverflowException. Similarly, if we
 now tried to get() from the
 buffer, there'd be a BufferOverflowException. Before we can read
 the data out again, we need to flip the buffer:
buffer.flip();
This repositions the cursor at the start of the buffer. We can
 drain it into a new string:
String result = "";
while (buffer.hasRemaining()) {
 result+= buffer.get();
}
Buffer classes also have absolute
 methods that fill and drain at specific positions
 within the buffer without updating the cursor. For example, ByteBuffer has these two:
public abstract byte get(int index)
public abstract ByteBuffer put(int index, byte b)
These both throw IndexOutOfBoundsException if you try to
 access a position past the limit of the buffer. For example, using
 absolute methods, you could reverse a string into a buffer like
 this:
String s = "Some text";
CharBuffer buffer = CharBuffer.allocate(s.length());
for (int i = 0; i < s.length(); i++) {
 buffer.put(s.length() - i - 1, s.charAt(i));
}

Bulk Methods

Even with buffers it's often faster to work with blocks
 of data rather than filling and draining one element at a time. The
 different buffer classes have bulk methods that fill and drain an
 array of their element type.
For example, ByteBuffer
 has put() and
 get() methods that fill and drain
 a ByteBuffer from a preexisting
 byte array or subarray:
public ByteBuffer get(byte[] dst, int offset, int length)
public ByteBuffer get(byte[] dst)
public ByteBuffer put(byte[] array, int offset, int length)
public ByteBuffer put(byte[] array)
These put methods insert the data from the specified array or
 subarray, beginning at the current position. The get methods read the
 data into the argument array or subarray beginning at the current
 position. Both put and get increment the position by the length of the
 array or subarray. The put methods throw a BufferOverflowException if the buffer does
 not have sufficient space for the array or subarray. The get methods
 throw a BufferUnderflowException if
 the buffer does not have enough data remaining to fill the array or
 subarrray. These are runtime exceptions.

Data Conversion

All data in Java ultimately resolves to bytes. Any
 primitive data type—int,
 double, float, etc.—can be written as bytes. Any
 sequence of bytes of the right length can be interpreted as a
 primitive datum. For example, any sequence of four bytes corresponds
 to an int or a float (actually both, depending on how you
 want to read it). A sequence of eight bytes corresponds to a long or a double. The ByteBuffer class (and only the ByteBuffer class) provides relative and
 absolute put methods that fill a buffer with the bytes corresponding
 to an argument of primitive type (except boolean) and relative and
 absolute get methods that read the appropriate number of bytes to form
 a new primitive datum:
public abstract char getChar()
public abstract ByteBuffer putChar(char value)
public abstract char getChar(int index)
public abstract ByteBuffer putChar(int index, char value)
public abstract short getShort()
public abstract ByteBuffer putShort(short value)
public abstract short getShort(int index)
public abstract ByteBuffer putShort(int index, short value)
public abstract int getInt()
public abstract ByteBuffer putInt(int value)
public abstract int getInt(int index)
public abstract ByteBuffer putInt(int index, int value)
public abstract long getLong()
public abstract ByteBuffer putLong(long value)
public abstract long getLong(int index)
public abstract ByteBuffer putLong(int index, long value)
public abstract float getFloat()
public abstract ByteBuffer putFloat(float value)
public abstract float getFloat(int index)
public abstract ByteBuffer putFloat(int index, float value)
public abstract double getDouble()
public abstract ByteBuffer putDouble(double value)
public abstract double getDouble(int index)
public abstract ByteBuffer putDouble(int index, double value)
In the world of new I/O, these methods do the job performed by
 DataOutputStream and DataInputStream in traditional I/O. These
 methods do have an additional ability not present in DataOutputStream and DataInputStream. You can choose whether to
 interpret the byte sequences as big-endian or little-endian ints,
 floats, doubles, etc. By default, all values are read and written as
 big-endian; that is, most significant byte first. The two order() methods inspect and set the
 buffer's byte order using the named constants in the ByteOrder class. For example, you can change
 the buffer to little-endian interpretation like so:
if (buffer.order().equals(ByteOrder.BIG_ENDIAN)) {
 buffer.order(ByteOrder.LITLLE_ENDIAN);
}
Suppose instead of a chargen protocol, you want to test the
 network by generating binary data. This test can highlight problems
 that aren't apparent in the ASCII chargen protocol, such as an old
 gateway configured to strip off the high order bit of every byte,
 throw away every 230 byte, or put into
 diagnostic mode by an unexpected sequence of control characters. These
 are not theoretical problems. I've seen variations on all of these at
 one time or another.
You could test the network for such problems by sending out
 every possible int. This would,
 after about 4.2 billion iterations, test every possible four-byte
 sequence. On the receiving end, you could easily test whether the data
 received is expected with a simple numeric comparison. If any problems
 are found, it is easy to tell exactly where they occurred. In other
 words, this protocol (call it Intgen) behaves like this:
	The client connects to the server.

	The server immediately begins sending four-byte, big-endian
 integers, starting with 0 and incrementing by 1 each time. The
 server will eventually wrap around into the negative
 numbers.

	The server runs indefinitely. The client closes the
 connection when it's had enough.

The server would store the current int in a 4-byte long direct
 ByteBuffer. One buffer would be
 attached to each channel. When the channel becomes available for
 writing, the buffer is drained onto the channel. Then the buffer is
 rewound and the content of the buffer is read with getInt(). The program then clears the
 buffer, increments the previous value by one, and fills the buffer
 with the new value using putInt().
 Finally, it flips the buffer so it will be ready to be drained the
 next time the channel becomes writable. Example 12-3 demonstrates.
Example 12-3. Intgen server
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.util.*;
import java.io.IOException;

public class IntgenServer {

 public static int DEFAULT_PORT = 1919;

 public static void main(String[] args) {

 int port;
 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception ex) {
 port = DEFAULT_PORT;
 }
 System.out.println("Listening for connections on port " + port);

 ServerSocketChannel serverChannel;
 Selector selector;
 try {
 serverChannel = ServerSocketChannel.open();
 ServerSocket ss = serverChannel.socket();
 InetSocketAddress address = new InetSocketAddress(port);
 ss.bind(address);
 serverChannel.configureBlocking(false);
 selector = Selector.open();
 serverChannel.register(selector, SelectionKey.OP_ACCEPT);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 return;
 }

 while (true) {

 try {
 selector.select();
 }
 catch (IOException ex) {
 ex.printStackTrace();
 break;
 }

 Set readyKeys = selector.selectedKeys();
 Iterator iterator = readyKeys.iterator();
 while (iterator.hasNext()) {

 SelectionKey key = (SelectionKey) iterator.next();
 iterator.remove();
 try {
 if (key.isAcceptable()) {
 ServerSocketChannel server = (ServerSocketChannel) key.channel();
 SocketChannel client = server.accept();
 System.out.println("Accepted connection from " + client);
 client.configureBlocking(false);
 SelectionKey key2 = client.register(selector, SelectionKey.
 OP_WRITE);
 ByteBuffer output = ByteBuffer.allocate(4);
 output.putInt(0);
 output.flip();
 key2.attach(output);
 }
 else if (key.isWritable()) {
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer output = (ByteBuffer) key.attachment();
 if (! output.hasRemaining()) {
 output.rewind();
 int value = output.getInt();
 output.clear();
 output.putInt(value+1);
 output.flip();
 }
 client.write(output);
 }
 }
 catch (IOException ex) {
 key.cancel();
 try {
 key.channel().close();
 }
 catch (IOException cex) {}
 }

 }

 }

 }

}

View Buffers

If you know the ByteBuffer
 read from a SocketChannel contains
 nothing but elements of one particular primitive data type, it may be
 worthwhile to create a view buffer . This is a new Buffer object of appropriate type such as
 DoubleBuffer, IntBuffer, etc., which draws its data from
 an underlying ByteBuffer beginning
 with the current position. Changes to the view buffer are reflected in
 the underlying buffer and vice versa. However, each buffer has its own
 independent limit, capacity, mark, and position. View buffers are
 created with one of these six methods in ByteBuffer :
public abstract ShortBuffer asShortBuffer()
public abstract CharBuffer asCharBuffer()
public abstract IntBuffer asIntBuffer()
public abstract LongBuffer asLongBuffer()
public abstract FloatBuffer asFloatBuffer()
public abstract DoubleBuffer asDoubleBuffer()
For example, consider a client for the Intgen protocol. This protocol is only going
 to read ints, so it may be helpful to use an IntBuffer rather than a ByteBuffer. Example 12-4 demonstrates. For
 variety, this client is synchronous and blocking, but it still uses
 channels and buffers.
Example 12-4. Intgen client
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.io.IOException;

public class IntgenClient {

 public static int DEFAULT_PORT = 1919;

 public static void main(String[] args) {

 if (args.length == 0) {
 System.out.println("Usage: java IntgenClient host [port]");
 return;
 }

 int port;
 try {
 port = Integer.parseInt(args[1]);
 }
 catch (Exception ex) {
 port = DEFAULT_PORT;
 }

 try {
 SocketAddress address = new InetSocketAddress(args[0], port);
 SocketChannel client = SocketChannel.open(address);
 ByteBuffer buffer = ByteBuffer.allocate(4);
 IntBuffer view = buffer.asIntBuffer();

 for (int expected = 0; ; expected++) {
 client.read(buffer);
 int actual = view.get();
 buffer.clear();
 view.rewind();

 if (actual != expected) {
 System.err.println("Expected " + expected + "; was " + actual);
 break;
 }
 System.out.println(actual);
 }
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }

 }

}

There's one thing to note here. Although you can fill and drain
 the buffers using the methods of the IntBuffer class exclusively, data must be
 read from and written to the channel using the original ByteBuffer of which the IntBuffer is a view. The SocketChannel class only has methods to read and write ByteBuffers. It cannot read or write any
 other kind of buffer. This also means you need to clear the ByteBuffer on each pass through the loop or
 the buffer will fill up and the program will halt. The positions and
 limits of the two buffers are independent and must be considered
 separately. Finally, if you're working in non-blocking mode, be
 careful that all the data in the underlying ByteBuffer is drained before reading or
 writing from the overlaying view buffer. Non-blocking mode provides no
 guarantee that the buffer will still be aligned on an int/double/char/etc. boundary following a drain. It's
 completely possible for a non-blocking channel to write half the bytes
 of an int or a double. When using non-blocking I/O, be sure to check
 for this problem before putting more data in the view buffer.

Compacting Buffers

 Most writable buffers support a compact() method:
public abstract ByteBuffer compact()
public abstract IntBuffer compact()
public abstract ShortBuffer compact()
public abstract FloatBuffer compact()
public abstract CharBuffer compact()
public abstract DoubleBuffer compact()
(If it weren't for invocation chaining, these six methods could
 have been replaced by one method in the common Buffer superclass.) Compacting shifts any
 remaining data in the buffer to the start of the buffer, freeing up
 more space for elements. Any data that was in those positions will be
 overwritten. The buffer's position is set to the end of the data so
 it's ready for writing more data.
Compacting is an especially useful operation when you're
 copying—reading from one channel and writing the
 data to another using non-blocking I/O. You can read some data into a
 buffer, write the buffer out again, then compact the data so all the
 data that wasn't written is at the beginning of the buffer, and the
 position is at the end of the data remaining in the buffer, ready to
 receive more data. This allows the reads and writes to be interspersed
 more or less at random with only one buffer. Several reads can take
 place in a row, or several writes follow consecutively. If the network
 is ready for immediate output but not input (or vice versa), the
 program can take advantage of that. This technique can be used to
 implement an echo server as shown in Example 12-5. The echo protocol
 simply responds to the client with whatever data the client sent. Like
 chargen, it's useful for network testing. Also like chargen, echo
 relies on the client to close the connection. Unlike chargen, however,
 an echo server must both read and write from the connection.
Example 12-5. Echo server
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.util.*;
import java.io.IOException;

public class EchoServer {

 public static int DEFAULT_PORT = 7;

 public static void main(String[] args) {

 int port;
 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception ex) {
 port = DEFAULT_PORT;
 }
 System.out.println("Listening for connections on port " + port);

 ServerSocketChannel serverChannel;
 Selector selector;
 try {
 serverChannel = ServerSocketChannel.open();
 ServerSocket ss = serverChannel.socket();
 InetSocketAddress address = new InetSocketAddress(port);
 ss.bind(address);
 serverChannel.configureBlocking(false);
 selector = Selector.open();
 serverChannel.register(selector, SelectionKey.OP_ACCEPT);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 return;
 }

 while (true) {

 try {
 selector.select();
 }
 catch (IOException ex) {
 ex.printStackTrace();
 break;
 }

 Set readyKeys = selector.selectedKeys();
 Iterator iterator = readyKeys.iterator();
 while (iterator.hasNext()) {

 SelectionKey key = (SelectionKey) iterator.next();
 iterator.remove();
 try {
 if (key.isAcceptable()) {
 ServerSocketChannel server = (ServerSocketChannel) key.channel();
 SocketChannel client = server.accept();
 System.out.println("Accepted connection from " + client);
 client.configureBlocking(false);
 SelectionKey clientKey = client.register(
 selector, SelectionKey.OP_WRITE | SelectionKey.OP_READ);
 ByteBuffer buffer = ByteBuffer.allocate(100);
 clientKey.attach(buffer);
 }
 if (key.isReadable()) {
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer output = (ByteBuffer) key.attachment();
 client.read(output);
 }
 if (key.isWritable()) {
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer output = (ByteBuffer) key.attachment();
 output.flip();
 client.write(output);
 output.compact();
 }
 }
 catch (IOException ex) {
 key.cancel();
 try {
 key.channel().close();
 }
 catch (IOException cex) {}
 }

 }

 }

 }

}

 One thing I noticed while writing and debugging this
 program: the buffer size makes a big difference, although perhaps not
 in the way you might think. A big buffer can hide a lot of bugs. If
 the buffer is large enough to hold complete test cases without being
 flipped or drained, it's very easy to not notice that the buffer isn't
 being flipped or compacted at the right times because the test cases
 never actually need to do that. Before releasing your program, try
 turning the buffer size down to something significantly lower than the
 input you're expecting. In this case, I tested with a buffer size of
 10. This test degrades performance, so you shouldn't ship with such a
 ridiculously small buffer, but you absolutely should test your code
 with small buffers to make sure it behaves properly when the buffer
 fills up.

Duplicating Buffers

 It's often desirable to make a copy of a buffer to
 deliver the same information to two or more channels. The duplicate() methods in each of the six typed
 buffer classes do this:
public abstract ByteBuffer duplicate()
public abstract IntBuffer duplicate()
public abstract ShortBuffer duplicate()
public abstract FloatBuffer duplicate()
public abstract CharBuffer duplicate()
public abstract DoubleBuffer duplicate()
The return values are not clones. The duplicated buffers share
 the same data, including the same backing array if the buffer is
 indirect. Changes to the data in one buffer are reflected in the other
 buffer. Thus, you should mostly use this method when you're only going
 to read from the buffers. Otherwise, it can be tricky to keep track of
 where the data is being modified.
The original and duplicated buffers do have independent marks,
 limits, and positions even though they share the same data. One buffer
 can be ahead of or behind the other buffer.
Duplication is useful when you want to transmit the same data
 over multiple channels, roughly in parallel. You can make duplicates
 of the main buffer for each channel and allow each channel to run at
 its own speed. For example, recall the single file HTTP server in
 Example 10-6. Reimplemented
 with channels and buffers as shown in Example 12-6, NonblockingSingleFileHTTPServer, the single
 file to serve is stored in one constant, read-only buffer. Every time
 a client connects, the program makes a duplicate of this buffer just
 for that channel, which is stored as the channel's attachment. Without
 duplicates, one client has to wait till the other finishes so the
 original buffer can be rewound. Duplicates enable simultaneous buffer
 reuse.
Example 12-6. A non-blocking HTTP server that chunks out the same
 file
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.Iterator;
import java.net.*;

public class NonblockingSingleFileHTTPServer {

 private ByteBuffer contentBuffer;
 private int port = 80;

 public NonblockingSingleFileHTTPServer(
 ByteBuffer data, String encoding, String MIMEType, int port)
 throws UnsupportedEncodingException {

 this.port = port;
 String header = "HTTP/1.0 200 OK\r\n"
 + "Server: OneFile 2.0\r\n"
 + "Content-length: " + data.limit() + "\r\n"
 + "Content-type: " + MIMEType + "\r\n\r\n";
 byte[] headerData = header.getBytes("ASCII");

 ByteBuffer buffer = ByteBuffer.allocate(
 data.limit() + headerData.length);
 buffer.put(headerData);
 buffer.put(data);
 buffer.flip();
 this.contentBuffer = buffer;

 }

 public void run() throws IOException {

 ServerSocketChannel serverChannel = ServerSocketChannel.open();
 ServerSocket serverSocket = serverChannel.socket();
 Selector selector = Selector.open();
 InetSocketAddress localPort = new InetSocketAddress(port);
 serverSocket.bind(localPort);
 serverChannel.configureBlocking(false);
 serverChannel.register(selector, SelectionKey.OP_ACCEPT);

 while (true) {

 selector.select();
 Iterator keys = selector.selectedKeys().iterator();
 while (keys.hasNext()) {
 SelectionKey key = (SelectionKey) keys.next();
 keys.remove();
 try {
 if (key.isAcceptable()) {
 ServerSocketChannel server = (ServerSocketChannel) key.channel();
 SocketChannel channel = server.accept();
 channel.configureBlocking(false);
 SelectionKey newKey = channel.register(selector,
 SelectionKey.OP_READ);
 }
 else if (key.isWritable()) {
 SocketChannel channel = (SocketChannel) key.channel();
 ByteBuffer buffer = (ByteBuffer) key.attachment();
 if (buffer.hasRemaining()) {
 channel.write(buffer);
 }
 else { // we're done
 channel.close();
 }
 }
 else if (key.isReadable()) {
 // Don't bother trying to parse the HTTP header.
 // Just read something.
 SocketChannel channel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.allocate(4096);
 channel.read(buffer);
 // switch channel to write-only mode
 key.interestOps(SelectionKey.OP_WRITE);
 key.attach(contentBuffer.duplicate());
 }
 }
 catch (IOException ex) {
 key.cancel();
 try {
 key.channel().close();
 }
 catch (IOException cex) {}
 }
 }
 }
 }

 public static void main(String[] args) {

 if (args.length == 0) {
 System.out.println(
 "Usage: java NonblockingSingleFileHTTPServer file port encoding");
 return;
 }

 try {
 String contentType = "text/plain";
 if (args[0].endsWith(".html") || args[0].endsWith(".htm")) {
 contentType = "text/html";
 }

 FileInputStream fin = new FileInputStream(args[0]);
 FileChannel in = fin.getChannel();
 ByteBuffer input = in.map(FileChannel.MapMode.READ_ONLY, 0, in.size());

 // set the port to listen on
 int port;
 try {
 port = Integer.parseInt(args[1]);
 if (port < 1 || port > 65535) port = 80;
 }
 catch (Exception ex) {
 port = 80;
 }

 String encoding = "ASCII";
 if (args.length > 2) encoding = args[2];

 NonblockingSingleFileHTTPServer server
 = new NonblockingSingleFileHTTPServer(
 input, encoding, contentType, port);
 server.run();

 }
 catch (Exception ex) {
 ex.printStackTrace();
 System.err.println(ex);
 }

 }

}

The constructors set up the data to be sent along with an HTTP
 header that includes information about content length and content
 encoding. The header and the body of the response are stored in a
 single ByteBuffer so that they can
 be blasted to clients very quickly. However, although all clients
 receive the same content, they may not receive it at the same time.
 Different parallel clients will be at different locations in the file.
 This is why we duplicate the buffer, so each channel has its own
 buffer. The overhead is small because all channels do share the same
 content. They just have different indexes into that content.
All incoming connections are handled by a single Selector in the run() method. The initial setup here is
 very similar to the earlier chargen server. The run() method opens a ServerSocketChannel and binds it to the
 specified port. Then it creates the Selector and registers it with the ServerSocketChannel. When a SocketChannel is accepted, the same Selector object is registered with it.
 Initially it's registered for reading because the HTTP protocol
 requires the client to send a request before the server
 responds.
The response to a read is simplistic. The program reads as many
 bytes of input as it can up to 4K. Then it resets the interest
 operations for the channel to writability. (A more complete server
 would actually attempt to parse the HTTP header request here and
 choose the file to send based on that information.) Next, the content
 buffer is duplicated and attached to the channel.
The next time the program passes through the while loop, this channel should be ready to
 receive data (or if not the next time, the time after that; the
 asynchronous nature of the connection means we won't see it until it's
 ready). At this point, we get the buffer out of the attachment, and
 write as much of the buffer as we can onto the channel. It's no big
 deal if we don't write it all this time. We'll just pick up where we
 left off the next pass through the loop. The buffer keeps track of its
 own position. Although many incoming clients might result in the
 creation of many buffer objects, the real overhead is minimal because
 they'll all share the same underlying data.
The main() method just reads
 parameters from the command line. The name of the file to be served is
 read from the first command-line argument. If no file is specified or
 the file cannot be opened, an error message is printed and the program
 exits. Assuming the file can be read, its contents are mapped into the
 ByteBuffer array input. (To be perfectly honest, this is
 complete overkill for the small to medium size files you're most
 likely to be serving here, and probably would be slower than using an
 InputStream that reads into a byte
 array, but I wanted to show you file mapping at least once.) A
 reasonable guess is made about the content type of the file, and that
 guess is stored in the contentType
 variable. Next, the port number is read from the second command-line
 argument. If no port is specified, or if the second argument is not an
 integer from 0 to 65,535, port 80 is used. The encoding is read from
 the third command-line argument if present. Otherwise, ASCII is
 assumed. Then these values are used to construct a NonblockingSingleFileHTTPServer object and
 start it running.

Slicing Buffers

Slicing a buffer is a slight variant of duplicating. Slicing
 also creates a new buffer that shares the same data with the old
 buffer. However, the slice's initial position is the current position
 of the original buffer. That is, the slice is like a subsequence of
 the original buffer that only contains the elements from the current
 position to the limit. Rewinding the slice only moves it back to the
 position of the original buffer when the slice was created. The slice
 can't see anything in the original buffer before that point. Again,
 there are separate slice() methods
 in each of the six typed buffer classes:
public abstract ByteBuffer slice()
public abstract IntBuffer slice()
public abstract ShortBuffer slice()
public abstract FloatBuffer slice()
public abstract CharBuffer slice()
public abstract DoubleBuffer slice()
This is useful when you have a long buffer of data that is
 easily divided into multiple parts such as a protocol header followed
 by the data. You can read out the header then slice the buffer and
 pass the new buffer containing only the data to a separate method or
 class.

Marking and Resetting

Like input streams, buffers can be marked and reset if
 you want to reread some data. Unlike input streams, this can be done
 to all buffers, not just some of them. For a change, the relevant
 methods are declared once in the Buffer superclass and inherited by all the
 various subclasses:
public final Buffer mark()
public final Buffer reset()
The reset() method throws an
 InvalidMarkException, a runtime
 exception, if the mark is not set.
The mark is unset if the limit is set to a point below the
 mark.

Object Methods

The buffer classes all provide the usual equals() , hashCode(), and
 toString() methods. They also
 implement Comparable, and therefore
 provide compareTo() methods.
 However, buffers are not Serializable or Cloneable.
Two buffers are considered to be equal if:
	They have the same type (e.g., a ByteBuffer is never equal to an IntBuffer but may be equal to another
 ByteBuffer).

	They have the same number of elements remaining in the
 buffer.

	The remaining elements at the same relative positions are
 equal to each other.

Note that equality does not consider the buffers' elements that
 precede the cursor, the buffers' capacity, limits, or marks. For
 example, this code fragment would print true even though the first
 buffer is twice the size of the second:
CharBuffer buffer1 = CharBuffer.wrap("12345678");
CharBuffer buffer2 = CharBuffer.wrap("5678");
buffer1.get();
buffer1.get();
buffer1.get();
buffer1.get();
System.out.println(buffer1.equals(buffer2));
The hashCode() method is implemented in accordance with the contract
 for equality. That is, two equal buffers will have equal hash codes
 and two unequal buffers are very unlikely to have equal hash codes.
 However, because the buffer's hash code changes every time an element
 is added to or removed from the buffer, buffers do not make good hash
 table keys.
Comparison is implemented by comparing the remaining elements in
 each buffer, one by one. If all the corresponding elements are equal,
 the buffers are equal. Otherwise, the result is the outcome of
 comparing the first pair of unequal elements. If one buffer runs out
 of elements before an unequal element is found and the other buffer
 still has elements, the shorter buffer is considered to be less than
 the longer buffer.
The toString() method returns strings that look something like
 this:
java.nio.HeapByteBuffer[pos=0 lim=62 cap=62]
These are primarily useful for debugging. The notable exception
 is CharBuffer, which returns a
 string containing the remaining chars in the buffer.

[3] By the way, a StringBuffer is not a buffer in the
 sense of this section. Aside from the very generic notion of
 buffering, it has nothing in common with the classes being
 discussed here.

Channels

Channels move blocks of data into and out of buffers to
 and from various I/O sources such as files, sockets, datagrams, and so
 forth. The channel class hierarchy is rather convoluted, with multiple
 interfaces and many optional operations. However, for purposes of
 network programming there are only three really important channel classes, SocketChannel, ServerSocketChannel, and DatagramChannel; and for the TCP connections
 we've talked about so far you only need the first two.
SocketChannel

The SocketChannel class reads from and writes to TCP sockets. The data
 must be encoded in ByteBuffer
 objects for reading and writing. Each SocketChannel is associated with a peer
 Socket object that can be used for
 advanced configuration, but this requirement can be ignored for
 applications where the default options are fine.
Connecting

The SocketChannel
 class does not have any public constructors. Instead, you create a
 new SocketChannel object using
 one of the two static open()
 methods:
public static SocketChannel open(SocketAddress remote) throws IOException
public static SocketChannel open() throws IOException
The first variant makes the connection. This method blocks;
 that is, the method will not return until the connection is made or
 an exception is thrown. For example:
SocketAddress address = new InetSocketAddress("www.cafeaulait.org", 80);
SocketChannel channel = SocketChannel.open(address);
The noargs version does not immediately connect. It creates an
 initially unconnected socket that must be connected later using the
 connect() method. For example:
SocketChannel channel = SocketChannel.open();
SocketAddress address = new InetSocketAddress("www.cafeaulait.org", 80);
channel.connect(address);
You might choose this more roundabout approach in order to
 configure various options on the channel and/or the socket before
 connecting. Specifically, use this approach if you want to open the
 channel without blocking:
SocketChannel channel = SocketChannel.open();
SocketAddress address = new InetSocketAddress("www.cafeaulait.org", 80);
channel.configureBlocking(false);
channel.connect();
With a non-blocking channel, the connect() method returns immediately,
 even before the connection is established. The program can do other
 things while it waits for the operating system to finish the
 connection. However, before it can actually use the connection, the
 program must call finishConnect()
 :
public abstract boolean finishConnect() throws IOException
(This is only necessary in non-blocking mode. For a blocking
 channel this method returns true immediately.) If the connection is
 now ready for use, finishConnect(
) returns true. If the
 connection has not been established yet, finishConnect() returns false. Finally, if the connection could
 not be established, for instance because the network is down, this
 method throws an exception.
If the program wants to check whether the connection is
 complete, it can call these two methods:
public abstract boolean isConnected()
public abstract boolean isConnectionPending()
The isConnected()
 method returns true if the connection is open. The
 isConnectionPending() method
 returns true if the connection is
 still being set up but is not yet open.

Reading

To read from a SocketChannel, first create a ByteBuffer the channel can store data in.
 Then pass it to the read()
 method:
public abstract int read(ByteBuffer dst) throws IOException
The channel fills the buffer with as much data as it can, then
 returns the number of bytes it put there. If it encounters the end
 of stream, it returns -1. If the channel is blocking, this method
 will read at least one byte or return -1 or throw an exception. If
 the channel is non-blocking, however, this method may return
 0.
Because the data is stored into the buffer at the cursor
 position, which is updated automatically as more data is added, you
 can keep passing the same buffer to the read() method until the buffer is filled.
 For example, this loop will read until the buffer is filled or the
 end of stream is detected:
while (buffer.hasRemaining() && channel.read(buffer) != -1) ;
It is sometimes useful to be able to fill several buffers from
 one source. This is called a scatter . These two methods accept an array of ByteBuffer objects as arguments and fill
 each one in turn:
public final long read(ByteBuffer[] dsts)throws IOException
public final long read(ByteBuffer[] dsts, int offset, int length)
 throws IOException
To fill these, just loop while the last buffer in the list has
 space remaining. For example:
ByteBuffer[] buffers = new ByteBuffer[2];
buffers[0] = ByteBuffer.allocate(1000);
buffers[1] = ByteBuffer.allocate(1000);
while (buffers[1].hasRemaining() && channel.read(buffers) != -1) ;

Writing

Socket channels have both read and write methods. In
 general, they are full duplex. In order to write, simply fill a
 ByteBuffer, flip it, and pass it
 to one of the write methods, which drains it while copying the data
 onto the output—pretty much the reverse of the reading
 process.
The basic write()
 method takes a single buffer as an argument:
public abstract int write(ByteBuffer src) throws IOException
As with reads (and unlike OutputStreams), this method is not
 guaranteed to write the complete contents of the buffer if the
 channel is non-blocking. Again, however, the cursor-based nature of
 buffers enables you to easily call this method again and again until
 the buffer is fully drained and the data has been completely
 written:
while (buffer.hasRemaining() && channel.write(buffer) != -1) ;
It is often useful to be able to write data from several
 buffers onto one socket. This is called a
 gather . For example, you might want to store the HTTP header
 in one buffer and the HTTP body in another buffer. The
 implementation might even fill the two buffers simultaneously using
 two threads or overlapped I/O. These two methods accept an array of
 ByteBuffer objects as arguments,
 and drain each one in turn:
public final long write(ByteBuffer[] dsts)throws IOException
public final long write(ByteBuffer[] dsts, int offset, int length)
 throws IOException
The first variant drains all the buffers. The second method
 drains length buffers, starting
 with the one at offset.

Closing

Just as with regular sockets, you should close a channel
 when you're done with it to free up the port and any other resources
 it may be using:
public void close() throws IOException
Closing an already closed channel has no effect. Attempting to
 write data to or read data from a closed channel throws an
 exception. If you're uncertain whether a channel has been closed,
 check with isOpen() :
public boolean isOpen()
Naturally, this returns false if the channel is closed, true if it's open. (close() and isOpen() are the only two methods
 declared in the Channel interface
 and shared by all channel classes.)

ServerSocketChannel

The ServerSocketChannel
 class has one purpose: to accept incoming connections.
 You cannot read from, write to, or connect a ServerSocketChannel. The only operation it
 supports is accepting a new incoming connection. The class itself only
 declares four methods, of which accept() is the most important. ServerSocketChannel also inherits several
 methods from its superclasses, mostly related to registering with a
 Selector for notification of
 incoming connections. And finally, like all channels it has a close() method that's used to shut down the server
 socket.
Creating server socket channels

The static factory method ServerSocketChannel.open() creates a new ServerSocketChannel object. However, the
 name is a little deceptive. This method does not actually open a new
 server socket. Instead, it just creates the object. Before you can
 use it, you need to use the socket(
) method to get the corresponding peer ServerSocket. At this point, you can
 configure any server options you like, such as the receive buffer
 size or the socket timeout, using the various setter methods in
 ServerSocket. Then connect this
 ServerSocket to a SocketAddress for the port you want to
 bind to. For example, this code fragment opens a ServerSocketChannel on port 80:
try {
 ServerSocketChannel server= ServerSocketChannel.open();
 ServerSocket socket = serverChannel.socket();
 SocketAddress address = new InetSocketAddress(80);
 socket.bind(address);
}
catch (IOException ex) {
 System.err.println("Could not bind to port 80 because " + ex.getMessage());
}
A factory method is used here rather than a constructor so
 that different virtual machines can provide different
 implementations of this class, more closely tuned to the local
 hardware and OS. However, this factory is not user-configurable. The
 open() method always returns an
 instance of the same class when running in the same virtual
 machine.

Accepting connections

Once you've opened and bound a ServerSocketChannel object, the accept() method can listen for incoming connections:
public abstract SocketChannel accept() throws IOException
accept() can operate in
 either blocking or non-blocking mode. In blocking mode, the accept() method waits for an incoming
 connection. It then accepts that connection and returns a SocketChannel object connected to the
 remote client. The thread cannot do anything until a connection is
 made. This strategy might be appropriate for simple servers that can
 respond to each request immediately. Blocking mode is the
 default.
A ServerSocketChannel can
 also operate in non-blocking mode. In this case, the accept() method returns null if there are
 no incoming connections. Non-blocking mode is more appropriate for
 servers that need to do a lot of work for each connection and thus
 may want to process multiple requests in parallel. Non-blocking mode
 is normally used in conjunction with a Selector. To make a ServerSocketChannel non-blocking, pass
 false to its configureBlocking() method.
The accept() method is
 declared to throw an IOException
 if anything goes wrong. There are several subclasses of IOException that indicate more detailed
 problems, as well as a couple of runtime exceptions:
	ClosedChannelException
	You cannot reopen a ServerSocketChannel after closing
 it.

	AsynchronousCloseException
	Another thread closed this ServerSocketChannel while accept() was executing.

	ClosedByInterruptException
	Another thread interrupted this thread while a blocking
 ServerSocketChannel was
 waiting.

	NotYetBoundException
	You called open()
 but did not bind the ServerSocketChannel's peer ServerSocket to an address before
 calling accept(). This is
 a runtime exception, not an IOException.

	SecurityException
	The security manager refused to allow this application
 to bind to the requested port.

The Channels Class

Channels is a simple utility class for wrapping channels around
 traditional I/O-based streams, readers, and writers, and vice versa.
 It's useful when you want to use the new I/O model in one part of a
 program for performance, but still interoperate with legacy APIs that
 expect streams. It has methods that convert from streams to channels
 and methods that convert from channels to streams, readers, and
 writers:
public static InputStream newInputStream(ReadableByteChannel ch)
public static OutputStream newOutputStream(WritableByteChannel ch)
public static ReadableByteChannel newChannel(InputStream in)
public static WritableByteChannel newChannel(OutputStream out)
public static Reader newReader (ReadableByteChannel channel,
 CharsetDecoder dec, int minBufferCap)
public static Reader newReader (ReadableByteChannel ch, String encoding)
public static Writer newWriter (WritableByteChannel ch, String encoding)
The SocketChannel class
 discussed in this chapter implements both the ReadableByteChannel and WritableByteChannel interfaces seen in these
 signatures. ServerSocketChannel
 implements neither of these because you can't read from or write to
 it.
For example, all current XML APIs use streams, files, readers,
 and other traditional I/O APIs to read the XML document. If you're
 writing an HTTP server designed to process SOAP requests, you may want
 to read the HTTP request bodies using channels and parse the XML using
 SAX for performance. In this case, you'd need to convert these
 channels into streams before passing them to XMLReader's parse() method:
SocketChannel channel = server.accept();
processHTTPHeader(channel);
XMLReader parser = XMLReaderFactory.createXMLReader();
parser.setContentHandler(someContentHandlerObject);
InputStream in = Channels.newInputStream(channel);
parser.parse(in);

Readiness Selection

 For network programming, the second part of the new I/O
 APIs is readiness selection, the ability to choose a socket that will
 not block when read or written. This is primarily of interest to
 servers, although clients running multiple simultaneous connections with
 several windows open—such as a web spider or a browser—can take
 advantage of it as well.
In order to perform readiness selection, different channels are
 registered with a Selector object.
 Each channel is assigned a SelectionKey. The program can then ask the
 Selector object for the set of keys
 to the channels that are ready to perform the operation you want to
 perform without blocking.
The Selector Class

 The only constructor in Selector is protected. Normally, a new
 selector is created by invoking the static factory method Selector.open() :
public static Selector open() throws IOException
The next step is to add channels to the selector. There are no
 methods in the Selector class to
 add a channel. The register()
 method is declared in the SelectableChannel class. Not all channels are selectable—in particular,
 FileChannels aren't selectable—but
 all network channels are. Thus, the channel is registered with a
 selector by passing the selector to one of the channel's register
 methods:
public final SelectionKey register(Selector sel, int ops)
 throws ClosedChannelException
public final SelectionKey register(Selector sel, int ops, Object att)
 throws ClosedChannelException
This approach feels backwards to me, but it's not hard to use.
 The first argument is the selector the channel is registering with.
 The second argument is a named constant from the SelectionKey class identifying the operation
 the channel is registering for. The SelectionKey class defines four named bit constants used to select
 the type of the operation:
	SelectionKey.OP_ACCEPT

	SelectionKey.OP_CONNECT

	SelectionKey.OP_READ

	SelectionKey.OP_WRITE

These are bit-flag int constants (1, 2, 4, etc.). Therefore, if
 a channel needs to register for multiple operations in the same
 selector (e.g., for both reading and writing on a socket), combine the
 constants with the bitwise or operator (|) when registering:
channel.register(selector, SelectionKey.OP_READ | SelectionKey.OP_WRITE);
The optional third argument is an attachment for the key. This
 object is often used to store state for the connection. For example,
 if you were implementing a web server, you might attach a FileInputStream or FileChannel connected to the local file the
 server streams to the client.
After the different channels have been registered with the
 selector, you can query the selector at any time to find out which
 channels are ready to be processed. Channels may be ready for some
 operations and not others. For instance, a channel could be ready for
 reading but not writing.
There are three methods that select the ready channels. They
 differ in how long they wait to find a ready channel. The first,
 selectNow() , performs a non-blocking select. It returns immediately
 if no connections are ready to be processed now:
public abstract int selectNow() throws IOException
The other two select methods are blocking:
public abstract int select() throws IOException
public abstract int select(long timeout) throws IOException
The first method waits until at least one registered channel is
 ready to be processed before returning. The second waits no longer
 than timeout milliseconds for a
 channel to be ready before returning 0. These methods are useful if
 your program doesn't have anything to do when no channels are ready to
 be processed.
When you know the channels are ready to be processed, retrieve
 the ready channels using selectedKeys() :
public abstract Set selectedKeys()
The return value is just a standard java.util.Set. Each item in the set is a
 SelectionKey object. You can
 iterate through it in the usual way, casting each item to SelectionKey in turn. You'll also want to
 remove the key from the iterator to tell the Selector that you've handled it. Otherwise,
 the Selector will keep telling you
 about it on future passes through the loop.
Finally, when you're ready to shut the server down or when you
 no longer need the Selector, you
 should close it:
public abstract void close() throws IOException
This step releases any resources associated with the selector.
 More importantly, it cancels all keys registered with the selector and
 interrupts up any threads blocked by one of this selector's select
 methods.

The SelectionKey Class

SelectionKey objects serve as pointers to channels. They can also
 hold an object attachment, which is how you normally store the state
 for the connection on that channel.
SelectionKey objects are
 returned by the register() method
 when registering a channel with a Selector. However, you don't usually need to
 retain this reference. The selectedKeys(
) method returns the same objects again inside a Set. A single channel can be registered with
 multiple selectors.
When retrieving a SelectionKey from the set of selected keys,
 you often first test what that key is ready to do. There are four
 possibilities:
public final boolean isAcceptable()
public final boolean isConnectable()
public final boolean isReadable()
public final boolean isWritable()
This test isn't always necessary. In some cases, the Selector is only testing for one possibility
 and will only return keys to do that one thing. But if the Selector does test for multiple readiness
 states, you'll want to test which one kicked the channel into the
 ready state before operating on it. It's also possible that a channel
 is ready to do more than one thing.
Once you know what the channel associated with the key is ready
 to do, retrieve the channel with the channel(
) method:
public abstract SelectableChannel channel()
If you've stored an object in the SelectionKey to hold state information, you
 can retrieve it with the attachment(
) method:
public final Object attachment()
Finally, when you're finished with a connection, deregister its
 SelectionKey object so the Selector doesn't waste any resources
 querying it for readiness. I don't know that this is absolutely
 essential in all cases, but it doesn't hurt. You do this by invoking
 the key's cancel() method:
public abstract void cancel()
However, this step is only necessary if you haven't closed the
 channel. Closing a channel automatically deregisters all keys for that
 channel in all selectors. Similarly, closing a selector invalidates
 all keys in that selector.

Chapter 13. UDP Datagrams and Sockets

 Previous chapters discussed network applications that use
 the TCP protocol. TCP is designed for reliable transmission of data. If
 data is lost or damaged in transmission, TCP ensures that the data is
 resent; if packets of data arrive out of order, TCP puts them back in the
 correct order; if the data is coming too fast for the connection, TCP
 throttles the speed back so that packets won't be lost. A program never
 needs to worry about receiving data that is out of order or incorrect.
 However, this reliability comes at a price. That price is speed.
 Establishing and tearing down TCP connections can take a fair amount of
 time, particularly for protocols such as HTTP, which tend to require many
 short transmissions.
The User Datagram Protocol (UDP) is an alternative protocol for
 sending data over IP that is very quick, but not reliable. That is, when
 you send UDP data, you have no way of knowing whether it arrived, much
 less whether different pieces of data arrived in the order in which you
 sent them. However, the pieces that do arrive generally arrive
 quickly.
The UDP Protocol

The obvious question to ask is why anyone would ever use
 an unreliable protocol. Surely, if you have data worth sending, you care
 about whether the data arrives correctly? Clearly, UDP isn't a good
 match for applications like FTP that require reliable transmission of
 data over potentially unreliable networks. However, there are many kinds
 of applications in which raw speed is more important than getting every
 bit right. For example, in real-time audio or video, lost or swapped
 packets of data simply appear as static. Static is tolerable, but
 awkward pauses in the audio stream, when TCP requests a retransmission
 or waits for a wayward packet to arrive, are unacceptable. In other
 applications, reliability tests can be implemented in the application
 layer. For example, if a client sends a short UDP request to a server,
 it may assume that the packet is lost if no response is returned within
 an established period of time; this is one way the Domain Name System (DNS) works. (DNS can also operate over
 TCP.) In fact, you could implement a reliable file transfer protocol
 using UDP, and many people have: Network File System (NFS), Trivial FTP (TFTP), and FSP, a
 more distant relative of FTP, all use UDP. (The latest version of NFS
 can use either UDP or TCP.) In these protocols, the application is
 responsible for reliability; UDP doesn't take care of it. That is, the
 application must handle missing or out-of-order packets. This is a lot
 of work, but there's no reason it can't be done—although if you find
 yourself writing this code, think carefully about whether you might be
 better off with TCP.
 The difference between TCP and UDP is often explained by
 analogy with the phone system and the post office. TCP is like the phone
 system. When you dial a number, the phone is answered and a connection
 is established between the two parties. As you talk, you know that the
 other party hears your words in the order in which you say them. If the
 phone is busy or no one answers, you find out right away. UDP, by
 contrast, is like the postal system. You send packets of mail to an
 address. Most of the letters arrive, but some may be lost on the way.
 The letters probably arrive in the order in which you sent them, but
 that's not guaranteed. The farther away you are from your recipient, the
 more likely it is that mail will be lost on the way or arrive out of
 order. If this is a problem, you can write sequential numbers on the
 envelopes, then ask the recipients to arrange them in the correct order
 and send you mail telling you which letters arrived so that you can
 resend any that didn't get there the first time. However, you and your
 correspondent need to agree on this protocol in advance. The post office
 will not do it for you.
Both the phone system and the post office have their uses.
 Although either one could be used for almost any communication, in some
 cases one is definitely superior to the other. The same is true of UDP
 and TCP. The last several chapters have all focused on TCP applications,
 which are more common than UDP applications. However, UDP also has its
 place; in this chapter, we'll look at what you can do with UDP in Java.
 If you want to go further, look at Chapter 14. Multicasting relies on UDP; a multicast socket is a fairly simple variation on a
 UDP socket.
Java's implementation of UDP is split into two classes: DatagramPacket and DatagramSocket.
 The DatagramPacket class stuffs bytes of data into UDP packets called
 datagrams and lets you unstuff datagrams that you receive. A
 DatagramSocket sends as well as
 receives UDP datagrams. To send data, you put the data in a DatagramPacket and send the packet using a
 DatagramSocket . To receive data, you receive a DatagramPacket object from a DatagramSocket and then read the contents of
 the packet. The sockets themselves are very simple creatures. In UDP,
 everything about a datagram, including the address to which it is
 directed, is included in the packet itself; the socket only needs to
 know the local port on which to listen or send.
This division of labor contrasts with the Socket and ServerSocket classes used by TCP. First, UDP
 doesn't have any notion of a unique connection between two hosts. One
 socket sends and receives all data directed to or from a port without
 any concern for whom the remote host is. A single DatagramSocket can send data to and receive
 data from many independent hosts. The socket isn't dedicated to a single
 connection, as it is in TCP. In fact, UDP doesn't have any concept of a
 connection between two hosts; it only knows about individual datagrams.
 Figuring out who sent what data is the application's responsibility.
 Second, TCP sockets treat a network connection as a stream: you send and
 receive data with input and output streams that you get from the socket.
 UDP doesn't allow this; you always work with individual datagram
 packets. All the data you stuff into a single datagram is sent as a
 single packet and is either received or lost as a group. One packet is
 not necessarily related to the next. Given two packets, there is no way
 to determine which packet was sent first and which was sent second.
 Instead of the orderly queue of data that's necessary for a stream,
 datagrams try to crowd into the recipient as quickly as possible, like a
 crowd of people pushing their way onto a bus. And occasionally, if the
 bus is crowded enough, a few packets, like people, may not squeeze on
 and will be left waiting at the bus stop.

The DatagramPacket Class

 UDP datagrams add very little to the IP datagrams they sit
 on top of. Figure 13-1 shows
 a typical UDP datagram. The UDP header adds only eight bytes to the IP
 header. The UDP header includes source and destination port numbers, the
 length of everything that follows the IP header, and an optional
 checksum. Since port numbers are given as 2-byte unsigned integers,
 65,536 different possible UDP ports are available per host. These are distinct from
 the 65,536 different TCP ports per host. Since the length is also a
 2-byte unsigned integer, the number of bytes in a datagram is limited to
 65,536 minus the 8 bytes for the header. However, this is redundant with
 the datagram length field of the IP header, which limits datagrams to
 between 65,467 and 65,507 bytes. (The exact number depends on the size
 of the IP header.) The checksum field is optional and not used in or
 accessible from application layer programs. If the checksum for the data
 fails, the native network software silently discards the datagram;
 neither the sender nor the receiver is notified. UDP is an unreliable
 protocol, after all.
[image: The structure of a UDP datagram]

Figure 13-1. The structure of a UDP datagram

Although the theoretical maximum amount of data in a UDP datagram is 65,507 bytes, in practice there is almost
 always much less. On many platforms, the actual limit is more likely to
 be 8,192 bytes (8K). And implementations are not required to accept
 datagrams with more than 576 total bytes, including data and headers.
 Consequently, you should be extremely wary of any program that depends
 on sending or receiving UDP packets with more than 8K of data. Most of
 the time, larger packets are simply truncated to 8K of data. For maximum
 safety, the data portion of a UDP packet should be kept to 512 bytes or
 less, although this limit can negatively affect performance compared to
 larger packet sizes. (This is a problem for TCP datagrams too, but the
 stream-based API provided by Socket
 and ServerSocket completely shields
 programmers from these details.)
In Java, a UDP datagram is represented by an instance of the DatagramPacket class:
public final class DatagramPacket extends Object
This class provides methods to get and set the source or
 destination address from the IP header, to get and set the source or
 destination port, to get and set the data, and to get and set the length
 of the data. The remaining header fields are inaccessible from pure Java
 code.
The Constructors

DatagramPacket uses different constructors depending on whether the
 packet will be used to send data or to receive data. This is a little
 unusual. Normally, constructors are overloaded to let you provide
 different kinds of information when you create an object, not to
 create objects of the same class that will be used in different
 contexts. In this case, all six constructors take as arguments a
 byte array that holds the
 datagram's data and the number of bytes in that array to use for the
 datagram's data. When you want to receive a datagram, these are the
 only arguments you provide; in addition, the array should be empty.
 When the socket receives a datagram from the network, it stores the
 datagram's data in the DatagramPacket object's buffer array, up to
 the length you specified.
The second set of DatagramPacket constructors is used to
 create datagrams you will send over the network. Like the first, these
 constructors require a buffer array and a length, but they also
 require the InetAddress and port to
 which the packet is to be sent. In this case, you will pass to the
 constructor a byte array containing the data you want to send and the
 destination address and port to which the packet is to be sent. The
 DatagramSocket reads the
 destination address and port from the packet; the address and port
 aren't stored within the socket, as they are in TCP.
Constructors for receiving datagrams

These two constructors create new DatagramPacket objects for receiving data
 from the network:
public DatagramPacket(byte[] buffer, int length)
public DatagramPacket(byte[] buffer, int offset, int length) // Java 1.2
When a socket receives a datagram, it stores the datagram's
 data part in buffer beginning at
 buffer[0] and continuing until
 the packet is completely stored or until length bytes have been written into the
 buffer. If the second constructor
 is used, storage begins at buffer[offset] instead. Otherwise, these
 two constructors are identical. length must be less than or equal to
 buffer.length-offset. If you try
 to construct a DatagramPacket
 with a length that will overflow the buffer, the constructor throws an IllegalArgumentException. This is a
 RuntimeException, so your code is
 not required to catch it. It is okay to construct a DatagramPacket with a length less than
 buffer.length-offset. In this
 case, at most the first length
 bytes of buffer will be filled
 when the datagram is received. For example, this code fragment
 creates a new DatagramPacket for
 receiving a datagram of up to 8,192 bytes:
byte[] buffer = new byte[8192];
DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
The constructor doesn't care how large the buffer is and would
 happily let you create a DatagramPacket with megabytes of data.
 However, the underlying native network software is less forgiving,
 and most native UDP implementations don't support more than 8,192
 bytes of data per datagram. The theoretical limit for an IPv4
 datagram is 65,507 bytes of data, and a DatagramPacket with a 65,507-byte buffer
 can receive any possible IPv4 datagram without losing data. IPv6
 datagrams raise the theoretical limit to 65,536 bytes. In practice,
 however, many UDP-based protocols such as DNS and TFTP use packets
 with 512 bytes of data per datagram or fewer. The largest data size
 in common usage is 8,192 bytes for NFS. Almost all UDP datagrams
 you're likely to encounter will have 8K of data or fewer. In fact,
 many operating systems don't support UDP datagrams with more than 8K
 of data and either truncate, split, or discard larger datagrams. If
 a large datagram is too big and as a result the network truncates or
 drops it, your Java program won't be notified of the problem. (UDP
 is an unreliable protocol, after all.) Consequently, you shouldn't
 create DatagramPacket objects
 with more than 8,192 bytes of data.

Constructors for sending datagrams

These four constructors create new DatagramPacket objects for sending data
 across the network:
public DatagramPacket(byte[] data, int length,
 InetAddress destination, int port)
public DatagramPacket(byte[] data, int offset, int length,
 InetAddress destination, int port) // Java 1.2
public DatagramPacket(byte[] data, int length,
 SocketAddress destination, int port) // Java 1.4
public DatagramPacket(byte[] data, int offset, int length,
 SocketAddress destination, int port) // Java 1.4
Each constructor creates a new DatagramPacket to be sent to another host.
 The packet is filled with length
 bytes of the data array starting
 at offset or 0 if offset is not used. If you try to
 construct a DatagramPacket with a
 length that is greater than data.length, the constructor throws an
 IllegalArgumentException. It's
 okay to construct a DatagramPacket object with an offset and a length that will leave extra, unused space
 at the end of the data array. In
 this case, only length bytes of
 data will be sent over the
 network. The InetAddress or
 SocketAddress object destination points to the host you want
 the packet delivered to; the int
 argument port is the port on that
 host.
Choosing a Datagram Size
The correct amount of data to stuff into one packet
 depends on the situation. Some protocols dictate the size of the
 packet. For example, rlogin
 transmits each character to the remote system almost as soon as
 the user types it. Therefore, packets tend to be short: a single
 byte of data, plus a few bytes of headers. Other applications
 aren't so picky. For example, file transfer is more efficient with
 large buffers; the only requirement is that you split files into
 packets no larger than the maximum allowable packet size.
Several factors are involved in choosing the optimal packet
 size. If the network is highly unreliable, such as a packet radio
 network, smaller packets are preferable since they're less likely
 to be corrupted in transit. On the other hand, very fast and
 reliable LANs should use the largest packet size possible. Eight
 kilobytes—that is, 8,192 bytes—is a good compromise for many types
 of networks.

It's customary to convert the data to a byte array and place it in data before creating
 the DatagramPacket, but it's not
 absolutely necessary. Changing data after the
 datagram has been constructed and before it has
 been sent changes the data in the datagram; the data isn't copied
 into a private buffer. In some applications, you can take advantage
 of this. For example, you could store data that changes over time in
 data and send out the current
 datagram (with the most recent data) every minute. However, it's
 more important to make sure that the data doesn't change when you
 don't want it to. This is especially true if your program is
 multithreaded, and different threads may write into the data buffer.
 If this is the case, synchronize the data variable or copy the data into a
 temporary buffer before you construct the DatagramPacket.
For instance, this code fragment creates a new DatagramPacket filled with the data "This
 is a test" in ASCII. The packet is directed at port 7 (the echo
 port) of the host www.ibiblio.org:
String s = "This is a test";
byte[] data = s.getBytes("ASCII");

try {
 InetAddress ia = InetAddress.getByName("www.ibiblio.org");
 int port = 7;
 DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
 // send the packet...
}
catch (IOException ex)
}
Most of the time, the hardest part of creating a new DatagramPacket is translating the data
 into a byte array. Since this
 code fragment wants to send an ASCII string, it uses the getBytes() method of java.lang.String. The java.io.ByteArrayOutputStream class can
 also be very useful for preparing data for inclusion in
 datagrams.

The get Methods

DatagramPacket has six methods that retrieve different parts of a
 datagram: the actual data plus several fields from its header. These
 methods are mostly used for datagrams received from the
 network.
public InetAddress getAddress()

The getAddress()
 method returns an InetAddress object containing the address
 of the remote host. If the datagram was received from the Internet,
 the address returned is the address of the machine that sent it (the
 source address). On the other hand, if the datagram was created
 locally to be sent to a remote machine, this method returns the
 address of the host to which the datagram is addressed (the
 destination address). This method is most commonly used to determine
 the address of the host that sent a UDP datagram, so that the
 recipient can reply.

public int getPort()

The getPort() method returns an integer specifying the remote port.
 If this datagram was received from the Internet, this is the port on
 the host that sent the packet. If the datagram was created locally
 to be sent to a remote host, this is the port to which the packet is
 addressed on the remote machine.

public SocketAddress getSocketAddress() // Java 1.4

The getSocketAddress()
 method returns a SocketAddress object containing the IP
 address and port of the remote host. As is the case for getInetAddress(), if the datagram was
 received from the Internet, the address returned is the address of
 the machine that sent it (the source address). On the other hand, if
 the datagram was created locally to be sent to a remote machine,
 this method returns the address of the host to which the datagram is
 addressed (the destination address). You typically invoke this
 method to determine the address and port of the host that sent a UDP
 datagram before you reply. The net effect is not noticeably
 different than calling getAddress(
) and getPort(), but
 if you're using Java 1.4 this saves one method call. Also, if you're
 using non-blocking I/O, the DatagramChannel class accepts a SocketAddress but not an InetAddress and port.

public byte[] getData()

The getData() method returns a byte array containing the data from
 the datagram. It's often necessary to convert the bytes into some
 other form of data before they'll be useful to your program. One way
 to do this is to change the byte array into a String using the following String constructor:
public String(byte[] buffer, String encoding)
The first argument, buffer,
 is the array of bytes that contains the data from the datagram. The
 second argument contains the name of the encoding used for this
 string, such as ASCII or ISO-8859-1. Thus, given a DatagramPacket dp received from the network, you can
 convert it to a String like
 this:
String s = new String(dp.getData(), "ASCII");
If the datagram does not contain text, converting it to Java
 data is more difficult. One approach is to convert the byte array returned by getData() into a ByteArrayInputStream using this
 constructor:
public ByteArrayInputStream(byte[] buffer, int offset, int length)
buffer is the byte array to be used as an InputStream. It's important to specify the
 portion of the buffer that you
 want to use as an InputStream
 using the offset and length arguments. When converting datagram
 data into InputStream objects,
 offset is either 0 (Java 1.1) or
 given by the DatagramPacket
 object's getOffset() method
 (Java 2), and length is given by
 the DatagramPacket object's
 getLength() method. For
 example:
InputStream in = new ByteArrayInputStream(packet.getData(),
 packet.getOffset(), packet.getLength());
You must specify the offset and the length when constructing the ByteArrayInputStream. Do not use the
 ByteArrayInputStream()
 constructor that takes only an array as an argument. The array
 returned by packet.getData()
 probably has extra space in it that was not filled with data from
 the network. This space will contain whatever random values those
 components of the array had when the DatagramPacket was constructed.
The ByteArrayInputStream
 can then be chained to a DataInputStream:
DataInputStream din = new DataInputStream(in);
The data can then be read using the DataInputStream's readInt(), readLong(), readChar(), and other methods. Of course,
 this assumes that the datagram's sender uses the same data formats
 as Java; it's probably the case when the sender is written in Java,
 and is often (though not necessarily) the case otherwise. (Most
 modern computers use the same floating point format as Java, and
 most network protocols specify two complement integers in network
 byte order, which also matches Java's formats.)

public int getLength()

The getLength() method returns the number of bytes of data in the
 datagram. This is not necessarily the same as
 the length of the array returned by getData(), i.e., getData().length. The int returned by getLength() may be less than the length
 of the array returned by getData(
).

public int getOffset() // Java 1.2

This method simply returns the point in the array
 returned by getData() where the
 data from the datagram begins.
Example 13-1 uses
 all the methods covered in this section to print the information in
 the DatagramPacket. This example
 is a little artificial; because the program creates a DatagramPacket, it already knows what's in
 it. More often, you'll use these methods on a DatagramPacket received from the network,
 but that will have to wait for the introduction of the DatagramSocket class in the next
 section.
Example 13-1. Construct a DatagramPacket to receive data
import java.net.*;

public class DatagramExample {

 public static void main(String[] args) {

 String s = "This is a test.";

 byte[] data = s.getBytes();
 try {
 InetAddress ia = InetAddress.getByName("www.ibiblio.org");
 int port = 7;
 DatagramPacket dp
 = new DatagramPacket(data, data.length, ia, port);
 System.out.println("This packet is addressed to "
 + dp.getAddress() + " on port " + dp.getPort());
 System.out.println("There are " + dp.getLength()
 + " bytes of data in the packet");
 System.out.println(
 new String(dp.getData(), dp.getOffset(), dp.getLength()));
 }
 catch (UnknownHostException e) {
 System.err.println(e);
 }

 }

}

Here's the output:
% java DatagramExample
This packet is addressed to www.ibiblio.org/152.2.254.81 on port 7
There are 15 bytes of data in the packet
This is a test.

The set Methods

Most of the time, the six constructors are sufficient
 for creating datagrams. However, Java also provides several methods
 for changing the data, remote address, and remote port after the
 datagram has been created. These methods might be important in a
 situation where the time to create and garbage collect new DatagramPacket objects is a significant
 performance hit. In some situations, reusing objects can be
 significantly faster than constructing new ones: for example, in a
 networked twitch game like Quake that sends a datagram for every
 bullet fired or every centimeter of movement. However, you would have
 to use a very speedy connection for the improvement to be noticeable
 relative to the slowness of the network itself.
public void setData(byte[] data)

The setData() method changes the payload of the UDP datagram. You
 might use this method if you are sending a large file (where large
 is defined as "bigger than can comfortably fit in one datagram") to
 a remote host. You could repeatedly send the same DatagramPacket object, just changing the
 data each time.

public void setData(byte[] data, int offset, int length) //
 Java 1.2

This overloaded variant of the setData() method provides an alternative approach to sending a
 large quantity of data. Instead of sending lots of new arrays, you
 can put all the data in one array and send it a piece at a time. For
 instance, this loop sends a large array in 512-byte chunks:
int offset = 0;
DatagramPacket dp = new DatagramPacket(bigarray, offset, 512);
int bytesSent = 0;
while (bytesSent < bigarray.length) {
 socket.send(dp);
 bytesSent += dp.getLength();
 int bytesToSend = bigarray.length - bytesSent;
 int size = (bytesToSend > 512) ? 512 : bytesToSend;
 dp.setData(bigarray, bytesSent, 512);
}
On the other hand, this strategy requires either a lot of
 confidence that the data will in fact arrive or, alternatively, a
 disregard for the consequences of its not arriving. It's relatively
 difficult to attach sequence numbers or other reliability tags to
 individual packets when you take this approach.

public void setAddress(InetAddress remote)

The setAddress()
 method changes the address a datagram packet is sent
 to. This might allow you to send the same datagram to many different
 recipients. For example:
String s = "Really Important Message";
byte[] data = s.getBytes("ASCII");
DatagramPacket dp = new DatagramPacket(data, data.length);
dp.setPort(2000);
int network = "128.238.5.";
for (int host = 1; host < 255; host++) {
 try {
 InetAddress remote = InetAddress.getByName(network + host);
 dp.setAddress(remote);
 socket.send(dp);
 }
 catch (IOException ex) {
 // slip it; continue with the next host
 }
}
Whether this is a sensible choice depends on the application.
 If you're trying to send to all the stations on a network segment,
 as in this fragment, you'd probably be better off using the local
 broadcast address and letting the network do the work. The local
 broadcast address is determined by setting all bits of the IP
 address after the network and subnet IDs to 1. For example,
 Polytechnic University's network address is 128.238.0.0.
 Consequently, its broadcast address is 128.238.255.255. Sending a
 datagram to 128.238.255.255 copies it to every host on that network
 (although some routers and firewalls may block it, depending on its
 origin).
For more widely separated hosts, you're probably better off
 using multicasting. Multicasting actually uses the same DatagramPacket class described here.
 However, it uses different IP addresses and a MulticastSocket instead of a DatagramSocket. We'll discuss this further
 in Chapter 14.

public void setPort(int port)

The setPort() method changes the port a datagram is addressed to. I
 honestly can't think of many uses for this method. It could be used
 in a port scanner application that tried to find open ports running
 particular UDP-based services such as FSP. Another possibility might
 be some sort of networked game or conferencing server where the
 clients that need to receive the same information are all running on
 different ports as well as different hosts. In this case, setPort() could be used in conjunction
 with setAddress() to change
 destinations before sending the same datagram out again.

public void setAddress(SocketAddress remote) // Java
 1.4

The setSocketAddress()
 method changes the address and port a datagram packet
 is sent to. You can use this when replying. For example, this code
 fragment receives a datagram packet and responds to the same address
 with a packet containing the ASCII string "Hello there":
DatagramPacket input = newDatagramPacket(new byte[8192], 8192);
socket.receive(input);
SocketAddress address = input.getSocketAddress();
DatagramPacket output = new DatagramPacket("Hello there"
 .getBytes("ASCII"), 11);
output.setAddress(address);
socket.send(output);
You could certainly write the same code using InetAddress objects and ports instead of a
 SocketAddress. Indeed, in Java
 1.3 and earlier, you have to. The code would be just a few lines
 longer:
DatagramPacket input = newDatagramPacket(new byte[8192], 8192);
socket.receive(input);
InetAddress address = input.getAddress();
int port = input.getPort();
DatagramPacket output = new DatagramPacket("Hello there".getBytes("ASCII"), 11);
output.setAddress(address);
output.setPort(port);
socket.send(output);

public void setLength(int length)

The setLength() method changes the number of bytes of data in the
 internal buffer that are considered to be part of the datagram's
 data as opposed to merely unfilled space. This method is useful when
 receiving datagrams, as we'll explore later in this chapter. When a
 datagram is received, its length is set to the length of the
 incoming data. This means that if you try to receive another
 datagram into the same DatagramPacket, it's limited to no more
 than the number of bytes in the first. That is, once you've received
 a 10-byte datagram, all subsequent datagrams will be truncated to 10
 bytes; once you've received a 9-byte datagram, all subsequent
 datagrams will be truncated to 9 bytes; and so on. This method lets
 you reset the length of the buffer so that subsequent datagrams
 aren't truncated.

The DatagramSocket Class

 To send or receive a DatagramPacket, you must open a datagram
 socket. In Java, a datagram socket is created and accessed through the
 DatagramSocket class:
public class DatagramSocket extends Object
All datagram sockets are bound to a local port, on which they
 listen for incoming data and which they place in the header of outgoing
 datagrams. If you're writing a client, you don't care what the local
 port is, so you call a constructor that lets the system assign an unused
 port (an anonymous port). This port number is placed in any outgoing
 datagrams and will be used by the server to address any response
 datagrams. If you're writing a server, clients need to know on which
 port the server is listening for incoming datagrams; therefore, when a
 server constructs a DatagramSocket,
 it specifies the local port on which it will listen. However, the
 sockets used by clients and servers are otherwise identical: they differ
 only in whether they use an anonymous (system-assigned) or a well-known
 port. There's no distinction between client sockets and server sockets,
 as there is with TCP; there's no such thing as a DatagramServerSocket.
The Constructors

The DatagramSocket constructors are used in different situations, much
 like the DatagramPacket
 constructors. The first constructor opens a datagram socket on an
 anonymous local port. The second constructor opens a datagram socket
 on a well-known local port that listens to all local network
 interfaces. The third constructor opens a datagram socket on a
 well-known local port on a specific network interface. Java 1.4 adds a
 constructor that allows this network interface and port to be
 specified with a SocketAddress.
 Java 1.4 also adds a protected constructor that allows you to change
 the implementation class. All five constructors deal only with the
 local address and port. The remote address and port are stored in the
 DatagramPacket, not the DatagramSocket. Indeed, one DatagramSocket can send and receive
 datagrams from multiple remote hosts and ports.
public DatagramSocket() throws SocketException

This constructor creates a socket that is bound to an
 anonymous port. For example:
try {
 DatagramSocket client = new DatagramSocket();
 // send packets...
}
catch (SocketException ex) {
 System.err.println(ex);
}
You would use this constructor in a client that initiates a
 conversation with a server. In this scenario, you don't care what
 port the socket is bound to, because the server will send its
 response to the port from which the datagram originated. Letting the
 system assign a port means that you don't have to worry about
 finding an unused port. If for some reason you need to know the
 local port, you can find out with the getLocalPort() method described later in
 this chapter.
The same socket can receive the datagrams that a server sends
 back to it. A SocketException is
 thrown if the socket can't be created. It's unusual for this
 constructor to throw an exception; it's hard to imagine situations
 in which the socket could not be opened, since the system gets to
 choose the local port.

public DatagramSocket(int port) throws
 SocketException

This constructor creates a socket that listens for incoming
 datagrams on a particular port, specified by the port argument. Use this constructor to
 write a server that listens on a well-known port; if servers
 listened on anonymous ports, clients would not be able to contact
 them. A SocketException is thrown
 if the socket can't be created. There are two common reasons for the
 constructor to fail: the specified port is already occupied, or you
 are trying to connect to a port below 1,024 and you don't have
 sufficient privileges (i.e., you are not root on a Unix system; for
 better or worse, other platforms allow anyone to connect to
 low-numbered ports).
TCP ports and UDP ports are not related. Two unrelated servers
 or clients can use the same port number if one uses UDP and the
 other uses TCP. Example
 13-2 is a port scanner that looks for UDP ports in use on the
 local host. It decides that the port is in use if the DatagramSocket constructor throws an
 exception. As written, it looks at ports from 1,024 and up to avoid
 Unix's requirement that it run as root to bind to ports below 1,024.
 You can easily extend it to check ports below 1,024, however, if you
 have root access or are running it on Windows.
Example 13-2. Look for local UDP ports
import java.net.*;

public class UDPPortScanner {

 public static void main(String[] args) {

 for (int port = 1024; port <= 65535; port++) {
 try {
 // the next line will fail and drop into the catch block if
 // there is already a server running on port i
 DatagramSocket server = new DatagramSocket(port);
 server.close();
 }
 catch (SocketException ex) {
 System.out.println("There is a server on port " + port + ".");
 } // end try
 } // end for

 }

}

The speed at which UDPPortScanner runs depends strongly on
 the speed of your machine and its UDP implementation. I've clocked
 Example 13-2 at as little
 as two minutes on a moderately powered SPARCstation, under 12
 seconds on a 1Ghz TiBook, about 7 seconds on a 1.4GHz Athlon system
 running Linux, and as long as an hour on a PowerBook 5300 running
 MacOS 8. Here are the results from the Linux workstation on which
 much of the code in this book was written:
% java UDPPortScanner
There is a server on port 2049.
There is a server on port 32768.
There is a server on port 32770.
There is a server on port 32771.
The first port, 2049, is an NFS server. The high-numbered
 ports in the 30,000 range are Remote Procedure Call (RPC) services.
 Along with RPC, common protocols that use UDP include NFS, TFTP, and
 FSP.
It's much harder to scan UDP ports on a remote system than to
 scan for remote TCP ports. Whereas there's always some indication
 that a listening port, regardless of application layer protocol, has
 received your TCP packet, UDP provides no such guarantees. To
 determine that a UDP server is listening, you have to send it a
 packet it will recognize and respond to.

public DatagramSocket(int port, InetAddress interface) throws
 SocketException

This constructor is primarily used on multihomed hosts; it
 creates a socket that listens for incoming datagrams on a specific
 port and network interface. The port argument is the port on which this
 socket listens for datagrams. As with TCP sockets, you need to be
 root on a Unix system to create a DatagramSocket on a port below 1,024. The
 address argument is an InetAddress object matching one of the
 host's network addresses. A SocketException is thrown if the socket
 can't be created. There are three common reasons for this
 constructor to fail: the specified port is already occupied, you are
 trying to connect to a port below 1,024 and you're not root on a
 Unix system, or address is not
 the address of one of the system's network interfaces.

public DatagramSocket(SocketAddress interface) throws
 SocketException // Java 1.4

This constructor is similar to the previous one except that
 the network interface address and port are read from a SocketAddress. For example, this code
 fragment creates a socket that only listens on the local loopback
 address:
SocketAddress address = new InetSocketAddress("127.0.0.1", 9999);
DatagramSocket socket = new DatagramSocket(address);

protected DatagramSocket(DatagramSocketImpl impl) throws
 SocketException // Java 1.4

This constructor enables subclasses to provide their own
 implementation of the UDP protocol, rather than blindly accepting
 the default. Unlike sockets created by the other four constructors,
 this socket is not initially bound to a port. Before using it you
 have to bind it to a SocketAddress using the bind() method, which is also new in Java
 1.4:
public void bind(SocketAddress addr) throws SocketException
You can pass null to this method, binding the socket to any
 available address and port.

Sending and Receiving Datagrams

 The primary task of the DatagramSocket class is to send and receive
 UDP datagrams. One socket can both send and receive. Indeed, it can
 send and receive to and from multiple hosts at the same time.
public void send(DatagramPacket dp) throws
 IOException

Once a DatagramPacket is
 created and a DatagramSocket is
 constructed, send the packet by passing it to the socket's send() method. For example, if theSocket is a DatagramSocket object and theOutput is a DatagramPacket object, send theOutput using theSocket like this:
theSocket.send(theOutput);
If there's a problem sending the data, an IOException may be thrown. However, this
 is less common with DatagramSocket than Socket or ServerSocket, since the unreliable nature
 of UDP means you won't get an exception just because the packet
 doesn't arrive at its destination. You may get an IOException if you're trying to send a
 larger datagram than the host's native networking software supports,
 but then again you may not. This depends heavily on the native UDP
 software in the OS and the native code that interfaces between this
 and Java's DatagramSocketImpl
 class. This method may also throw a SecurityException if the SecurityManager won't let you communicate
 with the host to which the packet is addressed. This is primarily a
 problem for applets and other remotely loaded code.
Example 13-3 is a
 UDP-based discard client. It reads lines of user input from System.in and sends them to a discard
 server, which simply discards all the data. Each line is stuffed in
 a DatagramPacket. Many of the
 simpler Internet protocols, such as discard, have both TCP and UDP
 implementations.
Example 13-3. A UDP discard client
import java.net.*;
import java.io.*;

public class UDPDiscardClient {

 public final static int DEFAULT_PORT = 9;

 public static void main(String[] args) {

 String hostname;
 int port = DEFAULT_PORT;

 if (args.length > 0) {
 hostname = args[0];
 try {
 port = Integer.parseInt(args[1]);
 }
 catch (Exception ex) {
 // use default port
 }
 }
 else {
 hostname = "localhost";
 }

 try {
 InetAddress server = InetAddress.getByName(hostname);
 BufferedReader userInput
 = new BufferedReader(new InputStreamReader(System.in));
 DatagramSocket theSocket = new DatagramSocket();
 while (true) {
 String theLine = userInput.readLine();
 if (theLine.equals(".")) break;
 byte[] data = theLine.getBytes();
 DatagramPacket theOutput
 = new DatagramPacket(data, data.length, server, port);
 theSocket.send(theOutput);
 } // end while
 } // end try
 catch (UnknownHostException uhex) {
 System.err.println(uhex);
 }
 catch (SocketException sex) {
 System.err.println(sex);
 }
 catch (IOException ioex) {
 System.err.println(ioex);
 }

 } // end main

}

The UDPDiscardClient class
 should look familiar. It has a single static field, DEFAULT_PORT, which is set to the standard
 port for the discard protocol (port 9), and a single method,
 main(). The main() method reads a hostname from the
 command line and converts that hostname to the InetAddress object called server. A BufferedReader is chained to System.in to read user input from the
 keyboard. Next, a DatagramSocket
 object called theSocket is
 constructed. After creating the socket, the program enters an
 infinite while loop that reads
 user input line by line using readLine(). We are careful, however, to
 use only readLine() to read data
 from the console, the one place where it is guaranteed to work as
 advertised. Since the discard protocol deals only with raw bytes, we
 can ignore character encoding issues.
In the while loop, each
 line is converted to a byte array using the getBytes() method, and the bytes are
 stuffed in a new DatagramPacket,
 theOutput. Finally, theOutput is sent over theSocket, and the loop continues. If at
 any point the user types a period on a line by itself, the program
 exits. The DatagramSocket
 constructor may throw a SocketException, so that needs to be
 caught. Because this is a discard client, we don't need to worry
 about data coming back from the server.

public void receive(DatagramPacket dp) throws
 IOException

This method receives a single UDP datagram from the network
 and stores it in the preexisting DatagramPacket object dp. Like the accept() method in the ServerSocket class, this method blocks the
 calling thread until a datagram arrives. If your program does
 anything besides wait for datagrams, you should call receive() in a separate thread.
The datagram's buffer should be large enough to hold the data
 received. If not, receive()
 places as much data in the buffer as it can hold; the rest is lost.
 It may be useful to remember that the maximum size of the data
 portion of a UDP datagram is 65,507 bytes. (That's the 65,536-byte
 maximum size of an IP datagram minus the 20-byte size of the IP
 header and the 8-byte size of the UDP header.) Some application
 protocols that use UDP further restrict the maximum number of bytes
 in a packet; for instance, NFS uses a maximum packet size of 8,192
 bytes.
If there's a problem receiving the data, an IOException may be thrown. In practice,
 this is rare. Unlike send(),
 this method does not throw a SecurityException if an applet receives a
 datagram from other than the applet host. However, it will silently
 discard all such packets. (This behavior prevents a
 denial-of-service attack against applets that receive UDP
 datagrams.)
Example 13-4 shows
 a UDP discard server that receives incoming datagrams.
 Just for fun, it logs the data in each datagram to System.out so that you can see who's
 sending what to your discard server.
Example 13-4. The UDPDiscardServer
import java.net.*;
import java.io.*;

public class UDPDiscardServer {

 public final static int DEFAULT_PORT = 9;
 public final static int MAX_PACKET_SIZE = 65507;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 byte[] buffer = new byte[MAX_PACKET_SIZE];

 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception ex) {
 // use default port
 }

 try {
 DatagramSocket server = new DatagramSocket(port);
 DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
 while (true) {
 try {
 server.receive(packet);
 String s = new String(packet.getData(), 0, packet.getLength());
 System.out.println(packet.getAddress() + " at port "
 + packet.getPort() + " says " + s);
 // reset the length for the next packet
 packet.setLength(buffer.length);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 } // end while
 } // end try
 catch (SocketException ex) {
 System.err.println(ex);
 } // end catch

 } // end main

}

This is a simple class with a single method, main(). It reads the port the server
 listens to from the command line. If the port is not specified on
 the command line, it listens on port 9. It then opens a DatagramSocket on that port and creates a
 DatagramPacket with a 65,507-byte
 buffer—large enough to receive any possible packet. Then the server
 enters an infinite loop that receives packets and prints the
 contents and the originating host on the console. A high-performance
 discard server would skip this step. As each datagram is received,
 the length of packet is set to
 the length of the data in that datagram. Consequently, as the last
 step of the loop, the length of the packet is reset to the maximum
 possible value. Otherwise, the incoming packets would be limited to
 the minimum size of all previous packets. You can run the discard
 client on one machine and connect to the discard server on a second
 machine to verify that the network is working.

public void close()

Calling a DatagramSocket
 object's close() method frees the port occupied by that socket. For
 example:
try {
 DatagramSocket server = new DatagramSocket();
 server.close();
}
catch (SocketException ex) {
 System.err.println(ex);
}
It's never a bad idea to close a DatagramSocket when you're through with
 it; it's particularly important to close an unneeded socket if the
 program will continue to run for a significant amount of time. For
 example, the close() method was
 essential in Example
 13-2, UDPPortScanner: if
 this program did not close the sockets it opened, it would tie up
 every UDP port on the system for a significant amount of time. On
 the other hand, if the program ends as soon as you're through with
 the DatagramSocket, you don't
 need to close the socket explicitly; the socket is automatically
 closed upon garbage collection. However, Java won't run the garbage
 collector just because you've run out of ports or sockets, unless by
 lucky happenstance you run out of memory at the same time. Closing
 unneeded sockets never hurts and is good programming
 practice.

public int getLocalPort()

A DatagramSocket's getLocalPort() method returns an int that represents the local port on
 which the socket is listening. Use this method if you created a
 DatagramSocket with an anonymous
 port and want to find out what port the socket has been assigned.
 For example:
try {
 DatagramSocket ds = new DatagramSocket();
 System.out.println("The socket is using port " + ds.getLocalPort());
}
catch (SocketException ex) {
 ex.printStackTrace();
}

public InetAddress getLocalAddress()

A DatagramSocket's getLocalAddress() method returns an InetAddress object that represents the
 local address to which the socket is bound. It's rarely needed in
 practice. Normally, you either know or don't care which address a
 socket is listening to.

public SocketAddress getLocalSocketAddress() // Java
 1.4

The getLocalSocketAddress()
 method returns a SocketAddress object that wraps the local
 interface and port to which the socket is bound. Like getLocalAddress(), it's a little hard to
 imagine a realistic use case here. This method probably exists
 mostly for parallelism with setLocalSocketAddress().

Managing Connections

Unlike TCP sockets, datagram sockets aren't very picky about
 whom they'll talk to. In fact, by default they'll talk to anyone, but
 this is often not what you want. For instance, applets are only
 allowed to send datagrams to and receive datagrams from the applet
 host. An NFS or FSP client should accept packets only from the server
 it's talking to. A networked game should listen to datagrams only from
 the people playing the game. In Java 1.1, programs must manually check
 the source addresses and ports of the hosts sending them data to make
 sure they're who they should be. However, Java 1.2 adds four methods
 that let you choose which host you can send datagrams to and receive
 datagrams from, while rejecting all others' packets.
public void connect(InetAddress host, int port) // Java
 1.2

The connect() method doesn't really establish a connection in the
 TCP sense. However, it does specify that the DatagramSocket will send packets to and
 receive packets from only the specified remote host on the specified
 remote port. Attempts to send packets to a different host or port
 will throw an IllegalArgumentException. Packets received
 from a different host or a different port will be discarded without
 an exception or other notification.
A security check is made when the connect() method is invoked. If the VM is
 allowed to send data to that host and port, the check passes
 silently. Otherwise, a SecurityException is thrown. However, once
 the connection has been made, send(
) and receive() on
 that DatagramSocket no longer
 make the security checks they'd normally make.

public void disconnect() // Java 1.2

The disconnect()
 method breaks the "connection" of a connected
 DatagramSocket so that it can
 once again send packets to and receive packets from any host and
 port.

public int getPort() // Java 1.2

If and only if a DatagramSocket is connected, the getPort() method returns the remote port to which it is
 connected. Otherwise, it returns -1.

public InetAddress getInetAddress() // Java 1.2

If and only if a DatagramSocket is connected, the getInetAddress() method returns the address of the remote host to
 which it is connected. Otherwise, it returns null.

public InetAddress getRemoteSocketAddress() // Java
 1.4

If a DatagramSocket is
 connected, the getRemoteSocketAddress(
) method returns the address of the remote host to
 which it is connected. Otherwise, it returns null.

Socket Options

The only socket option supported for datagram sockets in
 Java 1.1 is SO_TIMEOUT. Java 1.2 adds SO_SNDBUF and SO_RCVBUF. Java
 1.4 adds SO_REUSEADDR and SO_BROADCAST and enables the specification
 of the traffic class.
SO_TIMEOUT

SO_TIMEOUT is the amount of time, in milliseconds,
 that receive() waits for an
 incoming datagram before throwing an InterruptedIOException (a subclass of
 IOException). Its value must be
 nonnegative. If SO_TIMEOUT is 0, receive(
) never times out. This value can be changed with the
 setSoTimeout() method and
 inspected with the getSoTimeout(
) method:
public synchronized void setSoTimeout(int timeout)
 throws SocketException
public synchronized int getSoTimeout() throws IOException
The default is to never time out, and indeed there are few
 situations in which you would need to set SO_TIMEOUT. You might need
 it if you were implementing a secure protocol that required
 responses to occur within a fixed amount of time. You might also
 decide that the host you're communicating with is dead (unreachable
 or not responding) if you don't receive a response within a certain
 amount of time.
The setSoTimeout() method
 sets the SO_TIMEOUT field for a datagram socket. When the timeout
 expires, an InterruptedIOException is thrown. (In Java
 1.4 and later, SocketTimeoutException, a subclass of
 InterruptedIOException, is thrown
 instead.) Set this option before you call
 receive(). You cannot change it
 while receive() is waiting for a
 datagram. The timeout argument
 must be greater than or equal to zero; if it is not, setSoTimeout() throws a SocketException. For example:
try {
 buffer = new byte[2056];
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
 DatagramSocket ds = new DatagramSocket(2048);
 ds.setSoTimeout(30000); // block for no more than 30 seconds
 try {
 ds.receive(dp);
 // process the packet...
 }
 catch (InterruptedIOException ex) {
 ss.close();
 System.err.println("No connection within 30 seconds");
 }
catch (SocketException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println("Unexpected IOException: " + ex);
}
The getSoTimeout() method
 returns the current value of this DatagramSocket object's SO_TIMEOUT field.
 For example:
public void printSoTimeout(DatagramSocket ds) {

 int timeout = ds.getSoTimeOut();
 if (timeout > 0) {
 System.out.println(ds + " will time out after "
 + timeout + "milliseconds.");
 }
 else if (timeout == 0) {
 System.out.println(ds + " will never time out.");
 }
 else {
 System.out.println("Something is seriously wrong with " + ds);
 }

}

SO_RCVBUF

The SO_RCVBUF option of DatagramSocket is closely related to the
 SO_RCVBUF option of Socket. It
 determines the size of the buffer used for network I/O. Larger
 buffers tend to improve performance for reasonably fast (say,
 Ethernet-speed) connections because they can store more incoming
 datagrams before overflowing. Sufficiently large receive buffers are
 even more important for UDP than for TCP, since a UDP datagram that
 arrives when the buffer is full will be lost, whereas a TCP datagram
 that arrives at a full buffer will eventually be retransmitted.
 Furthermore, SO_RCVBUF sets the maximum size of datagram packets
 that can be received by the application. Packets that won't fit in
 the receive buffer are silently discarded.
DatagramSocket has methods
 to get and set the suggested receive buffer size used for network
 input:
public void setReceiveBufferSize(int size) throws SocketException // Java 1.2
public int getReceiveBufferSize() throws SocketException // Java 1.2
The setReceiveBufferSize()
 method suggests a number of bytes to use for buffering input from
 this socket. However, the underlying implementation is free to
 ignore this suggestion. For instance, many 4.3 BSD-derived systems
 have a maximum receive buffer size of about 52K and won't let you
 set a limit higher than this. My Linux box was limited to 64K. Other
 systems raise this to about 240K. The details are highly
 platform-dependent. Consequently, you may wish to check the actual
 size of the receive buffer with getReceiveBufferSize() after setting it.
 The getReceiveBufferSize()
 method returns the number of bytes in the buffer used for input from
 this socket.
Both methods throw a SocketException if the underlying socket
 implementation does not recognize the SO_RCVBUF option. This might
 happen on a non-POSIX operating system. The setReceiveBufferSize() method throws an
 IllegalArgumentException if its
 argument is less than or equal to zero.

SO_SNDBUF

DatagramSocket has methods to get and set the suggested send buffer
 size used for network output:
public void setSendBufferSize(int size) throws SocketException // Java 1.2
public int getSendBufferSize() throws SocketException // Java 1.2
The setSendBufferSize()
 method suggests a number of bytes to use for buffering output on
 this socket. Once again, however, the operating system is free to
 ignore this suggestion. Consequently, you'll want to check the
 result of setSendBufferSize() by
 immediately following it with a call to getSend BufferSize() to find out the real the
 buffer size.
Both methods throw a SocketException if the underlying native
 network software doesn't understand the SO_SNDBUF option. The setSendBufferSize() method also throws an
 IllegalArgumentException if its
 argument is less than or equal to zero.

SO_REUSEADDR

The SO_REUSEADDR option does not mean the same thing for
 UDP sockets as it does for TCP sockets. For UDP, SO_REUSEADDR can
 control whether multiple datagram sockets can bind to the same port
 and address at the same time. If multiple
 sockets are bound to the same port, received packets will be copied
 to all bound sockets. This option is controlled by these two
 methods:
public void setReuseAddress(boolean on) throws SocketException // Java 1.4
public boolean getReuseAddress() throws SocketException // Java 1.4
For this to work reliably, setReuseAddress() must be called
 before the new socket binds to the port. This
 means the socket must be created in an unconnected state using the
 protected constructor that takes a DatagramImpl as an argument. In other
 words, it won't work with a plain vanilla DatagramSocket. Reusable ports are most
 commonly used for multicast sockets, which will be discussed in the
 next chapter. Datagram channels also create unconnected datagram
 sockets that can be configured to reuse ports, as you'll see later
 in this chapter.

SO_BROADCAST

The SO_BROADCAST option controls whether a socket is
 allowed to send packets to and receive packets from broadcast
 addresses such as 192.168.254.255, the local network broadcast
 address for the network with the local address 192.168.254.*. UDP
 broadcasting is often used for protocols like the JXTA Peer
 Discovery Protocol and the Service Location Protocol that need to
 communicate with servers on the local net whose addresses are not
 known in advance. This option is controlled with these two
 methods:
public void setBroadcast(boolean on) throws SocketException // Java 1.4
public boolean getBroadcast() throws SocketException // Java 1.4
Routers and gateways do not normally forward broadcast
 messages, but they can still kick up a lot of traffic on the local
 network. This option is turned on by default, but if you like you
 can disable it thusly:
socket.setBroadcast(false);
This option can be changed after the socket has been
 bound.
Tip
On some implementations, sockets bound to a specific address
 do not receive broadcast packets. In other words, use the DatagramPacket(int port) constructor, not the DatagramPacket(InetAddress address, int port) constructor to listen to
 broadcasts. This is necessary in addition to setting the
 SO_BROADCAST option to true.

Traffic class

Traffic class is essentially the same for UDP as it is
 for TCP. After all, packets are actually routed and prioritized
 according to IP, which both TCP and UDP sit on top of. There's
 really no difference between the setTrafficClass()
 and getTrafficClass() methods in
 DatagramSocket and those in
 Socket. They just have to be
 repeated here because DatagramSocket and Socket don't have a common superclass.
 These two methods let you inspect and set the class of service for a
 socket using these two methods:
public int getTrafficClass() throws SocketException // Java 1.4
public void setTrafficClass(int trafficClass) throws SocketException
 // Java 1.4
The traffic class is given as an int between 0 and 255.
 (Values outside this range cause IllegalArgumentExceptions.) This int is a
 combination of bit-flags. Specifically:
	0x02: Low cost

	0x04: High reliability

	0x08: Maximum throughput

	0x10: Minimum delay

Java always sets the lowest order, ones bit to zero, even if
 you try to set it to one. The three high-order bits are not yet
 used. For example, this code fragment requests a low cost
 connection:
DatagramSocket s = new DatagramSocket ();
s.setTrafficClass(0x02);
This code fragment requests a connection with maximum
 throughput and minimum delay:
DatagramSocket s = new DatagramSocket ();
s.setTrafficClass(0x08 | 0x10);
The underlying socket implementation is not required to
 respect any of these requests. They hint at the policy that is
 desired. Probably most current implementations will ignore these
 values completely. If the local network stack is unable to provide
 the requested class of service, it may throw a SocketException, but it's not required to
 and truth be told, it probably won't.

Some Useful Applications

In this section, you'll see several Internet servers and clients
 that use DatagramPacket and DatagramSocket. Some of these will be familiar
 from previous chapters because many Internet protocols have both TCP and
 UDP implementations. When an IP packet is received by a host, the host
 determines whether the packet is a TCP packet or a UDP datagram by
 inspecting the IP header. As I said earlier, there's no connection
 between UDP and TCP ports; TCP and UDP servers can share the same port
 number without problems. By convention, if a service has both TCP and
 UDP implementations, it uses the same port for both, although there's no
 technical reason this has to be the case.
Simple UDP Clients

Several Internet services need to know only the client's
 address and port; they ignore any data the client sends in its
 datagrams. Daytime, quote of the day, time, and chargen are four such
 protocols. Each of these responds the same way, regardless of the data
 contained in the datagram, or indeed regardless of whether there
 actually is any data in the datagram. Clients for these protocols
 simply send a UDP datagram to the server and read the response that
 comes back. Therefore, let's begin with a simple client called
 UDPPoke , shown in Example
 13-5, which sends an empty UDP packet to a specified host and
 port and reads a response packet from the same host.
The UDPPoke class has three private fields. The bufferSize field specifies how large a
 return packet is expected. An 8,192-byte buffer is large enough for
 most of the protocols that UDPPoke
 is useful for, but it can be increased by passing a different value to
 the constructor. The DatagramSocket
 object socket will be used to both
 send and receive datagrams. Finally, the DatagramPacket object outgoing is the message sent to the
 individual servers.
The constructors initialize all three fields using an InetAddress for the host and ints for the port, the buffer length, and
 the number of milliseconds to wait before timing out. These last three
 become part of the DatagramSocket
 field socket. If the buffer length
 is not specified, 8,192 bytes is used. If the timeout is not given, 30
 seconds (30,000 milliseconds) is used. The host, port, and buffer size
 are also used to construct the outgoing DatagramPacket. Although in theory you
 should be able to send a datagram with no data at all, bugs in some
 Java implementations require that you add at least one byte of data to
 the datagram. The simple servers we're currently considering ignore
 this data.
Once a UDPPoke object has
 been constructed, clients will call its poke(
) method to send an empty outgoing datagram to the target and read its
 response. The response is initially set to null. When the expected
 datagram appears, its data is copied into the response field. This method returns null if
 the response doesn't come quickly enough or never comes at all.
The main() method merely reads the host and port to connect to
 from the command line, constructs a UDPPoke object, and pokes it. Most of the
 simple protocols that this client suits will return ASCII text, so
 we'll attempt to convert the response to an ASCII string and print it.
 Not all VMs support the ASCII character encoding, so we'll provide the
 possibility of using the ASCII superset Latin-1 (8859-1) as a
 backup.
Example 13-5. The UDPPoke class
import java.net.*;
import java.io.*;

public class UDPPoke {

 private int bufferSize; // in bytes
 private DatagramSocket socket;
 private DatagramPacket outgoing;

 public UDPPoke(InetAddress host, int port, int bufferSize,
 int timeout) throws SocketException {

 outgoing = new DatagramPacket(new byte[1], 1, host, port);
 this.bufferSize = bufferSize;
 socket = new DatagramSocket(0);
 socket .connect(host, port); // requires Java 2
 socket .setSoTimeout(timeout);

 }

 public UDPPoke(InetAddress host, int port, int bufferSize)
 throws SocketException {
 this(host, port, bufferSize, 30000);
 }

 public UDPPoke(InetAddress host, int port)
 throws SocketException {
 this(host, port, 8192, 30000);
 }

 public byte[] poke() throws IOException {

 byte[] response = null;
 try {
 socket .send(outgoing);
 DatagramPacket incoming
 = new DatagramPacket(new byte[bufferSize], bufferSize);
 // next line blocks until the response is received
 socket .receive(incoming);
 int numBytes = incoming.getLength();
 response = new byte[numBytes];
 System.arraycopy(incoming.getData(), 0, response, 0, numBytes);
 }
 catch (IOException ex) {
 // response will be null
 }

 // may return null
 return response;
 }

 public static void main(String[] args) {

 InetAddress host;
 int port = 0;

 try {
 host = InetAddress.getByName(args[0]);
 port = Integer.parseInt(args[1]);
 if (port < 1 || port > 65535) throw new Exception();
 }
 catch (Exception ex) {
 System.out.println("Usage: java UDPPoke host port");
 return;
 }

 try {
 UDPPoke poker = new UDPPoke(host, port);
 byte[] response = poker.poke();
 if (response == null) {
 System.out.println("No response within allotted time");
 return;
 }
 String result = "";
 try {
 result = new String(response, "ASCII");
 }
 catch (UnsupportedEncodingException e) {
 // try a different encoding
 result = new String(response, "8859_1");
 }
 System.out.println(result);
 }
 catch (Exception ex) {
 System.err.println(ex);
 ex.printStackTrace();
 }

 } // end main

}

For example, this connects to a daytime server over UDP:
D:\JAVA\JNP3\examples\13>java UDPPoke rama.poly.edu 13
Sun Oct 3 13:04:22 1999
This connects to a chargen server:
D:\JAVA\JNP3\examples\13>java UDPPoke rama.poly.edu 19
123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuv
Given this class, UDP daytime, time, chargen, and quote of the
 day clients are almost trivial. Example 13-6 demonstrates a time
 client. The most complicated part is converting the four raw bytes
 returned by the server to a java.util.Date object. The same algorithm as
 in Example 10-5 is used
 here, so I won't repeat that discussion. The other protocols are left
 as exercises for the reader.
Example 13-6. A UDP time client
import java.net.*;
import java.util.*;

public class UDPTimeClient {

 public final static int DEFAULT_PORT = 37;
 public final static String DEFAULT_HOST = "time-a.nist.gov";

 public static void main(String[] args) {

 InetAddress host;
 int port = DEFAULT_PORT;

 try {
 if (args.length > 0) {
 host = InetAddress.getByName(args[0]);
 }
 else {
 host = InetAddress.getByName(DEFAULT_HOST);
 }
 }
 catch (Exception ex) {
 System.out.println("Usage: java UDPTimeClient host port");
 return;
 }

 if (args.length > 1) {
 try {
 port = Integer.parseInt(args[1]);
 if (port <= 0 || port > 65535) port = DEFAULT_PORT;;
 }
 catch (Exception ex){
 }
 }

 try {
 UDPPoke poker = new UDPPoke(host, port);
 byte[] response = poker.poke();
 if (response == null) {
 System.out.println("No response within allotted time");
 return;
 }
 else if (response.length != 4) {
 System.out.println("Unrecognized response format");
 return;
 }

 // The time protocol sets the epoch at 1900,
 // the Java Date class at 1970. This number
 // converts between them.

 long differenceBetweenEpochs = 2208988800L;

 long secondsSince1900 = 0;
 for (int i = 0; i < 4; i++) {
 secondsSince1900
 = (secondsSince1900 << 8) | (response[i] & 0x000000FF);
 }

 long secondsSince1970
 = secondsSince1900 - differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);

 System.out.println(time);
 }
 catch (Exception ex) {
 System.err.println(ex);
 ex.printStackTrace();
 }

 }

}

UDPServer

Clients aren't the only programs that benefit from a
 reusable implementation. The servers for these protocols are very
 similar. They all wait for UDP datagrams on a specified port and reply
 to each datagram with another datagram. The servers differ only in the
 content of the datagram that they return. Example 13-7 is a simple UDPServer class that can be subclassed to
 provide specific servers for different protocols.
The UDPServer class has two fields, the int bufferSize and the DatagramSocket socket, the latter of which is protected so
 it can be used by subclasses. The constructor opens the DatagramSocket socket on a specified local port to receive
 datagrams of no more than bufferSize bytes.
UDPServer extends Thread so that multiple instances can run in
 parallel. Its run() method
 contains an infinite loop that repeatedly receives an incoming
 datagram and responds by passing it to the abstract respond() method. This method will be
 overridden by particular subclasses in order to implement different
 kinds of servers.
UDPServer is a very flexible
 class. Subclasses can send zero, one, or many datagrams in response to
 each incoming datagram. If a lot of processing is required to respond
 to a packet, the respond() method
 can spawn a thread to do it. However, UDP servers tend not to have
 extended interactions with a client. Each incoming packet is treated
 independently of other packets, so the response can usually be handled
 directly in the respond() method
 without spawning a thread.
Example 13-7. The UDPServer class
import java.net.*;
import java.io.*;

public abstract class UDPServer extends Thread {

 private int bufferSize; // in bytes
 protected DatagramSocket socket;

 public UDPServer(int port, int bufferSize)
 throws SocketException {
 this.bufferSize = bufferSize;
 this.socket = new DatagramSocket(port);
 }

 public UDPServer(int port) throws SocketException {
 this(port, 8192);
 }

 public void run() {

 byte[] buffer = new byte[bufferSize];
 while (true) {
 DatagramPacket incoming = new DatagramPacket(buffer, buffer.length);
 try {
 socket.receive(incoming);
 this.respond(incoming);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 } // end while

 } // end run

 public abstract void respond(DatagramPacket request);

}

The easiest protocol to handle is discard. All we need to do is
 write a main() method that sets
 the port and start the thread. respond(
) is a do-nothing method. Example 13-8 is a
 high-performance UDP discard server that does nothing with incoming
 packets.
Example 13-8. A high-performance UDP discard server
import java.net.*;

public class FastUDPDiscardServer extends UDPServer {

 public final static int DEFAULT_PORT = 9;

 public FastUDPDiscardServer() throws SocketException {
 super(DEFAULT_PORT);
 }

 public void respond(DatagramPacket packet) {}

 public static void main(String[] args) {

 try {
 UDPServer server = new FastUDPDiscardServer();
 server.start();
 }
 catch (SocketException ex) {
 System.err.println(ex);
 }

 }

}

Example 13-9 is a
 slightly more interesting discard server that prints the incoming
 packets on System.out.
Example 13-9. A UDP discard server
import java.net.*;

public class LoggingUDPDiscardServer extends UDPServer {

 public final static int DEFAULT_PORT = 9999;

 public LoggingUDPDiscardServer() throws SocketException {
 super(DEFAULT_PORT);
 }

 public void respond(DatagramPacket packet) {

 byte[] data = new byte[packet.getLength()];
 System.arraycopy(packet.getData(), 0, data, 0, packet.getLength());
 try {
 String s = new String(data, "8859_1");
 System.out.println(packet.getAddress() + " at port "
 + packet.getPort() + " says " + s);
 }
 catch (java.io.UnsupportedEncodingException ex) {
 // This shouldn't happen
 }

 }

 public static void main(String[] args) {

 try {
 UDPServer erver = new LoggingUDPDiscardServer();
 server.start();
 }
 catch (SocketException ex) {
 System.err.println(ex);
 }

 }

}

It isn't much harder to implement an echo server, as Example 13-10 shows. Unlike a
 stream-based TCP echo server, multiple threads are not required to
 handle multiple clients.
Example 13-10. A UDP echo server
import java.net.*;
import java.io.*;

public class UDPEchoServer extends UDPServer {

 public final static int DEFAULT_PORT = 7;

 public UDPEchoServer() throws SocketException {
 super(DEFAULT_PORT);
 }

 public void respond(DatagramPacket packet) {

 try {
 DatagramPacket outgoing = new DatagramPacket(packet.getData(),
 packet.getLength(), packet.getAddress(), packet.getPort());
 socket.send(outgoing);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

 public static void main(String[] args) {

 try {
 UDPServer server = new UDPEchoServer();
 server.start();
 }
 catch (SocketException ex) {
 System.err.println(ex);
 }

 }

}

A daytime server is only slightly more complex. The server
 listens for incoming UDP datagrams on port 13. When it detects an
 incoming datagram, it returns the current date and time at the server
 as a one-line ASCII string. Example 13-11 demonstrates
 this.
Example 13-11. The UDP daytime server
import java.net.*;
import java.io.*;
import java.util.*;

public class UDPDaytimeServer extends UDPServer {

 public final static int DEFAULT_PORT = 13;

 public UDPDaytimeServer() throws SocketException {
 super(DEFAULT_PORT);
 }

 public void respond(DatagramPacket packet) {

 try {
 Date now = new Date();
 String response = now.toString() + "\r\n";
 byte[] data = response.getBytes("ASCII");
 DatagramPacket outgoing = new DatagramPacket(data,
 data.length, packet.getAddress(), packet.getPort());
 socket.send(outgoing);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

 public static void main(String[] args) {

 try {
 UDPServer server = new UDPDaytimeServer();
 server.start();
 }
 catch (SocketException ex) {
 System.err.println(ex);
 }

 }

}

A UDP Echo Client

 The UDPPoke class
 implemented earlier isn't suitable for all protocols. In particular,
 protocols that require multiple datagrams require a different
 implementation. The echo protocol has both TCP and UDP
 implementations. Implementing the echo protocol with TCP is simple;
 it's more complex with UDP because you don't have I/O streams or the
 concept of a connection to work with. A TCP-based echo client can send
 a message and wait for a response on the same connection. However, a
 UDP-based echo client has no guarantee that the message it sent was
 received. Therefore, it cannot simply wait for the response; it needs
 to be prepared to send and receive data asynchronously.
This behavior is fairly simple to implement using threads,
 however. One thread can process user input and send it to the echo
 server, while a second thread accepts input from the server and
 displays it to the user. The client is divided into three classes: the
 main UDPEchoClient class, the SenderThread class, and the ReceiverThread class.
The UDPEchoClient class
 should look familiar. It reads a hostname from the command line and
 converts it to an InetAddress
 object. UDPEchoClient uses this
 object and the default echo port to construct a SenderThread object. This constructor can
 throw a SocketException, so the
 exception must be caught. Then the SenderThread starts. The same DatagramSocket that the SenderThread uses is used to construct a
 ReceiverThread, which is then
 started. It's important to use the same DatagramSocket for both sending and
 receiving data because the echo server will send the response back to
 the port the data was sent from. Example 13-12 shows the code for
 the UDPEchoClient.
Example 13-12. The UDPEchoClient class
import java.net.*;
import java.io.*;

public class UDPEchoClient {

 public final static int DEFAULT_PORT = 7;

 public static void main(String[] args) {

 String hostname = "localhost";
 int port = DEFAULT_PORT;

 if (args.length > 0) {
 hostname = args[0];
 }

 try {
 InetAddress ia = InetAddress.getByName(hostname);
 Thread sender = new SenderThread(ia, DEFAULT_PORT);
 sender.start();
 Thread receiver = new ReceiverThread(sender.getSocket());
 receiver.start();
 }
 catch (UnknownHostException ex) {
 System.err.println(ex);
 }
 catch (SocketException ex) {
 System.err.println(ex);
 }

 } // end main

}

The SenderThread class reads input from the console a line at a time and
 sends it to the echo server. It's shown in Example 13-13. The input is
 provided by System.in, but a
 different client could include an option to read input from a
 different stream—perhaps opening a FileInputStream to read from a file. The
 three fields of this class define the server to which it sends data,
 the port on that server, and the DatagramSocket that does the sending, all
 set in the single constructor. The DatagramSocket is connected to the remote
 server to make sure all datagrams received were in fact sent by the
 right server. It's rather unlikely that some other server on the
 Internet is going to bombard this particular port with extraneous
 data, so this is not a big flaw. However, it's a good habit to make
 sure that the packets you receive come from the right place,
 especially if security is a concern.
The run() method processes
 user input a line at a time. To do this, the BufferedReader userInput is chained to System.in. An infinite loop reads lines of
 user input. Each line is stored in theLine. A period on a line by itself
 signals the end of user input and breaks out of the loop. Otherwise,
 the bytes of data are stored in the data array using the getBytes() method from java.lang.String. Next, the data array is
 placed in the payload part of the DatagramPacket output, along with information about the
 server, the port, and the data length. This packet is then sent to its
 destination by socket. This thread
 then yields to give other threads an opportunity to run.
Example 13-13. The SenderThread class
import java.net.*;
import java.io.*;

public class SenderThread extends Thread {

 private InetAddress server;
 private DatagramSocket socket;
 private boolean stopped = false;
 private int port;

 public SenderThread(InetAddress address, int port)
 throws SocketException {
 this.server = address;
 this.port = port;
 this.socket = new DatagramSocket();
 this.socket.connect(server, port);
 }

 public void halt() {
 this.stopped = true;
 }

 public DatagramSocket getSocket() {
 return this.socket;
 }

 public void run() {

 try {
 BufferedReader userInput
 = new BufferedReader(new InputStreamReader(System.in));
 while (true) {
 if (stopped) return;
 String theLine = userInput.readLine();
 if (theLine.equals(".")) break;
 byte[] data = theLine.getBytes();
 DatagramPacket output
 = new DatagramPacket(data, data.length, server, port);
 socket.send(output);
 Thread.yield();
 }
 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end run

}

The ReceiverThread class shown in Example 13-14 waits for
 datagrams to arrive from the network. When a datagram is received, it
 is converted to a String and
 printed on System.out for display
 to the user. A more advanced EchoClient could include an option to send
 the output elsewhere.
This class has two fields. The more important is the DatagramSocket, theSocket, which must be the same DatagramSocket used by the SenderThread. Data arrives on the port used
 by that DatagramSocket; any other
 DatagramSocket would not be allowed
 to connect to the same port. The second field, stopped, is a boolean used to halt this
 thread without invoking the deprecated stop(
) method.
The run() method is an
 infinite loop that uses socket's
 receive() method to wait for
 incoming datagrams. When an incoming datagram appears, it is converted
 into a String with the same length
 as the incoming data and printed on System.out. As in the input thread, this
 thread then yields to give other threads an opportunity to
 execute.
Example 13-14. The ReceiverThread class
import java.net.*;
import java.io.*;

class ReceiverThread extends Thread {

 DatagramSocket socket;
 private boolean stopped = false;

 public ReceiverThread(DatagramSocket ds) throws SocketException {
 this.socket = ds;
 }

 public void halt() {
 this.stopped = true;
 }

 public void run() {

 byte[] buffer = new byte[65507];
 while (true) {
 if (stopped) return;
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
 try {
 socket.receive(dp);
 String s = new String(dp.getData(), 0, dp.getLength());
 System.out.println(s);
 Thread.yield();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

 }

}

You can run the echo client on one machine and connect to the
 echo server on a second machine to verify that the network is
 functioning properly between them.

DatagramChannel

 Java 1.4 adds a DatagramChannel class for use in non-blocking
 UDP applications, just as it adds SocketChannel and ServerSocketChannel for use in non-blocking
 TCP applications. Like SocketChannel
 and ServerSocketChannel, DatagramChannel is a subclass of SelectableChannel that can be registered with
 a Selector. This is useful in servers
 where one thread can manage communications with multiple different
 clients. However, UDP is by its nature much more asynchronous than TCP
 so the net effect is smaller. In UDP it's always been the case that a
 single datagram socket can process requests from multiple clients for
 both input and output. What the DatagramChannel class adds is the ability to
 do this in a non-blocking fashion, so methods return quickly if the
 network isn't immediately ready to receive or send data.
Using DatagramChannel

DatagramChannel is a
 near-complete alternate abstraction for UDP I/O. You still need to use
 the DatagramSocket class to bind a
 channel to a port. However, you do not have to use it thereafter, nor
 do you ever use DatagramPacket.
 Instead, you read and write ByteBuffers, just as you do with a SocketChannel.
Opening a socket

The java.nio.channels.DatagramChannel class
 does not have any public constructors. Instead, you create a new
 DatagramChannel object using the
 static open() method:
public static DatagramChannel open() throws IOException
For example:
DatagramChannel channel = DatagramChannel .open();
This channel is not initially bound to any port. To bind it,
 you need to access the channel's peer DatagramSocket object using the socket() method:
public abstract DatagramSocket socket()
For example, this binds a channel to port 3141:
SocketAddress address = new InetSocketAddress(3141);
DatagramSocket socket = channel.socket();
socket.bind(address);

Connecting

Like DatagramSocket, a DatagramChannel can be connected; that is,
 it can be configured to only receive datagrams from and send
 datagrams to one host. This is accomplished with the connect() method:
public abstract DatagramChannel connect(SocketAddress remote)
 throws IOException
However, unlike the connect(
) method of SocketChannel, this method does not
 actually send or receive any packets across the network because UDP
 is a connectionless protocol. Thus this method returns fairly
 quickly, and doesn't block in any meaningful sense. There's no need
 here for a finishConnect() or
 isConnectionPending() method.
 There is an isConnected()
 method that returns true if and only if the DatagramSocket is connected:
public abstract boolean isConnected()
This tells you whether the DatagramChannel is limited to one host.
 Unlike SocketChannel, a DatagramChannel doesn't have to be
 connected to transmit or receive data.
Finally, there is a disconnect() method that breaks the connection:
public abstract DatagramChannel disconnect() throws IOException
This doesn't really close anything because nothing was really
 open in the first place. It just allows the channel to once again
 send and receive data from multiple hosts.
Connected channels may be marginally faster than unconnected
 channels in sandbox environments such as applets because the virtual
 machine only needs to check whether the connection is allowed on the
 initial call to the connect()
 method, not every time a packet is sent or received. As always, only
 concern yourself with this if profiling indicates it is a
 bottleneck.

Receiving

The receive()
 method reads one datagram packet from the channel
 into a ByteBuffer. It returns the
 address of the host that sent the packet:
public abstract SocketAddress receive(ByteBuffer dst) throws IOException
If the channel is blocking (the default) this method will not
 return until a packet has been read. If the channel is non-blocking,
 this method will immediately return null if no packet is available
 to read.
If the datagram packet has more data than the buffer can hold,
 the extra data is thrown away with no notification of the
 problem. You do not receive a BufferOverflowException or anything
 similar. UDP is unreliable, after all. This behavior introduces an
 additional layer of unreliability into the system. The data can
 arrive safely from the network and still be lost inside your own
 program.
Using this method, we can reimplement the discard server to
 log the host sending the data as well as the data sent. Example 13-15 demonstrates. It
 avoids the potential loss of data by using a buffer that's big
 enough to hold any UDP packet and clearing it before it's used
 again.
Example 13-15. A UDPDiscardServer based on channels
import java.net.*;
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class UDPDiscardServerWithChannels {

 public final static int DEFAULT_PORT = 9;
 public final static int MAX_PACKET_SIZE = 65507;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception ex) {
 }

 try {
 DatagramChannel channel = DatagramChannel.open();
 DatagramSocket socket = channel.socket();
 SocketAddress address = new InetSocketAddress(port);
 socket.bind(address);
 ByteBuffer buffer = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);
 while (true) {
 SocketAddress client = channel.receive(buffer);
 buffer.flip();
 System.out.print(client + " says ");
 while (buffer.hasRemaining()) System.out.write(buffer.get());
 System.out.println();
 buffer.clear();
 } // end while
 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 } // end catch

 } // end main

}

Sending

The send() method
 writes one datagram packet into the channel from a ByteBuffer to the address specified as the
 second argument:
public abstract int send(ByteBuffer src, SocketAddress target) throws
 IOException
The source ByteBuffer can
 be reused if you want to send the same data to multiple clients.
 Just don't forget to rewind it first.
The send() method returns
 the number of bytes written. This will either be the number of bytes
 remaining in the output buffer or zero. It is zero if there's not
 enough room in the network interface's output buffer for the amount
 of data you're trying to send. Don't overstuff the buffer. If you
 put more data in the buffer than the network interface can handle,
 it will never send anything. This method will not fragment the data
 into multiple packets. It writes everything or nothing.
Example 13-16
 demonstrates with a simple echo server based on channels. The
 receive() method reads a packet,
 much as it did in Example
 13-15. However, this time, rather than logging the packet on
 System.out, it returns the same
 data to the client that sent it.
Example 13-16. A UDPEchoServer based on channels
import java.net.*;
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class UDPEchoServerWithChannels {

 public final static int DEFAULT_PORT = 7;
 public final static int MAX_PACKET_SIZE = 65507;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception ex) {
 }

 try {
 DatagramChannel channel = DatagramChannel.open();
 DatagramSocket socket = channel.socket();
 SocketAddress address = new InetSocketAddress(port);
 socket.bind(address);
 ByteBuffer buffer = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);
 while (true) {
 SocketAddress client = channel.receive(buffer);
 buffer.flip();
 channel.send(buffer, client);
 buffer.clear();
 } // end while
 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 } // end catch

 } // end main

}

This program is blocking and synchronous. This is much less of
 a problem for UDP-based protocols than for TCP protocols. The
 unreliable, packet-based, connectionless nature of UDP means that
 the server at most has to wait for the local buffer to clear. It
 does not have to and does not wait for the client to be ready to
 receive data. There's much less opportunity for one client to get
 held up behind a slower client.

Reading

Besides the special purpose receive() method, DatagramChannel has the usual
 three read()
 methods:
public abstract int read(ByteBuffer dst) throws IOException
public final long read(ByteBuffer[] dsts)throws IOException
public final long read(ByteBuffer[] dsts, int offset, int length)
 throws IOException
However, these methods can only be used on connected channels.
 That is, before invoking one of these methods, you must invoke
 connect() to glue the channel to
 a particular remote host. This makes them more suitable for use with
 clients that know who they'll be talking to than for servers that
 must accept input from multiple hosts at the same time that are
 normally not known prior to the arrival of the first packet.
Each of these three methods only reads a single datagram
 packet from the network. As much data from that datagram as possible
 is stored in the argument ByteBuffer(s). Each method returns the
 number of bytes read or -1 if the channel has been closed. This
 method may return 0 for any of several reasons, including:
	The channel is non-blocking and no packet was
 ready.

	A datagram packet contained no data.

	The buffer is full.

As with the receive()
 method, if the datagram packet has more data than the ByteBuffer(s) can hold, the
 extra data is thrown away with no notification of the
 problem. You do not receive a BufferOverflowException or anything
 similar.

Writing

Naturally, DatagramChannel has the three write methods common to all writable, scattering
 channels, which can be used instead of the send() method:
public abstract int write(ByteBuffer src) throws IOException
public final long write(ByteBuffer[] dsts)throws IOException
public final long write(ByteBuffer[] dsts, int offset, int length)
 throws IOException
However, these methods can only be used on connected channels;
 otherwise they don't know where to send the packet. Each of these
 methods sends a single datagram packet over the connection. None of
 these methods are guaranteed to write the complete contents of the
 buffer(s). However, the cursor-based nature of buffers enables you
 to easily call this method again and again until the buffer is fully
 drained and the data has been completely sent, possibly using
 multiple datagram packets. For example:
while (buffer.hasRemaining() && channel.write(buffer) != -1) ;
We can use the read and write methods to implement a simple
 UDP echo client. On the client side, it's easy to connect before
 sending. Because packets may be lost in transit (always remember UDP
 is unreliable), we don't want to tie up the sending while waiting to
 receive a packet. Thus, we can take advantage of selectors and
 non-blocking I/O. These work for UDP pretty much exactly like they
 worked for TCP in Chapter 12.
 This time, though, rather than sending text data, let's send one
 hundred ints from 0 to 99. We'll print out the values returned so it
 will be easy to figure out if any packets are being lost. Example 13-17
 demonstrates.
Example 13-17. A UDP echo client based on channels
import java.net.*;
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;

public class UDPEchoClientWithChannels {

 public final static int DEFAULT_PORT = 7;
 private final static int LIMIT = 100;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 try {
 port = Integer.parseInt(args[1]);
 }
 catch (Exception ex) {
 }

 SocketAddress remote;
 try {
 remote = new InetSocketAddress(args[0], port);
 }
 catch (Exception ex) {
 System.err.println("Usage: java UDPEchoClientWithChannels host [port]");
 return;
 }

 try {
 DatagramChannel channel = DatagramChannel.open();
 channel.configureBlocking(false);
 channel.connect(remote);

 Selector selector = Selector.open();
 channel.register(selector, SelectionKey.OP_READ | SelectionKey.OP_WRITE);

 ByteBuffer buffer = ByteBuffer.allocate(4);
 int n = 0;
 int numbersRead = 0;
 while (true) {
 // wait one minute for a connection
 selector.select(60000);
 Set readyKeys = selector.selectedKeys();
 if (readyKeys.isEmpty() && n == LIMIT) {
 // All packets have been written and it doesn't look like any
 // more are will arrive from the network
 break;
 }
 else {
 Iterator iterator = readyKeys.iterator();
 while (iterator.hasNext()) {
 SelectionKey key = (SelectionKey) iterator.next();
 iterator.remove();
 if (key.isReadable()) {
 buffer.clear();
 channel.read(buffer);
 buffer.flip();
 int echo = buffer.getInt();
 System.out.println("Read: " + echo);
 numbersRead++;
 }
 if (key.isWritable()) {
 buffer.clear();
 buffer.putInt(n);
 buffer.flip();
 channel.write(buffer);
 System.out.println("Wrote: " + n);
 n++;
 if (n == LIMIT) {
 // All packets have been written; switch to read-only mode
 key.interestOps(SelectionKey.OP_READ);
 } // end if
 } // end while
 } // end else
 } // end while

 } // end while
 System.out.println("Echoed " + numbersRead + " out of " + LIMIT +
 " sent");
 System.out.println("Success rate: " + 100.0 * numbersRead / LIMIT +
 "%");

 } // end try
 catch (IOException ex) {
 System.err.println(ex);
 } // end catch

 } // end main

}

 There is one major difference between selecting TCP
 channels and selecting datagram channels. Because datagram channels
 are truly connectionless (despite the connect() method), you need to notice
 when the data transfer is complete and shut down. In this example,
 we assume the data is finished when all packets have been sent and
 one minute has passed since the last packet was received. Any
 expected packets that have not been received by this point are
 assumed to be lost in the ether.
A typical run produced output like this:
Wrote: 0
Read: 0
Wrote: 1
Wrote: 2
Read: 1
Wrote: 3
Read: 2
Wrote: 4
Wrote: 5
Wrote: 6
Wrote: 7
Wrote: 8
Wrote: 9
Wrote: 10
Wrote: 11
Wrote: 12
Wrote: 13
Wrote: 14
Wrote: 15
Wrote: 16
Wrote: 17
Wrote: 18
Wrote: 19
Wrote: 20
Wrote: 21
Wrote: 22
Read: 3
Wrote: 23
...
Wrote: 97
Read: 72
Wrote: 98
Read: 73
Wrote: 99
Read: 75
Read: 76
...
Read: 97
Read: 98
Read: 99
Echoed 92 out of 100 sent
Success rate: 92.0%
Connecting to a remote server a couple of miles and seven hops
 away (according to traceroute), I saw between 90% and 98% of the
 packets make the round trip.

Closing

 Just as with regular datagram sockets, a channel
 should be closed when you're done with it to free up the port and
 any other resources it may be using:
public void close() throws IOException
Closing an already closed channel has no effect. Attempting to
 write data to or read data from a closed channel throws an
 exception. If you're uncertain whether a channel has been closed,
 check with isOpen():
public boolean isOpen()
This returns false if the
 channel is closed, true if it's
 open.

Chapter 14. Multicast Sockets

 The sockets in the previous chapters are
 unicast : they provide point-to-point communication. Unicast sockets
 create a connection with two well-defined endpoints; there is one sender
 and one receiver and, although they may switch roles, at any given time it
 is easy to tell which is which. However, although point-to-point
 communications serve many, if not most needs (people have engaged in
 one-on-one conversations for millennia), many tasks require a different
 model. For example, a television station broadcasts data from one location
 to every point within range of its transmitter. The signal reaches every
 television set, whether or not it's turned on and whether or not it's
 tuned to that particular station. Indeed, the signal even reaches homes
 with cable boxes instead of antennas and homes that don't have a
 television. This is the classic example of broadcasting. It's
 indiscriminate and quite wasteful of both the electromagnetic spectrum and
 power.
Videoconferencing, by contrast, sends an audio-video feed to a
 select group of people. Usenet news is posted at one site and distributed
 around the world to hundreds of thousands of people. DNS router updates
 travel from the site, announcing a change to many other routers. However,
 the sender relies on the intermediate sites to copy and relay the message
 to downstream sites. The sender does not address its message to every host
 that will eventually receive it. These are examples of multicasting,
 although they're implemented with additional application layer protocols
 on top of TCP or UDP. These protocols require fairly detailed
 configuration and intervention by human beings. For instance, to join
 Usenet you have to find a site willing to send news to you and relay your
 outgoing news to the rest of the world. To add you to the Usenet feed, the
 news administrator of your news relay has to specifically add your site to
 their news config files. However, recent developments with the network
 software in most major operating systems as well as Internet routers have
 opened up a new possibility—true multicasting, in which the routers decide
 how to efficiently move a message to individual hosts. In particular, the
 initial router sends only one copy of the message to a router near the
 receiving hosts, which then makes multiple copies for different recipients
 at or closer to the destinations. Internet multicasting is built on top of
 UDP. Multicasting in Java uses the DatagramPacket class introduced in Chapter 13, along with a new MulticastSocket class.
What Is a Multicast Socket?

Multicasting is broader than unicast, point-to-point
 communication but narrower and more targeted than broadcast
 communication. Multicasting sends data from one host to many different
 hosts, but not to everyone; the data only goes to clients that have
 expressed an interest by joining a particular multicast group. In a way,
 this is like a public meeting. People can come and go as they please,
 leaving when the discussion no longer interests them. Before they arrive
 and after they have left, they don't need to process the information at
 all: it just doesn't reach them. On the Internet, such "public meetings"
 are best implemented using a multicast socket that sends a copy of the
 data to a location (or a group of locations) close to the parties that
 have declared an interest in the data. In the best case, the data is
 duplicated only when it reaches the local network serving the interested
 clients: the data crosses the Internet only once. More realistically,
 several identical copies of the data traverse the Internet; but, by
 carefully choosing the points at which the streams are duplicated, the
 load on the network is minimized. The good news is that programmers and
 network administrators aren't responsible for choosing the points where
 the data is duplicated or even for sending multiple copies; the
 Internet's routers handle all that.
IP also supports broadcasting, but the use of broadcasts is strictly
 limited. Protocols require broadcasts only when there is no alternative,
 and routers limit broadcasts to the local network or subnet, preventing
 broadcasts from reaching the Internet at large. Even a few small global
 broadcasts could bring the Internet to its knees. Broadcasting
 high-bandwidth data such as audio, video, or even text and still images
 is out of the question. A single email spam that goes to millions of
 addresses is bad enough. Imagine what would happen if a real-time video
 feed were copied to all six hundred million Internet users, whether they
 wanted to watch it or not.
However, there's a middle ground between point-to-point
 communications and broadcasts to the whole world. There's no reason to
 send a video feed to hosts that aren't interested in it; we need a
 technology that sends data to the hosts that want it, without bothering
 the rest of the world. One way to do this is to use many unicast
 streams. If 1,000 clients want to listen to a RealAudio broadcast, the
 data is sent a thousand times. This is inefficient, since it duplicates
 data needlessly, but it's orders-of-magnitude more efficient than
 broadcasting the data to every host on the Internet. Still, if the
 number of interested clients is large enough, you will eventually run
 out of bandwidth or CPU power—probably sooner rather than later.
Another approach to the problem is to create static
 connection trees . This is the solution employed by Usenet news and some
 conferencing systems (notably CUseeMe). Data is fed from the originating
 site to other servers, which replicate it to still other servers, which
 eventually replicate it to clients. Each client connects to the nearest
 server. This is more efficient than sending everything to all interested
 clients via multiple unicasts, but the scheme is kludgy and beginning to
 show its age. New sites need to find a place to hook into the tree
 manually. The tree does not necessarily reflect the best possible
 topology at any one time, and servers still need to maintain many
 point-to-point connections to their clients, sending the same data to
 each one. It would be better to allow the routers in the Internet to
 dynamically determine the best possible routes for transmitting
 distributed information and to replicate data only when absolutely
 necessary. This is where multicasting comes in.
For example, if you're multicasting video from New York and 20
 people attached to one LAN are watching the show in Los Angeles, the
 feed will be sent to that LAN only once. If 50 more people are watching
 in San Francisco, the data stream will be duplicated somewhere (let's
 say Fresno) and sent to the two cities. If a hundred more people are
 watching in Houston, another data stream will be sent there (perhaps
 from St. Louis); see Figure
 14-1. The data has crossed the Internet only three times—not the
 170 times that would be required by point-to-point connections, or the
 millions of times that would be required by a true broadcast.
 Multicasting is halfway between the point-to-point communication common
 to the Internet and the broadcast model of television and it's more
 efficient than either. When a packet is multicast, it is addressed to a
 multicast group and sent to each host belonging to the group. It does
 not go to a single host (as in unicasting), nor does it go to every host
 (as in broadcasting). Either would be too inefficient.
[image: Multicast from New York to San Francisco, Los Angeles, and Houston]

Figure 14-1. Multicast from New York to San Francisco, Los Angeles, and
 Houston

When people start talking about multicasting, audio and video are
 the first applications that come to mind; however, they are only the tip
 of the iceberg. Other possibilities include multiplayer games,
 distributed filesystems, massively parallel computing, multiperson
 conferencing, database replication, and more. Multicasting can be used
 to implement name services and directory services that don't require the
 client to know a server's address in advance; to look up a name, a host
 could multicast its request to some well-known address and wait until a
 response is received from the nearest server. Apple's Rendezvous (a.k.a. Zeroconf) and Sun's Jini both use IP multicasting to dynamically discover
 services on the local network.
Multicasting should also make it easier to implement various kinds
 of caching for the Internet, which will be important if the Net's
 population continues to grow faster than available bandwidth. Martin
 Hamilton has proposed using multicasting to build a distributed server
 system for the World Wide Web. ("Evaluating Resource Discovery
 Applications of IP Multicast", http://martinh.net/eval/eval.html, 1995.) For example, a
 high-traffic web server could be split across multiple machines, all of
 which share a single hostname, mapped to a multicast address. Suppose
 one machine chunks out HTML files, another handles images, and a third
 processes servlets. When a client makes a request to the multicast
 address, the request is sent to each of the three servers. When a server
 receives the request, it looks to see whether the client wants an HTML
 file, an image, or a servlet response. If the server can handle the
 request, it responds. Otherwise, the server ignores the request and lets
 the other servers process it. It is easy to imagine more complex
 divisions of labor between distributed servers.
Multicasting has been designed to fit into the Internet as
 seamlessly as possible. Most of the work is done by routers and should
 be transparent to application programmers. An application simply sends
 datagram packets to a multicast address, which isn't fundamentally
 different from any other IP address. The routers make sure the packet is
 delivered to all the hosts in the multicast group. The biggest problem
 is that multicast routers are not yet ubiquitous; therefore, you need to
 know enough about them to find out whether multicasting is supported on
 your network. As far as the application itself, you need to pay
 attention to an additional header field in the datagrams called the Time-To-Live (TTL) value. The
 TTL is the maximum number of routers that the datagram is
 allowed to cross; when it reaches the maximum, it is discarded.
 Multicasting uses the TTL as an ad hoc way to limit how far a packet can
 travel. For example, you don't want packets for a friendly on-campus
 game of Dogfight reaching routers on the other side of the world. Figure 14-2 shows how TTLs limit a
 packet's spread.
[image: Coverage of a packet with a TTL of five]

Figure 14-2. Coverage of a packet with a TTL of five

Multicast Addresses and Groups

A multicast address is the shared
 address of a group of hosts called a multicast
 group. We'll talk about the address first. Multicast
 addresses are IP addresses in the range 224.0.0.0 to 239.255.255.255.
 All addresses in this range have the binary digits 1110 as their first
 four bits. They are called Class D addresses to distinguish them from
 the more common Class A, B, and C addresses. Like any IP address, a
 multicast address can have a hostname; for example, the multicast
 address 224.0.1.1 (the address of the Network Time Protocol
 distributed service) is assigned the name
 ntp.mcast.net.
A multicast group is a set of Internet hosts that share a
 multicast address. Any data sent to the multicast address is relayed
 to all the members of the group. Membership in a multicast group is
 open; hosts can enter or leave the group at any time. Groups can be
 either permanent or transient. Permanent groups have assigned
 addresses that remain constant, whether or not there are any members
 in the group. However, most multicast groups are transient and exist
 only as long as they have members. All you have to do to create a new
 multicast group is pick a random address from 225.0.0.0 to
 238.255.255.255, construct an InetAddress object for that address, and
 start sending it data.
A number of multicast addresses have been set aside for special
 purposes. all-systems.mcast.net, 224.0.0.1, is a
 multicast group that includes all systems that support multicasting on
 the local subnet. This group is commonly used for local testing, as is
 experiment.mcast.net, 224.0.1.20. (There is no
 multicast address that sends data to all hosts on the Internet.) All
 addresses beginning with 224.0.0 (i.e., addresses from 224.0.0.0 to
 224.0.0.255) are reserved for routing protocols and other low-level
 activities, such as gateway discovery and group membership reporting.
 Multicast routers never forward datagrams with destinations in this
 range.
The IANA is responsible for handing out permanent multicast
 addresses as needed; so far, a few hundred have been specifically
 assigned. Most of these begin with 224.0., 224.1., 224.2., or 239.
 Table 14-1 lists a few
 of these permanent addresses. A few blocks of addresses ranging in
 size from a few dozen to a few thousand addresses have also been
 reserved for particular purposes. The complete list is available from
 http://www.iana.org/assignments/multicast-addresses.
 The remaining 248 million Class D addresses can be used on a temporary
 basis by anyone who needs them. Multicast routers
 (mrouters for short) are responsible for making
 sure that two different systems don't try to use the same Class D
 address at the same time.
Table 14-1. Common permanent multicast addresses
	Domain name
	IP address
	Purpose

	 BASE-ADDRESS.MCAST.NET

	 224.0.0.0
	The reserved base address. This is never assigned
 to any multicast group.

	 ALL-SYSTEMS.MCAST.NET

	 224.0.0.1
	All systems on the local subnet.

	 ALL-ROUTERS.MCAST.NET

	 224.0.0.2
	All routers on the local subnet.

	 DVMRP.MCAST.NET

	 224.0.0.4
	All Distance Vector Multicast Routing Protocol
 (DVMRP) routers on this subnet. An early version of the DVMRP
 protocol is documented in RFC 1075; the current version has
 changed substantially.

	 MOBILE-AGENTS.MCAST.NET

	 224.0.0.11
	Mobile agents on the local subnet.

	 DHCP-AGENTS.MCAST.NET

	 224.0.0.12
	This multicast group allows a client to locate a
 Dynamic Host Configuration Protocol (DHCP) server or relay
 agent on the local subnet.

	 PIM-ROUTERS.MCAST.NET

	 224.0.0.13
	All Protocol Independent Multicasting (PIM)
 routers on this subnet.

	
 RSVP-ENCAPSULATION.MCAST.NET

	 224.0.0.14
	RSVP encapsulation on this subnet. RSVP stands
 for Resource reSerVation setup Protocol, an effort to allow
 people to reserve a guaranteed amount of Internet bandwidth in
 advance for an event.

	 NTP.MCAST.NET

	 224.0.1.1
	The Network Time Protocol.

	 SGI-DOG.MCAST.NET

	 224.0.1.2
	Silicon Graphics Dogfight game.

	 NSS.MCAST.NET

	 224.0.1.6
	The Name Service Server.

	 AUDIONEWS.MCAST.NET

	 224.0.1.7
	Audio news multicast.

	 SUB-NIS.MCAST.NET

	 224.0.1.8
	Sun's NIS+ Information Service.

	 MTP.MCAST.NET

	 224.0.1.9
	The Multicast Transport Protocol.

	 IETF-1-LOW-AUDIO.MCAST.NET

	 224.0.1.10
	Channel 1 of low-quality audio from IETF
 meetings.

	 IETF-1-AUDIO.MCAST.NET

	 224.0.1.11
	Channel 1 of high-quality audio from IETF
 meetings.

	 IETF-1-VIDEO.MCAST.NET

	 224.0.1.12
	Channel 1 of video from IETF
 meetings.

	 IETF-2-LOW-AUDIO.MCAST.NET

	 224.0.1.13
	Channel 2 of low-quality audio from IETF
 meetings.

	 IETF-2-AUDIO.MCAST.NET

	 224.0.1.14
	Channel 2 of high-quality audio from IETF
 meetings.

	 IETF-2-VIDEO.MCAST.NET

	 224.0.1.15
	Channel 2 of video from IETF
 meetings.

	 MUSIC-SERVICE.MCAST.NET

	 224.0.1.16
	Music service.

	 SEANET-TELEMETRY.MCAST.NET

	 224.0.1.17
	Telemetry data for the U.S. Navy's SeaNet Project
 to extend the Internet to vessels at sea. See http://web.nps.navy.mil/~seanet/Distlearn/cover.htm.

	 SEANET-IMAGE.MCAST.NET

	 224.0.1.18
	SeaNet images.

	 MLOADD.MCAST.NET

	 224.0.1.19
	MLOADD measures the traffic load through one or
 more network interfaces over a number of seconds. Multicasting
 is used to communicate between the different interfaces being
 measured.

	 EXPERIMENT.MCAST.NET

	 224.0.1.20
	Experiments that do not go beyond the local
 subnet.

	 XINGTV.MCAST.NET

	 224.0.1.23
	XING Technology's Streamworks TV
 multicast.

	 MICROSOFT.MCAST.NET

	 224.0.1.24
	Used by Windows Internet Name Service (WINS)
 servers to locate one another.

	 MTRACE.MCAST.NET

	 224.0.1.32
	A multicast version of traceroute.

	 JINI-ANNOUNCEMENT.MCAST.NET

	 224.0.1.84
	JINI announcements.

	 JINI-REQUEST.MCAST.NET

	 224.0.1.85
	JINI requests.

	 	
 224.2.0.0-224.2.255.255

	The Multicast Backbone on the Internet (MBONE)
 addresses are reserved for multimedia conference calls, i.e.,
 audio, video, whiteboard, and shared web browsing between many
 people.

	 	 224.2.2.2
	Port 9,875 on this address is used to broadcast
 the currently available MBONE programming. You can look at
 this with the X Window utility sdr or the Windows/Unix
 multikit program.

	 	
 239.0.0.0-239.255.255.255

	Administrative scope, in contrast to TTL scope,
 uses different ranges of multicast addresses to constrain
 multicast traffic to a particular region or group of routers.
 For example, the IP addresses from 239.178.0.0 to
 239.178.255.255 might be an administrative scope for the state
 of New York. Data addressed to one of those addresses would
 not be forwarded outside of New York. The idea is to allow the
 possible group membership to be established in advance without
 relying on less-than-reliable TTL values.

The MBONE (or Multicast Backbone on the Internet) is the
 range of Class D addresses beginning with 224.2. that are used for
 audio and video broadcasts over the Internet. The word MBONE is
 sometimes used less restrictively (and less accurately) to mean the
 portion of the Internet that understands how to route Class D
 addressed packets.

Clients and Servers

When a host wants to send data to a multicast group, it
 puts that data in multicast datagrams, which are nothing more than UDP
 datagrams addressed to a multicast group. Most multicast data is audio
 or video or both. These sorts of data tend to be relatively large and
 relatively robust against data loss. If a few pixels or even a whole
 frame of video is lost in transit, the signal isn't blurred beyond
 recognition. Therefore, multicast data is sent via UDP, which, though
 unreliable, can be as much as three times faster than data sent via
 connection-oriented TCP. (If you think about it, multicast over TCP
 would be next to impossible. TCP requires hosts to acknowledge that
 they have received packets; handling acknowledgments in a multicast
 situation would be a nightmare.) If you're developing a multicast
 application that can't tolerate data loss, it's your responsibility to
 determine whether data was damaged in transit and how to handle
 missing data. For example, if you are building a distributed cache
 system, you might simply decide to leave any files that don't arrive
 intact out of the cache.
Earlier, I said that from an application programmer's
 standpoint, the primary difference between multicasting and using regular UDP sockets is that you
 have to worry about the TTL value. This is a single byte in the IP header that
 takes values from to 255; it is interpreted roughly as the number of
 routers through which a packet can pass before it is discarded. Each
 time the packet passes through a router, its TTL field is decremented
 by at least one; some routers may decrement the TTL by two or more.
 When the TTL reaches zero, the packet is discarded. The TTL field was
 originally designed to prevent routing loops by guaranteeing that all
 packets would eventually be discarded; it prevents misconfigured
 routers from sending packets back and forth to each other
 indefinitely. In IP multicasting, the TTL limits the multicast
 geographically. For example, a TTL value of 16 limits the packet to
 the local area, generally one organization or perhaps an organization
 and its immediate upstream and downstream neighbors. A TTL of 127,
 however, sends the packet around the world. Intermediate values are
 also possible. However, there is no precise way to map TTLs to
 geographical distance. Generally, the farther away a site is, the more
 routers a packet has to pass through before reaching it. Packets with
 small TTL values won't travel as far as packets with large TTL values.
 Table 14-2 provides some
 rough estimates relating TTL values to geographical reach. Packets
 addressed to a multicast group from 224.0.0.0 to 224.0.0.255 are never
 forwarded beyond the local subnet, regardless of the TTL values
 used.
Table 14-2. Estimated TTL values for datagrams originating in the
 continental United States
	Destinations
	TTL value

	The local host
	0

	The local subnet
	1

	The local campus—that is, the same side of the
 nearest Internet router—but on possibly different
 LANs
	16

	High-bandwidth sites in the same country,
 generally those fairly close to the backbone
	32

	All sites in the same country
	48

	All sites on the same continent
	64

	High-bandwidth sites worldwide
	128

	All sites worldwide
	255

Once the data has been stuffed into one or more datagrams, the
 sending host launches the datagrams onto the Internet. This is just
 like sending regular (unicast) UDP data. The sending host begins by
 transmitting a multicast datagram to the local network. This packet
 immediately reaches all members of the multicast group in the same
 subnet. If the Time-To-Live field of the packet is greater than 1,
 multicast routers on the local network forward the packet to other
 networks that have members of the destination group. When the packet
 arrives at one of the final destinations, the multicast router on the
 foreign network transmits the packet to each host it serves that is a
 member of the multicast group. If necessary, the multicast router also
 retransmits the packet to the next routers in the paths between the
 current router and all its eventual destinations.
When data arrives at a host in a multicast group, the
 host receives it as it receives any other UDP datagram—even though the
 packet's destination address doesn't match the receiving host. The
 host recognizes that the datagram is intended for it because it
 belongs to the multicast group to which the datagram is addressed,
 much as most of us accept mail addressed to "Occupant," even though
 none of us are named Mr. or Ms. Occupant. The receiving host must be
 listening on the proper port, ready to process the datagram when it
 arrives.

Routers and Routing

 Figure 14-3
 shows one of the simplest possible multicast configurations: a single
 server sending the same data to four clients served by the same
 router. A multicast socket sends one stream of data over the
 Internet to the clients' router; the router duplicates the stream and
 sends it to each of the clients. Without multicast sockets, the server
 would have to send four separate but identical streams of data to the
 router, which would route each stream to a client. Using the same
 stream to send the same data to multiple clients significantly reduces
 the bandwidth required on the Internet backbone.
Of course, real-world routes can be much more complex, involving
 multiple hierarchies of redundant routers. However, the goal of
 multicast sockets is simple: no matter how complex the network, the
 same data should never be sent more than once over any given network
 segment. Fortunately, you don't need to worry about routing issues.
 Just create a MulticastSocket, have
 the socket join a multicast group, and stuff the address of the
 multicast group in the DatagramPacket you want to send. The routers
 and the MulticastSocket class take
 care of the rest.
[image: With and without multicast sockets]

Figure 14-3. With and without multicast sockets

The biggest restriction on multicasting is the availability of
 special multicast routers (mrouters). Mrouters are reconfigured
 Internet routers or workstations that support the IP multicast
 extensions. Many consumer-oriented ISPs quite deliberately do not
 enable multicasting in their routers. In 2004, it is still possible to
 find hosts between which no multicast route exists (i.e., there is no
 route between the hosts that travels exclusively over
 mrouters).
To send and receive multicast data beyond the local subnet, you
 need a multicast router. Check with your network administrator to see
 whether your routers support multicasting. You can also try pinging
 all-routers.mcast.net . If any router responds, then your network is hooked up
 to a multicast router:
% ping all-routers.mcast.net
all-routers.mcast.net is alive
This still may not allow you to send to or receive from
 every multicast-capable host on the Internet. For your packets to
 reach any given host, there must be a path of multicast-capable
 routers between your host and the remote host. Alternately, some sites
 may be connected by special multicast tunnel software that transmits
 multicast data over unicast UDP that all routers understand. If you
 have trouble getting the examples in this chapter to produce the
 expected results, check with your local network administrator or ISP
 to see whether multicasting is actually supported by your
 routers.

Working with Multicast Sockets

Enough theory. In Java, you multicast data using the java.net.MulticastSocket class, a subclass of java.net.DatagramSocket:
public class MulticastSocket extends DatagramSocket
As you would expect, MulticastSocket's behavior is very similar to
 DatagramSocket's: you put your data
 in DatagramPacket objects that you
 send and receive with the MulticastSocket. Therefore, I won't repeat the
 basics; this discussion assumes that you already know how to work with
 datagrams. If you're jumping around in this book rather than reading it
 cover to cover, now might be a good time to go back and read Chapter 13 on UDP.
To receive data that is being multicast from a remote site, first
 create a MulticastSocket with the
 MulticastSocket() constructor. Next,
 join a multicast group using the MulticastSocket's joinGroup() method. This signals the routers in the path between you
 and the server to start sending data your way and tells the local host
 that it should pass you IP packets addressed to the multicast
 group.
Once you've joined the multicast group, you receive UDP data just
 as you would with a DatagramSocket.
 That is, you create a DatagramPacket
 with a byte array that serves as a buffer for data and enter a loop in
 which you receive the data by calling the receive() method inherited from the DatagramSocket class. When you no longer want
 to receive data, leave the multicast group by invoking the socket's
 leaveGroup() method. You can then close the socket with the close() method inherited from DatagramSocket.
Sending data to a multicast address is similar to sending UDP data
 to a unicast address. You do not need to join a multicast group to send
 data to it. You create a new DatagramPacket, stuff the data and the address
 of the multicast group into the packet, and pass it to the send() method. The one difference is that you
 must explicitly specify the packet's TTL value.
There is one caveat to all this: multicast sockets are a security hole big enough to drive
 a small truck through. Consequently, untrusted code running under the
 control of a SecurityManager is not
 allowed to do anything involving multicast sockets. Remotely loaded code
 is normally allowed to send datagrams to or receive datagrams from the
 host it was downloaded from. However, multicast sockets don't allow this
 sort of restriction to be placed on the packets they send or receive.
 Once you send data to a multicast socket, you have very limited and
 unreliable control over which hosts receive that data. Consequently,
 most environments that execute remote code take the conservative
 approach of disallowing all multicasting.
The Constructors

The constructors are simple. Each one calls the
 equivalent constructor in the DatagramSocket superclass.
public MulticastSocket() throws SocketException

This constructor creates a socket that is bound to an
 anonymous port (i.e., an unused port assigned by the system). It is
 useful for clients (i.e., programs that initiate a data transfer)
 because they don't need to use a well-known port: the recipient
 replies to the port contained in the packet. If you need to know the
 port number, look it up with the getLocalPort() method inherited from
 DatagramSocket. This constructor
 throws a SocketException if the
 Socket can't be created. For
 example:
try {
 MulticastSocket ms = new MulticastSocket();
 // send some datagrams...
}
catch (SocketException se) {
 System.err.println(se);
}

public MulticastSocket(int port) throws
 SocketException

This constructor creates a socket that receives datagrams on a
 well-known port. The port
 argument specifies the port on which this socket listens for
 datagrams. As with regular TCP and UDP unicast sockets, on a Unix
 system a program needs to be run with root privileges in order to
 create a MulticastSocket on a
 port numbered from 1 to 1,023.
This constructor throws a SocketException if the Socket can't be created. A Socket can't be created if you don't have
 sufficient privileges to bind to the port or if the port you're
 trying to bind to is already in use. Note that since a multicast
 socket is a datagram socket as far as the operating system is
 concerned, a MulticastSocket
 cannot occupy a port already occupied by a DatagramSocket, and vice versa. For
 example, this code fragment opens a multicast socket on port
 4,000:
try {
 MulticastSocket ms = new MulticastSocket(4000);
 // receive incoming datagrams...
}
catch (SocketException ex) {
 System.err.println(ex);
}

public MulticastSocket(SocketAddress bindAddress) throws
 IOException // Java 1.4

Starting in Java 1.4, you can create a MulticastSocket using a SocketAddress object. If the SocketAddress is bound to a port, then
 this is pretty much the same as the previous constructor. For
 example, this code fragment also opens a MulticastSocket on port 4000 that listens
 on all network interfaces and addresses:
try {
 SocketAddress address = new InetSocketAddress(4000);
 MulticastSocket ms = new MulticastSocket(address);
 // receive incoming datagrams...
}
catch (SocketException ex) {
 System.err.println(ex);
}
However, the SocketAddress
 can also be bound to a specific network interface on the local host,
 rather than listening on all network interfaces. For example, this
 code fragment also opens a MulticastSocket on port 4000 that only
 listens to packets arriving on 192.168.254.32:
try {
 SocketAddress address = new InetSocketAddress("192.168.254.32", 4000);
 MulticastSocket ms = new MulticastSocket(address);
 // receive incoming datagrams...
}
catch (SocketException ex) {
 System.err.println(ex);
}
Finally, you can pass null to this constructor to create an
 unbound socket, which would later be connected with the bind() method. This is useful when setting
 socket options that can only be set before the socket is bound. For
 example, this code fragment creates a multicast socket with
 SO_REUSEADDR disabled (that option is normally enabled by default
 for multicast sockets):
try {
 MulticastSocket ms = new MulticastSocket(null);
 ms.setReuseAddress(false);
 SocketAddress address = new InetSocketAddress(4000);
 ms.bind(address);
 // receive incoming datagrams...
}
catch (SocketException ex) {
 System.err.println(ex);
}

Communicating with a Multicast Group

Once a MulticastSocket has been created, it can
 perform four key operations:
	Join a multicast group.

	Send data to the members of the group.

	Receive data from the group.

	Leave the multicast group.

The MulticastSocket class has
 methods for operations 1, 2, and 4. No new method is required to
 receive data. The receive() method
 of the superclass, DatagramSocket,
 suffices for this task. You can perform these operations in any order,
 with the exception that you must join a group before you can receive
 data from it (or, for that matter, leave it). You do not need to join
 a group to send data to it, and the sending and receiving of data may
 be freely interwoven.
public void joinGroup(InetAddress address) throws
 IOException

To receive data from a MulticastSocket, you must first join a
 multicast group. To join a group, pass an InetAddress object for the multicast group
 to the joinGroup() method. If you successfully join the group, you'll
 receive any datagrams intended for that group. Once you've joined a
 multicast group, you receive datagrams exactly as you receive
 unicast datagrams, as shown in the previous chapter. That is, you
 set up a DatagramPacket as a
 buffer and pass it into this socket's receive() method. For example:
try {
 MulticastSocket ms = new MulticastSocket(4000);
 InetAddress ia = InetAddress.getByName("224.2.2.2");
 ms.joinGroup(ia);
 byte[] buffer = new byte[8192];
 while (true) {
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
 ms.receive(dp);
 String s = new String(dp.getData(), "8859_1");
 System.out.println(s);
 }
}
catch (IOException ex) {
 System.err.println(ex);
}
If the address that you try to join is not a multicast address
 (that is, it is not between 224.0.0.0 and 239.255.255.255), the
 joinGroup() method throws an
 IOException.
A single MulticastSocket
 can join multiple multicast groups. Information about membership in
 multicast groups is stored in multicast routers, not in the object.
 In this case, you'd use the address stored in the incoming datagram
 to determine which address a packet was intended for.
Multiple multicast sockets on the same machine and even in the
 same Java program can all join the same group. If so, they'll all
 receive all data addressed to that group that arrives at the local
 host.

public void joinGroup(SocketAddress address, NetworkInterface
 interface) throws IOException // Java 1.4

Java 1.4 adds this overloaded variant of joinGroup() that allows you to join a multicast group only on a
 specified local network interface. A proxy server or firewall might
 use this to specify that it will accept multicast data from the
 interface connected to the LAN, but not the interface connected to
 the global Internet, for instance.
For example, this code fragment attempts to join the group
 with IP address 224.2.2.2 on the network interface named "eth0", if
 such an interface exists. If no such interface exists, then it joins
 on all available network interfaces:
MulticastSocket ms = new MulticastSocket(4000);
SocketAddress group = new InetSocketAddress("224.2.2.2", 40);
NetworkInterface ni = NetworkInterface .getByName("eth0");
if (ni != null) {
 ms.joinGroup(group, ni);
}
else {
 ms.joinGroup(group);
}
Other than the extra argument specifying the network interface
 to listen from, this behaves pretty much like the single argument
 joinGroup() method. For
 instance, passing a SocketAddress
 object that does not represent a multicast group as the first
 argument throws an IOException.

public void leaveGroup(InetAddress address) throws
 IOException

The leaveGroup()
 method signals that you no longer want to receive
 datagrams from the specified multicast group. A signal is sent to
 the appropriate multicast router, telling it to stop sending you
 datagrams. If the address you try to leave is not a multicast
 address (that is, if it is not between 224.0.0.0 and
 239.255.255.255), the method throws an IOException. However, no exception occurs
 if you leave a multicast group you never joined.

public void leaveGroup(SocketAddress multicastAddress,
 NetworkInterface interface) throws IOException // Java 1.4

Java 1.4 also allows you to specify that you no longer want to
 receive datagrams on one particular network interface. Perhaps you
 do wish to continue receiving datagrams on other network interfaces.
 For instance, you could join on all interfaces, and then leave just
 one. To be honest, this is a bit of a stretch. This method was
 probably included mostly for symmetry with joinGroup().

public void send(DatagramPacket packet, byte ttl) throws
 IOException

Sending data with a MulticastSocket is similar to sending data
 with a DatagramSocket. Stuff your
 data into a DatagramPacket object
 and send it off using the send()
 method inherited from DatagramSocket:
public void send(DatagramPacket p) throws IOException
The data is sent to every host that belongs to the multicast
 group to which the packet is addressed. For example:
try {
 InetAddress ia = InetAddress.getByName("experiment.mcast.net");
 byte[] data = "Here's some multicast data\r\n".getBytes();
 int port = 4000;
 DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
 MulticastSocket ms = new MulticastSocket();
 ms.send(dp);
}
catch (IOException ex) {
 System.err.println(ex);
}
However, the MulticastSocket class adds an overloaded
 variant of the send() method that lets you provide a value for the
 Time-To-Live field ttl. By
 default, the send() method uses
 a TTL of 1; that is, packets don't travel outside the local subnet.
 However, you can change this setting for an individual packet by
 passing an integer from 0 to 255 as the second argument to the
 send() method. For
 example:
 DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
 MulticastSocket ms = new MulticastSocket();
 ms.send(dp, 64);

public void setInterface(InetAddress address) throws
 SocketException

On a multihomed host, the setInterface() method chooses the network interface used for
 multicast sending and receiving. setInterface() throws a SocketException if the InetAddress argument is not the address of
 a network interface on the local machine. It is unclear why the
 network interface is immutably set in the constructor for unicast
 Socket and DatagramSocket objects but is variable and
 set with a separate method for MulticastSocket objects. To be safe, set
 the interface immediately after constructing a MulticastSocket and don't change it
 thereafter. Here's how you might use setInterface():
MulticastSocket ms;
InetAddress ia;
try {
 ia = InetAddress.getByName("www.ibiblio.org");
 ms = new MulticastSocket(2048);
 ms.setInterface(ia);
 // send and receive data...
}
catch (UnknownHostException ue) {
 System.err.println(ue);
}
catch (SocketException se) {
 System.err.println(se);
}

public InetAddress getInterface() throws
 SocketException

If you need to know the address of the interface the socket is
 bound to, call getInterface()
 . It isn't clear why this method would throw an
 exception; in any case, you must be prepared for it. For
 example:
try {
 MulticastSocket ms = new MulticastSocket(2048);
 InetAddress ia = ms.getInterface();
}
catch (SocketException se) {
 System.err.println(ue);
}

public void setNetworkInterface(NetworkInterface interface)
 throws SocketException // Java 1.4

The setNetworkInterface() method serves the
 same purpose as the setInterface(
) method; that is, it chooses the network interface used
 for multicast sending and receiving. However, it does so based on
 the local name of a network interface such as "eth0" (as
 encapsulated in a NetworkInterface object) rather than on
 the IP address bound to that network interface (as encapsulated in
 an InetAddress object). setNetworkInterface() throws a SocketException if the NetworkInterface passed as an argument is
 not a network interface on the local machine.

public NetworkInterface getNetworkInterface() throws
 SocketException // Java 1.4

The getNetworkInterface()
 method returns a NetworkInterface object representing the
 network interface on which this MulticastSocket is listening for data. If
 no network interface has been explicitly set in the constructor or
 with setNetworkInterface(), it
 returns a placeholder object with the address "0.0.0.0" and the
 index -1. For example, this code fragment prints the network
 interface used by a socket:
NetworkInterface intf = ms.getNetworkInterface();
System.out.println(intf.getName());

public void setTimeToLive(int ttl) throws IOException // Java
 1.2

The setTimeToLive()
 method sets the default TTL value used for packets
 sent from the socket using the send(Datagrampacket dp) method inherited
 from DatagramSocket (as opposed
 to the send(Datagrampacket
 dp, byte ttl) method in MulticastSocket). This method is only
 available in Java 1.2 and later. In Java 1.1, you have to use the
 setTTL() method instead:
public void setTTL(byte ttl) throws IOException
The setTTL() method is
 deprecated in Java 2 and later because it only allows TTL values
 from 1 to 127 rather than the full range from 1 to 255.

public int getTimeToLive() throws IOException // Java
 1.2

The getTimeToLive()
 method returns the default TTL value of the MulticastSocket. It's not needed very
 much. This method is also available only in Java 1.2 and later. In
 Java 1.1, you have to use the getTTL(
) method instead:
public byte getTTL() throws IOException
The getTTL() method is deprecated in Java 1.2 and later because it
 doesn't properly handle TTLs greater than 127—it truncates them to
 127. The getTimeToLive() method
 can handle the full range from 1 to 255 without truncation because
 it returns an int instead of a
 byte.

public void setLoopbackMode(boolean disable) throws
 SocketException // Java 1.4

Whether or not a host receives the multicast packets it sends
 is platform-dependent—that is, whether or not they loop back.
 Passing true to setLoopback() indicates you don't want to receive the packets you
 send. Passing false indicates you
 do want to receive the packets you send. However, this is only a
 hint. Implementations are not required to do as you request.

public boolean getLoopbackMode() throws SocketException //
 Java 1.4

Because loopback mode is only a hint that may not be followed
 on all systems, it's important to check what the loopback mode is if
 you're both sending and receiving packets. The getLoopbackMode() method returns true if packets are not looped back and
 false if they are. (This feels
 backwards to me. I suspect this method was written by a programmer
 following the ill-advised convention that defaults should always be
 true.)
If the system is looping packets back and you don't want it
 to, you'll need to recognize the packets somehow and discard them.
 If the system is not looping the packets back and you do want it to,
 store copies of the packets you send and inject them into your
 internal data structures manually at the same time you send them.
 You can ask for the behavior you want with setLoopback(), but you can't count on it.

Two Simple Examples

Most multicast servers are indiscriminate about who they
 will talk to. Therefore, it's easy to join a group and watch the data
 that's being sent to it. Example
 14-1 is a MulticastSniffer
 class that reads the name of a multicast group from the
 command line, constructs an InetAddress from that hostname, and creates a
 MulticastSocket, which attempts to
 join the multicast group at that hostname. If the attempt succeeds,
 MulticastSniffer receives datagrams
 from the socket and prints their contents on System.out. This program is useful primarily
 to verify that you are receiving multicast data at a particular host.
 Most multicast data is binary and won't be intelligible when printed as
 ASCII.
Example 14-1. Multicast sniffer
import java.net.*;
import java.io.*;

public class MulticastSniffer {

 public static void main(String[] args) {

 InetAddress group = null;
 int port = 0;

 // read the address from the command line
 try {
 group = InetAddress.getByName(args[0]);
 port = Integer.parseInt(args[1]);
 } // end try
 catch (Exception ex) {
 // ArrayIndexOutOfBoundsException, NumberFormatException,
 // or UnknownHostException
 System.err.println(
 "Usage: java MulticastSniffer multicast_address port");
 System.exit(1);
 }

 MulticastSocket ms = null;

 try {
 ms = new MulticastSocket(port);
 ms.joinGroup(group);

 byte[] buffer = new byte[8192];
 while (true) {
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
 ms.receive(dp);
 String s = new String(dp.getData());
 System.out.println(s);
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 finally {
 if (ms != null) {
 try {
 ms.leaveGroup(group);
 ms.close();
 }
 catch (IOException ex) {}
 }
 }

 }

}

The program begins by reading the name and port of the multicast
 group from the first command-line argument. Next, it creates a new
 MulticastSocket ms on the specified port. This socket joins
 the multicast group at the specified InetAddress. Then it enters a loop in which it
 waits for packets to arrive. As each packet arrives, the program reads
 its data, converts the data to an ISO Latin-1 String, and prints it on System.out. Finally, when the user interrupts
 the program or an exception is thrown, the socket leaves the group and
 closes itself.
MBONE session announcements are broadcast to the multicast
 group sap.mcast.net on port 9,875. You can use this
 program to listen to those announcements. Generally, if you're connected
 to the MBONE (not all sites are), you should see a site announcement pop
 through within the first minute or two. In fact, you'll probably see a
 lot more. I collected about a megabyte and a half of announcements
 within the first couple of minutes I had this program running. I show
 only the first two here:
% java MulticastSniffer sap.mcast.net 9875
úv=0
o=ellery 3132060082 3138107776 IN IP4 131.182.10.250
s=NASA TV - Broadcast from NASA HQ
i=NASA TV Multicasting from NASA HQ
u=http://www.nasa.gov/ntv
e=Ellery.Coleman@hq.nasa.gov (Ellery D. Coleman)
p=+202 651 8512
t=3138107776 3153918976
r=15811200 15811200 0
a=recvonly
a=tool:FVC.COM I-Caster V3.1/3101, Windows95/NT
a=cat:Corporate/Events
m=audio 23748 RTP/AVP 0
c=IN IP4 224.2.203.38/127
m=video 60068 RTP/AVP 31
c=IN IP4 224.2.203.37/127
b=AS:380
a=framerate:9
a=quality:8
a=grayed:0
4 224.2.255.115/15
.77/25
4 RTP wbbesteffort
c=IN IP4 224.2.224.41/25

‰Â¡_v=0
o=dax 3137417804 3141052115 IN IP4 horla.enst.fr
s=VREng UDP (Virtual Reality Engine)
i=Virtual Reality Engine: Distributed Interactive 3D Multicast
navigator in Virtual Worlds. For more information and downloading, see
URL: http://www.infres.enst.fr/net/vreng/.
u=http://www.infres.enst.fr/net/vreng/
e=Philippe Dax (ENST) <dax@inf.enst.fr>
p=Philippe Dax (ENST) +33 (0) 145817648
t=0 0
a=tool:sdr v2.9
a=type:test
m=dis 62239 RTP 99
c=IN IP4 224.2.199.133/127
/3
m=mdesk 64538 RTP/AVP mdesk
c=IN IP4 224.2.160.68/3
e please stop your receiving programs and the stream should stop from
coming to you.
u=http://tv.funet.fi/ohjelmat/index.html
e=Harri Salminen <mice-nsc@nic.funet.fi>
p=Harri Salminen +358 400 358 502
t=3085239600 3299658800
a=tool:CDT mAnnouncer 1.1.2
a=type:broadcast
m=audio 4004 RTP/AVP 0
c=IN IP4 239.239.239.239/40
a=ptime:40
m=video 6006 RTP/AVP 31
c=IN IP4 239.239.239.239/40
m=whiteboard 4206 udp wb
c=IN IP4 224.239.239.245/48
MBONE session announcements are not pure ASCII text. In
 particular, they contain a lot of embedded nulls as well as various
 characters with their high bit set. Consequently, I've had to take a few
 liberties with the output to print it in this book. To really handle
 MBONE session announcements, you'd have to parse the relevant ASCII text
 out of the binary format and display that. Peter Parnes has written a
 Java program called mSD that does exactly that. If you're interested,
 you can find it at http://www.cdt.luth.se/~peppar/progs/mSD/. However, since this is
 a book about network programming and not parsing binary file formats,
 we'll leave the example here and move on to sending multicast data.
 Example 14-2 is a MulticastSender class that sends data read from the command line to a
 multicast group. It's fairly simple, overall.
Example 14-2. MulticastSender
import java.net.*;
import java.io.*;

public class MulticastSender {

 public static void main(String[] args) {

 InetAddress ia = null;
 int port = 0;
 byte ttl = (byte) 1;

 // read the address from the command line
 try {
 ia = InetAddress.getByName(args[0]);
 port = Integer.parseInt(args[1]);
 if (args.length > 2) ttl = (byte) Integer.parseInt(args[2]);
 }
 catch (Exception ex) {
 System.err.println(ex);
 System.err.println(
 "Usage: java MulticastSender multicast_address port ttl");
 System.exit(1);
 }

 byte[] data = "Here's some multicast data\r\n".getBytes();
 DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);

 try {
 MulticastSocket ms = new MulticastSocket();
 ms.joinGroup(ia);
 for (int i = 1; i < 10; i++) {
 ms.send(dp, ttl);
 }
 ms.leaveGroup(ia);
 ms.close();
 }
 catch (SocketException ex) {
 System.err.println(ex);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

}

Example 14-2 reads the
 address of a multicast group, a port number, and an optional TTL from
 the command line. It then stuffs the string "Here's some
 multicast data\r\n" into the byte array data using the getBytes() method of java.lang.String, and places this array in the
 DatagramPacket dp. Next, it constructs the MulticastSocket ms, which joins the group ia. Once it has joined the group, ms sends the datagram packet dp to the group ia 10 times. The TTL value is set to one to
 make sure that this data doesn't go beyond the local subnet. Having sent
 the data, ms leaves the group and
 closes itself.
Run MulticastSniffer on one
 machine in your local subnet. Listen to the group
 all-systems.mcast.net on port 4,000, like
 this:
% java MulticastSniffer all-systems.mcast.net 4000
Next, send data to that group by running MulticastSender on another machine in your
 local subnet. You can also run it in a different window on the same
 machine, although that option is not as exciting. However, you must
 start running the MulticastSniffer
 before you start running the MulticastSender. Send to the group
 all-systems.mcast.net on port 4,000, like
 this:
% java MulticastSender all-systems.mcast.net 4000
Back on the first machine, you should see this output:
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
For this to work beyond the local subnet, the two subnets must
 each have multicast routers.

Chapter 15. URLConnections

URLConnection is an abstract class that represents an active connection
 to a resource specified by a URL. The URLConnection class has two different but
 related purposes. First, it provides more control over the interaction
 with a server (especially an HTTP server) than the URL class. With a URLConnection, you can inspect the header sent
 by the server and respond accordingly. You can set the header fields used
 in the client request. You can use a URLConnection to download binary files. Finally,
 a URLConnection lets you send data back
 to a web server with POST or PUT and use other HTTP request methods. We
 will explore all of these techniques in this chapter.
Second, the URLConnection class
 is part of Java's protocol handler mechanism, which also includes the URLStreamHandler class. The idea behind protocol
 handlers is simple: they separate the details of processing a protocol
 from processing particular data types, providing user interfaces, and
 doing the other work that a monolithic web browser performs. The base
 java.net.URLConnection class is
 abstract; to implement a specific protocol, you write a subclass. These
 subclasses can be loaded at runtime by applications. For example, if the
 browser runs across a URL with a strange scheme, such as
 compress, rather than throwing up its hands and
 issuing an error message, it can download a protocol handler for this
 unknown protocol and use it to communicate with the server. Writing
 protocol handlers is the subject of the next chapter.
Only abstract URLConnection
 classes are present in the java.net
 package. The concrete subclasses are hidden inside the sun.net package hierarchy. Many of the
 methods and fields as well as the single constructor in the
 URLConnection class are
 protected. In other words, they can only be accessed
 by instances of the URLConnection class
 or its subclasses. It is rare to instantiate URLConnection objects directly in your source
 code; instead, the runtime environment creates these objects as needed,
 depending on the protocol in use. The class (which is unknown at compile
 time) is then instantiated using the forName() and newInstance() methods of the java.lang.Class class.
Tip
URLConnection does not have the best-designed API in the Java class
 library. Since the URLConnection
 class itself relies on the Socket
 class for network connectivity, there's little you can do with URLConnection that can't also be done with
 Socket. The URLConnection class is supposed to provide an
 easier-to-use, higher-level abstraction for network connections than
 Socket. In practice, however, most
 programmers have chosen to ignore it and simply use the Socket class. One of several problems is that
 the URLConnection class is too closely tied to the HTTP protocol. For
 instance, it assumes that each file transferred is preceded by a
 MIME header or something very much like one. However, most
 classic protocols such as FTP and SMTP don't use MIME headers. Another
 problem, one I hope to alleviate in this chapter, is that the URLConnection class is extremely poorly
 documented, so very few programmers understand how it's really supposed
 to work.

Opening URLConnections

A program that uses the URLConnection class directly follows this basic sequence of
 steps:
	Construct a URL
 object.

	Invoke the URL object's
 openConnection() method to
 retrieve a URLConnection object
 for that URL.

	Configure the URLConnection.

	Read the header fields.

	Get an input stream and read data.

	Get an output stream and write data.

	Close the connection.

You don't always perform all these steps. For instance, if the
 default setup for a particular kind of URL is acceptable, then you're
 likely to skip step 3. If you only want the data from the server and
 don't care about any metainformation, or if the protocol doesn't provide
 any metainformation, you'll skip step 4. If you only want to receive
 data from the server but not send data to the server, you'll skip step
 6. Depending on the protocol, steps 5 and 6 may be reversed or
 interlaced.
The single constructor for the URLConnection class is protected:
protected URLConnection(URL url)
Consequently, unless you're subclassing URLConnection to handle a new kind of URL
 (that is, writing a protocol handler), you can only get a reference to
 one of these objects through the openConnection() methods of the URL and URLStreamHandler classes. For example:
try {
 URL u = new URL("http://www.greenpeace.org/");
 URLConnection uc = u.openConnection();
}
catch (MalformedURLException ex) {
 System.err.println(ex);
}
catch (IOException ex) {
 System.err.println(ex);
}
Tip
In practice, the openConnection(
) method of java.net.URL
 is the same as the openConnection(
) method of java.net.URLStreamHandler. All a URL object's openConnection() method does is call its
 URLStreamHandler's openConnection() method.

The URLConnection class is
 declared abstract. However, all but one of its methods are implemented.
 You may find it convenient or necessary to override other methods in the
 class; but the single method that subclasses must implement is connect() , which makes a connection to a server and thus depends on
 the type of service (HTTP, FTP, and so on). For example, a sun.net.www.protocol.file.FileURLConnection's
 connect() method converts the URL to
 a filename in the appropriate directory, creates MIME information for
 the file, and then opens a buffered FileInputStream to the file. The connect() method of sun.net.www.protocol.http.HttpURLConnection
 creates a sun.net.www.http.HttpClient
 object, which is responsible for connecting to the server.
public abstract void connect() throws IOException
When a URLConnection is first
 constructed, it is unconnected; that is, the local and remote host
 cannot send and receive data. There is no socket connecting the two
 hosts. The connect() method
 establishes a connection—normally using TCP sockets but possibly through
 some other mechanism—between the local and remote host so they can send
 and receive data. However, getInputStream(
), getContent(), getHeaderField(), and other methods that
 require an open connection will call connect(
) if the connection isn't yet open. Therefore, you rarely need
 to call connect() directly.

Reading Data from a Server

Here is the minimal set of steps needed to retrieve data from a
 URL using a URLConnection object:
	Construct a URL
 object.

	Invoke the URL object's
 openConnection() method to
 retrieve a URLConnection object
 for that URL.

	Invoke the URLConnection's
 getInputStream() method.

	Read from the input stream using the usual stream API.

The getInputStream() method returns a generic InputStream that lets you read and parse the
 data that the server sends.
public InputStream getInputStream()
Example 15-1 uses the
 getInputStream() method to download a
 web page.
Example 15-1. Download a web page with a URLConnection
import java.net.*;
import java.io.*;

public class SourceViewer2 {

 public static void main (String[] args) {

 if (args.length > 0) {
 try {
 //Open the URLConnection for reading
 URL u = new URL(args[0]);
 URLConnection uc = u.openConnection();
 InputStream raw = uc.getInputStream();
 InputStream buffer = new BufferedInputStream(raw);
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(buffer);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end if

 } // end main

} // end SourceViewer2

It is no accident that this program is almost the same as Example
 7-5. The openStream() method of the
 URL class just returns an InputStream from its own URLConnection object. The output is identical
 as well, so I won't repeat it here.
The differences between URL
 and URLConnection
 aren't apparent with just a simple input stream as in this example. The
 biggest differences between the two classes are:
	URLConnection provides
 access to the HTTP header.

	URLConnection can configure
 the request parameters sent to the server.

	URLConnection can write
 data to the server as well as read data from the server.

Reading the Header

 HTTP servers provide a substantial amount of information
 in the header that precedes each response. For example, here's a typical
 HTTP header returned by an Apache web server:
HTTP/1.1 200 OK
Date: Mon, 18 Oct 1999 20:06:48 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Last-Modified: Mon, 18 Oct 1999 12:58:21 GMT
ETag: "1e05f2-89bb-380b196d"
Accept-Ranges: bytes
Content-Length: 35259
Connection: close
 Content-Type: text/html
There's a lot of information there. In general, an HTTP header may
 include the content type of the requested document, the length of the
 document in bytes, the character set in which the content is encoded,
 the date and time, the date the content expires, and the date the
 content was last modified. However, the information depends on the
 server; some servers send all this information for each request, others
 send some information, and a few don't send anything. The methods of
 this section allow you to query a URLConnection to find out what metadata the server has provided.
Aside from HTTP, very few protocols use MIME headers (and
 technically speaking, even the HTTP header isn't actually a MIME header;
 it just looks a lot like one). When writing your own subclass of
 URLConnection, it is often necessary
 to override these methods so that they return sensible values. The most
 important piece of information you may be lacking is the MIME content
 type. URLConnection provides some
 utility methods that guess the data's content type based on its filename
 or the first few bytes of the data itself.
Retrieving Specific Header Fields

The first six methods request specific, particularly common
 fields from the header. These are:
	Content-type

	Content-length

	Content-encoding

	Date

	Last-modified

	Expires

public String getContentType()

 This method returns the MIME content type of the data.
 It relies on the web server to send a valid content type. (In a
 later section, we'll see how recalcitrant servers are handled.) It
 throws no exceptions and returns null if the content type isn't available.
 text/html will be the most common
 content type you'll encounter when connecting to web servers. Other
 commonly used types include text/plain, image/gif, application/xml, and image/jpeg.
If the content type is some form of text, then this header may
 also contain a character set part identifying the document's
 character encoding. For example:
Content-type: text/html; charset=UTF-8
Or:
Content-Type: text/xml; charset=iso-2022-jp
In this case, getContentType(
) returns the full value of the Content-type field,
 including the character encoding. We can use this to improve on
 Example 15-1 by using the
 encoding specified in the HTTP header to decode the document, or
 ISO-8859-1 (the HTTP default) if no such encoding is specified. If a
 nontext type is encountered, an exception is thrown. Example 15-2
 demonstrates:
Example 15-2. Download a web page with the correct character set
import java.net.*;
import java.io.*;

public class EncodingAwareSourceViewer {

 public static void main (String[] args) {

 for (int i = 0; i < args.length; i++) {

 try {
 // set default encoding
 String encoding = "ISO-8859-1";
 URL u = new URL(args[i]);
 URLConnection uc = u.openConnection();
 String contentType = uc.getContentType();
 int encodingStart = contentType.indexOf("charset=");
 if (encodingStart != -1) {
 encoding = contentType.substring(encodingStart+8);
 }
 InputStream in = new BufferedInputStream(uc.getInputStream());
 Reader r = new InputStreamReader(in, encoding);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end if

 } // end main

} // end EncodingAwareSourceViewer

In practice, most servers don't include charset information in
 their Content-type headers, so this is of limited use.

public int getContentLength()

The getContentLength()
 method tells you how many bytes there are in the
 content. Many servers send Content-length headers only when they're
 transferring a binary file, not when transferring a text file. If
 there is no Content-length header, getContentLength() returns -1. The method
 throws no exceptions. It is used when you need to know exactly how
 many bytes to read or when you need to create a buffer large enough
 to hold the data in advance.
In Chapter 7, we
 discussed how to use the openStream(
) method of the URL
 class to download text files from an HTTP server. Although in theory
 you should be able to use the same method to download a binary file,
 such as a GIF image or a .class byte code file,
 in practice this procedure presents a problem. HTTP servers don't
 always close the connection exactly where the data is finished;
 therefore, you don't know when to stop reading. To download a binary
 file, it is more reliable to use a URLConnection's getContentLength() method to find the
 file's length, then read exactly the number of bytes indicated.
 Example 15-3 is a program
 that uses this technique to save a binary file on a disk.
Example 15-3. Downloading a binary file from a web site and saving it to
 disk
import java.net.*;
import java.io.*;

public class BinarySaver {

 public static void main (String args[]) {

 for (int i = 0; i < args.length; i++) {

 try {
 URL root = new URL(args[i]);
 saveBinaryFile(root);
 }
 catch (MalformedURLException ex) {
 System.err.println(args[i] + " is not URL I understand.");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 } // end for

 } // end main

 public static void saveBinaryFile(URL u) throws IOException {

 URLConnection uc = u.openConnection();
 String contentType = uc.getContentType();
 int contentLength = uc.getContentLength();
 if (contentType.startsWith("text/") || contentLength == -1) {
 throw new IOException("This is not a binary file.");
 }

 InputStream raw = uc.getInputStream();
 InputStream in = new BufferedInputStream(raw);
 byte[] data = new byte[contentLength];
 int bytesRead = 0;
 int offset = 0;
 while (offset < contentLength) {
 bytesRead = in.read(data, offset, data.length-offset);
 if (bytesRead == -1) break;
 offset += bytesRead;
 }
 in.close();

 if (offset != contentLength) {
 throw new IOException("Only read " + offset
 + " bytes; Expected " + contentLength + " bytes");
 }

 String filename = u.getFile();
 filename = filename.substring(filename.lastIndexOf('/') + 1);
 FileOutputStream fout = new FileOutputStream(filename);
 fout.write(data);
 fout.flush();
 fout.close();

 }

} // end BinarySaver

As usual, the main()
 method loops over the URLs entered on the command line, passing each
 URL to the saveBinaryFile()
 method. saveBinaryFile() opens a
 URLConnection uc to the URL. It puts the type into the variable
 contentType and the content
 length into the variable contentLength. Next, an if statement checks whether the content
 type is text or the
 Content-length field is missing or invalid (contentLength ==
 -1). If either of these is true, an IOException is thrown. If these assertions
 are both false, we have a binary
 file of known length: that's what we want.
Now that we have a genuine binary file on our hands, we
 prepare to read it into an array of bytes called data. data is initialized to the number of bytes
 required to hold the binary object, contentLength. Ideally, you would like to
 fill data with a single call to
 read() but you probably won't
 get all the bytes at once, so the read is placed in a loop. The
 number of bytes read up to this point is accumulated into the
 offset variable, which also keeps
 track of the location in the data
 array at which to start placing the data retrieved by the next call
 to read(). The loop continues
 until offset equals or exceeds
 contentLength; that is, the array
 has been filled with the expected number of bytes. We also break out
 of the while loop if read() returns -1, indicating an
 unexpected end of stream. The offset variable now contains the total
 number of bytes read, which should be equal to the content length.
 If they are not equal, an error has occurred, so saveBinaryFile() throws an IOException. This is the general procedure
 for reading binary files from HTTP connections.
Now we are ready to save the data in a file. saveBinaryFile() gets the filename from
 the URL using the getFile()
 method and strips any path information by calling filename.substring(theFile.lastIndexOf('/')
 + 1). A new FileOutputStream fout is opened into this file and the data
 is written in one large burst with fout.write(b).

public String getContentEncoding()

 This method returns a String that tells you how the content is
 encoded. If the content is sent unencoded (as is commonly the case
 with HTTP servers), this method returns null. It throws no exceptions. The most
 commonly used content encoding on the Web is probably x-gzip, which
 can be straightforwardly decoded using a java.util.zip.GZipInputStream.
Tip
The content encoding is not the same as the character
 encoding. The character encoding is determined by the Content-type
 header or information internal to the document, and specifies how
 characters are specified in bytes. Content encoding specifies how
 the bytes are encoded in other bytes.

When subclassing URLConnection, override this method if you
 expect to be dealing with encoded data, as might be the case for an
 NNTP or SMTP protocol handler; in these applications, many different
 encoding schemes, such as BinHex and uuencode, are used to pass
 eight-bit binary data through a seven-bit ASCII connection.

public long getDate()

The getDate() method returns a long that tells you when the document was
 sent, in milliseconds since midnight, Greenwich Mean Time (GMT),
 January 1, 1970. You can convert it to a java.util.Date. For example:
Date documentSent = new Date(uc.getDate());
This is the time the document was sent as seen from the
 server; it may not agree with the time on your local machine. If the
 HTTP header does not include a Date field, getDate() returns 0.

public long getExpiration()

 Some documents have server-based expiration dates that
 indicate when the document should be deleted from the cache and
 reloaded from the server. getExpiration(
) is very similar to getDate(
), differing only in how the return value is interpreted.
 It returns a long indicating the
 number of milliseconds after 12:00 A.M., GMT, January 1, 1970, at
 which point the document expires. If the HTTP header does not
 include an Expiration field, getExpiration(
) returns 0, which means 12:00 A.M., GMT, January 1, 1970.
 The only reasonable interpretation of this date is that the document
 does not expire and can remain in the cache indefinitely.

public long getLastModified()

 The final date method, getLastModified(), returns the date on
 which the document was last modified. Again, the date is given as
 the number of milliseconds since midnight, GMT, January 1, 1970. If
 the HTTP header does not include a Last-modified field (and many
 don't), this method returns 0.
Example 15-4 reads
 URLs from the command line and uses these six methods to print their
 content type, content length, content encoding, date of last
 modification, expiration date, and current date.
Example 15-4. Return the header
import java.net.*;
import java.io.*;
import java.util.*;

public class HeaderViewer {

 public static void main(String args[]) {

 for (int i=0; i < args.length; i++) {
 try {
 URL u = new URL(args[0]);
 URLConnection uc = u.openConnection();
 System.out.println("Content-type: " + uc.getContentType());
 System.out.println("Content-encoding: "
 + uc.getContentEncoding());
 System.out.println("Date: " + new Date(uc.getDate()));
 System.out.println("Last modified: "
 + new Date(uc.getLastModified()));
 System.out.println("Expiration date: "
 + new Date(uc.getExpiration()));
 System.out.println("Content-length: " + uc.getContentLength());
 } // end try
 catch (MalformedURLException ex) {
 System.err.println(args[i] + " is not a URL I understand");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 System.out.println();
 } // end for

 } // end main

} // end HeaderViewer

Here's the result when used to look at http://www.oreilly.com:
% java HeaderViewer http://www.oreilly.com
Content-type: text/html
Content-encoding: null
Date: Mon Oct 18 13:54:52 PDT 1999
Last modified: Sat Oct 16 07:54:02 PDT 1999
Expiration date: Wed Dec 31 16:00:00 PST 1969
Content-length: -1
The content type of the file at http://www.oreilly.com is text/html. No content encoding was used.
 The file was sent on Monday, October 18, 1999 at 1:54 P.M., Pacific
 Daylight Time. It was last modified on Saturday, October 16, 1999 at
 7:54 A.M. Pacific Daylight Time and it expires on Wednesday,
 December 31, 1969 at 4:00 P. M., Pacific Standard Time. Did this
 document really expire 31 years ago? No. Remember that what's being
 checked here is whether the copy in your cache is more recent than
 4:00 P.M. PST, December 31, 1969. If it is, you don't need to reload
 it. More to the point, after adjusting for time zone differences,
 this date looks suspiciously like 12:00 A.M., Greenwich Mean Time,
 January 1, 1970, which happens to be the default if the server
 doesn't send an expiration date. (Most don't.)
Finally, the content length of -1 means that there was no
 Content-length header. Many servers don't bother to provide a
 Content-length header for text files. However, a Content-length
 header should always be sent for a binary file. Here's the HTTP
 header you get when you request the GIF image http://www.oreilly.com/graphics/space.gif. Now the
 server sends a Content-length header with a value of 57.
% java HeaderViewer http://www.oreilly.com/graphics/space.gif
Content-type: image/gif
Content-encoding: null
Date: Mon Oct 18 14:00:07 PDT 1999
Last modified: Thu Jan 09 12:05:11 PST 1997
Expiration date: Wed Dec 31 16:00:00 PST 1969
Content-length: 57

Retrieving Arbitrary Header Fields

The last six methods requested specific fields from the
 header, but there's no theoretical limit to the number of header
 fields a message can contain. The next five methods inspect arbitrary
 fields in a header. Indeed, the methods of the last section are just
 thin wrappers over the methods discussed here; you can use these
 methods to get header fields that Java's designers did not plan for.
 If the requested header is found, it is returned. Otherwise, the
 method returns null.
public String getHeaderField(String name)

The getHeaderField()
 method returns the value of a named header field. The
 name of the header is not case-sensitive and does not include a
 closing colon. For example, to get the value of the Content-type and
 Content-encoding header fields of a URLConnection object uc, you could write:
String contentType = uc.getHeaderField("content-type");
String contentEncoding = uc.getHeaderField("content-encoding"));
To get the Date, Content-length, or Expires headers, you'd do
 the same:
String data = uc.getHeaderField("date");
String expires = uc.getHeaderField("expires");
String contentLength = uc.getHeaderField("Content-length");
These methods all return String, not int or long as the getContentLength(), getExpirationDate(), getLastModified(), and getDate() methods of the last section
 did. If you're interested in a numeric value, convert the String to a long or an int.
Do not assume the value returned by getHeaderField() is valid. You must check
 to make sure it is non-null.

public String getHeaderFieldKey(int n)

This method returns the key (that is, the field name: for
 example, Content-length or
 Server) of the
 n th header field.
 The request method is header zero and has a null key. The first
 header is one. For example, to get the sixth key of the header of
 the URLConnection uc, you would write:
String header6 = uc.getHeaderFieldKey(6);

public String getHeaderField(int n)

This method returns the value of the nth
 header field. In HTTP, the request method is header field zero and
 the first actual header is one. Example 15-5 uses this method
 in conjunction with getHeaderFieldKey(
) to print the entire HTTP header.
Example 15-5. Print the entire HTTP header
import java.net.*;
import java.io.*;

public class AllHeaders {

 public static void main(String args[]) {

 for (int i=0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 URLConnection uc = u.openConnection();
 for (int j = 1; ; j++) {
 String header = uc.getHeaderField(j);
 if (header == null) break;
 System.out.println(uc.getHeaderFieldKey(j) + ": " + header);
 } // end for
 } // end try
 catch (MalformedURLException ex) {
 System.err.println(args[i] + " is not a URL I understand.");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 System.out.println();
 } // end for

 } // end main

} // end AllHeaders

For example, here's the output when this program is run
 against http://www.oreilly.com:
% java AllHeaders http://www.oreilly.com
Server: WN/1.15.1
Date: Mon, 18 Oct 1999 21:20:26 GMT
Last-modified: Sat, 16 Oct 1999 14:54:02 GMT
Content-type: text/html
Title: www.oreilly.com -- Welcome to O'Reilly & Associates!
-- computer books, software, online publishing
Link: <mailto:webmaster@oreilly.com>; rev="Made"
Besides Date, Last-modified, and Content-type headers, this
 server also provides Server, Title, and Link headers. Other servers
 may have different sets of headers.

public long getHeaderFieldDate(String name, long
 default)

This method first retrieves the header field specified by the
 name argument and tries to
 convert the string to a long that
 specifies the milliseconds since midnight, January 1, 1970, GMT.
 getHeaderFieldDate() can be used
 to retrieve a header field that represents a date: for example, the
 Expires, Date, or Last-modified headers. To convert the string to an
 integer, getHeaderFieldDate()
 uses the parseDate() method of
 java.util.Date. The parseDate() method does a decent job of
 understanding and converting most common date formats, but it can be
 stumped—for instance, if you ask for a header field that contains
 something other than a date. If parseDate(
) doesn't understand the date or if getHeaderFieldDate() is unable to find
 the requested header field, getHeaderFieldDate() returns the default argument. For example:
Date expires = new Date(uc.getHeaderFieldDate("expires", 0));
long lastModified = uc.getHeaderFieldDate("last-modified", 0);
Date now = new Date(uc.getHeaderFieldDate("date", 0));
You can use the methods of the java.util.Date class to convert the
 long to a String.

public int getHeaderFieldInt(String name, int
 default)

This method retrieves the value of the header field name and tries to convert it to an
 int. If it fails, either because
 it can't find the requested header field or because that field does
 not contain a recognizable integer, getHeaderFieldInt() returns the default argument. This method is often
 used to retrieve the Content-length field. For example, to get
 the content length from a URLConnection uc, you would write:
int contentLength = uc.getHeaderFieldInt("content-length", -1);
In this code fragment, getHeaderFieldInt() returns -1 if the
 Content-length header isn't present.

Configuring the Connection

The URLConnection class has seven protected instance fields that define exactly how the
 client makes the request to the server. These are:
protected URL url;
protected boolean doInput = true;
protected boolean doOutput = false;
protected boolean allowUserInteraction = defaultAllowUserInteraction;
protected boolean useCaches = defaultUseCaches;
protected long ifModifiedSince = 0;
protected boolean connected = false;
For instance, if doOutput is
 true, you'll be able to write data to
 the server over this URLConnection as
 well as read data from it. If useCaches is false, the connection bypasses any local
 caching and downloads the file from the server afresh.
Since these fields are all protected, their values are accessed
 and modified via obviously named setter and getter methods:
public URL getURL()
public void setDoInput(boolean doInput)
public boolean getDoInput()
public void setDoOutput(boolean doOutput)
public boolean getDoOutput()
public void setAllowUserInteraction(boolean allowUserInteraction)
public boolean getAllowUserInteraction()
public void setUseCaches(boolean useCaches)
public boolean getUseCaches()
public void setIfModifiedSince(long ifModifiedSince)
public long getIfModifiedSince()
You can modify these fields only before the URLConnection is connected (that is, before
 you try to read content or headers from the connection). Most of the
 methods that set fields throw an IllegalStateException if they are called while
 the connection is open. In general, you can set the properties of a
 URLConnection object only before the
 connection is opened.
Tip
In Java 1.3 and earlier, the setter methods throw an IllegalAccessError instead of an IllegalStateException. Throwing an
 error instead of an
 exception here is very unusual. An error
 generally indicates an unpredictable fault in the VM, which usually
 cannot be handled, whereas an exception indicates a predictable,
 manageable problem. More specifically, an IllegalAccessError is supposed to indicate
 that an application is trying to access a nonpublic field it doesn't
 have access to. According to the class library documentation,
 "Normally, this error is caught by the compiler; this error can only
 occur at runtime if the definition of a class has incompatibly
 changed." Clearly, that's not what's going on here. This was simply a
 mistake on the part of the programmer who wrote this class, which has
 been fixed as of Java 1.4.

There are also some getter and setter methods that define the
 default behavior for all instances of URLConnection. These are:
public boolean getDefaultUseCaches()
public void setDefaultUseCaches(boolean defaultUseCaches)
public static void setDefaultAllowUserInteraction(
 boolean defaultAllowUserInteraction)
public static boolean getDefaultAllowUserInteraction()
public static FileNameMap getFileNameMap()
public static void setFileNameMap(FileNameMap map)
Unlike the instance methods, these methods can be invoked at any
 time. The new defaults will apply only to URLConnection objects constructed after the
 new default values are set.
protected URL url

The url field
 specifies the URL that this URLConnection connects to. The constructor
 sets it when the URLConnection is
 created and it should not change thereafter. You can retrieve the
 value by calling the getURL()
 method. Example 15-6 opens
 a URLConnection to http://www.oreilly.com/, gets the URL of that connection, and prints
 it.
Example 15-6. Print the URL of a URLConnection to
 http://www.oreilly.com/
import java.net.*;
import java.io.*;

public class URLPrinter {

 public static void main(String args[]) {

 try {
 URL u = new URL("http://www.oreilly.com/");
 URLConnection uc = u.openConnection();
 System.out.println(uc.getURL());
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

}

Here's the result, which should be no great surprise. The URL
 that is printed is the one used to create the URLConnection.
% java URLPrinter
http://www.oreilly.com/

protected boolean connected

The boolean field connected
 is true if the
 connection is open and false if
 it's closed. Since the connection has not yet been opened when a new
 URLConnection object is created,
 its initial value is false. This
 variable can be accessed only by instances of java.net.URLConnection and its
 subclasses.
There are no methods that directly read or change the value of
 connected. However, any method that
 causes the URLConnection to connect
 should set this variable to true, including connect(), getInputStream(), and getOutputStream(). Any method that causes
 the URLConnection to disconnect
 should set this field to false. There are no such methods in java.net.URLConnection, but some of its
 subclasses, such as java.net.HttpURLConnection, have disconnect() methods.
If you subclass URLConnection
 to write a protocol handler, you are responsible for setting connected to true when you are connected and resetting it
 to false when the connection
 closes. Many methods in java.net.URLConnection read this variable to
 determine what they can do. If it's set incorrectly, your program will
 have severe bugs that are not easy to diagnose.

protected boolean allowUserInteraction

Some URLConnections
 need to interact with a user. For example, a web browser may need to
 ask for a username and password. However, many applications cannot
 assume that a user is present to interact with it. For instance, a
 search engine robot is probably running in the background without any
 user to provide a username and password. As its name suggests, the
 allowUserInteraction field
 specifies whether user interaction is allowed. It is false by default.
This variable is protected, but the public getAllowUserInteraction() method can read its value and the public setAllowUserInteraction() method can change it:
public void setAllowUserInteraction(boolean allowUserInteraction)
public boolean getAllowUserInteraction()
The value true indicates that
 user interaction is allowed; false
 indicates that there is no user interaction. The value may be read at
 any time but may be set only before the URLConnection is connected. Calling setAllowUserInteraction() when the URLConnection is connected throws an
 IllegalStateException in Java 1.4
 and later, and an IllegalAccessError in Java 1.3 and
 earlier.
For example, this code fragment opens a connection that could
 ask the user for authentication if it's required:
URL u = new URL("http://www.example.com/passwordProtectedPage.html");
URLConnection uc = u.openConnection();
uc.setAllowUserInteraction(true);
InputStream in = uc.getInputStream();
Java does not include a default GUI for asking the user for a
 username and password. If the request is made from an applet, the
 browser's usual authentication dialog can be relied on. In a
 standalone application, you first need to install an Authenticator, as discussed in Chapter 7.
Figure 15-1 shows
 the dialog box that pops up when you try to access a
 password-protected page. If you cancel this dialog, you'll get a 401
 Authorization Required error and whatever text the server sends to
 unauthorized users. However, if you refuse to send authorization at
 all—which you can do by pressing OK, then answering No when asked if
 you want to retry authorization—getInputStream() will throw a ProtocolException.
[image: An authentication dialog]

Figure 15-1. An authentication dialog

The static getDefaultAllowUserInteraction() and setDefaultAllowUserInteraction() methods
 determine the default behavior for URLConnection objects that have not set
 allowUserInteraction explicitly.
 Since the allowUserInteraction
 field is static (i.e., a class
 variable instead of an instance variable), setting it changes the
 default behavior for all instances of the URLConnection class that are created after
 setDefaultAllowUserInteraction()
 is called.
For instance, the following code fragment checks to see whether
 user interaction is allowed by default with getDefaultAllowUserInteraction(). If user
 interaction is not allowed by default, the code uses setDefaultAllowUserInteraction() to make
 allowing user interaction the default behavior.
if (!URLConnection.getDefaultAllowUserInteraction()) {
 URLConnection.setDefaultAllowUserInteraction(true);
}

protected boolean doInput

Most URLConnection
 objects provide input to a client program. For example, a connection
 to a web server with the GET method would produce input for the
 client. However, a connection to a web server with the POST method
 might not. A URLConnection can be
 used for input to the program, output from the program, or both. The
 protected boolean field doInput is
 true if the URLConnection can be used for input,
 false if it cannot be. The default
 is true. To access this protected
 variable, use the public getDoInput() and setDoInput()
 methods:
public void setDoInput(boolean doInput)
public boolean getDoInput()
For example:
try {
 URL u = new URL("http://www.oreilly.com");
 URLConnection uc = u.openConnection();
 if (!uc.getDoInput()) {
 uc.setDoInput(true);
 }
 // read from the connection...
catch (IOException ex) {
 System.err.println(ex);
}

protected boolean doOutput

Programs can use a URLConnection to send output back to the
 server. For example, a program that needs to send data to the server
 using the POST method could do so by getting an output stream from a
 URLConnection. The protected
 boolean field doOutput is true if the URLConnection can be used for output,
 false if it cannot be; it is
 false by default. To access this
 protected variable, use the getDoOutput(
) and setDoOutput()
 methods:
public void setDoOutput(boolean dooutput)
public boolean getDoOutput()
For example:
try {
 URL u = new URL("http://www.oreilly.com");
 URLConnection uc = u.openConnection();
 if (!uc.getDoOutput()) {
 uc.setDoOutput(true);
 }
 // write to the connection...
catch (IOException ex) {
 System.err.println(ex);
}
When you set doOutput to true
 for an http URL, the request method is changed
 from GET to POST. In Chapter 7,
 you saw how to send data to server-side programs with GET. GET is
 straightforward to work with, but its use should be limited to "safe"
 operations: operations that don't commit the user or have obvious side
 effects. For instance, it would be inappropriate to use GET to
 complete a purchase or add an item to a shopping cart, but you could
 use GET to search for the items before placing them in the cart.
 Unsafe operations, which should not be bookmarked or cached, should
 use POST (or occasionally PUT or DELETE) instead. We'll explore this
 in more detail later in this chapter when we talk about writing data
 to a server.
Tip
In earlier editions of this book, I suggested using the
 POST method in preference to GET for long (greater
 than 255 characters) URLs since some browsers had limits on the
 maximum length of a URL they could safely handle. In 2004, this is
 only really an issue with very old browsers no one is likely to be
 using anymore. I was planning not to even mention this issue in this
 chapter; but as I worked on an unrelated project during the revision
 of this chapter, I encountered a server-side
 limitation on URL size while writing a PHP script to process a form.
 I had over a thousand different fields in a form (a checklist of
 bird species found in New York City along with observation notes)
 and over 10K of data in each request. The browser handled the long
 URL with aplomb. However, faced with such an extreme case, the
 server refused to process the request until I switched from GET to
 POST. Thus for very long URLs, POST may still
 be necessary, even for safe operations. Alternately, you could fix
 the server so it doesn't object to long URLs; but for those of us
 who don't manage our own servers, this may not always be an
 option.

protected boolean ifModifiedSince

Many clients, especially web clients, keep caches of
 previously retrieved documents. If the user asks for the same document
 again, it can be retrieved from the cache. However, it may have
 changed on the server since it was last retrieved. The only way to
 tell is to ask the server. Clients can include an If-Modified-Since in
 the client request HTTP header. This header includes a date and time.
 If the document has changed since that time, the server should send
 it. Otherwise, it should not. Typically, this time is the last time
 the client fetched the document. For example, this client request says
 the document should be returned only if it has changed since 7:22:07
 A.M., October 31, 2004, Greenwich Mean Time:
GET / HTTP/1.1
User-Agent: Java/1.4.2_05
Host: login.metalab.unc.edu:56452
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
If-Modified-Since: Sun, 31 Oct 2004 19:22:07 GMT
If the document has changed since that time, the server will
 send it as usual. Otherwise, it replies with a 304 Not Modified
 message, like this:
HTTP/1.0 304 Not Modified
Server: WN/1.15.1
Date: Tue, 02 Nov 2004 16:26:16 GMT
Last-modified: Fri, 29 Oct 2004 23:40:06 GMT
The client then loads the document from its cache. Not all web
 servers respect the If-Modified-Since field. Some will send the
 document whether it's changed or not.
The ifModifiedSince field in
 the URLConnection class specifies
 the date (in milliseconds since midnight, Greenwich Mean Time, January
 1, 1970), which will be placed in the If-Modified-Since header field.
 Because ifModifiedSince is protected, programs should call the getIfModifiedSince() and setIfModifiedSince() methods to read or
 modify it:
public long getIfModifiedSince()
public void setIfModifiedSince(long ifModifiedSince)
Example 15-7 prints
 the default value of ifModifiedSince, sets its value to 24 hours
 ago, and prints the new value. It then downloads and displays the
 document—but only if it's been modified in the last 24 hours.
Example 15-7. Set ifModifiedSince to 24 hours prior to now
import java.net.*;
import java.io.*;
import java.util.*;

public class Last24 {

 public static void main (String[] args) {

 // Initialize a Date object with the current date and time
 Date today = new Date();
 long millisecondsPerDay = 24 * 60 * 60 * 1000;

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 URLConnection uc = u.openConnection();
 System.out.println("Will retrieve file if it's modified since "
 + new Date(uc.getIfModifiedSince()));
 uc.setIfModifiedSince((new Date(today.getTime()
 - millisecondsPerDay)).getTime());
 System.out.println("Will retrieve file if it's modified since "
 + new Date(uc.getIfModifiedSince()));
 InputStream in = new BufferedInputStream(uc.getInputStream());
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 System.out.println();

 }
 catch (Exception ex) {
 System.err.println(ex);
 }
 }

 }

}

Here's the result. First, we see the default value: midnight,
 January 1, 1970, GMT, converted to Pacific Standard Time. Next, we see
 the new time, which we set to 24 hours prior to the current
 time:
% java Last24 http://www.oreilly.com
Will retrieve file if it's been modified since Wed Dec 31 16:00:00 PST 1969
Will retrieve file if it's been modified since Sun Oct 31 11:17:04 PST 2004
Since this document hasn't changed in the last 24 hours, it is
 not reprinted.

protected boolean useCaches

Some clients, notably web browsers, can retrieve a
 document from a local cache, rather than retrieving it from a server.
 Applets may have access to the browser's cache. Starting in Java 1.5,
 standalone applications can use the java.net.ResponseCache class described later
 in this chapter. The useCaches
 variable determines whether a cache will be used if it's available.
 The default value is true, meaning
 that the cache will be used; false
 means the cache won't be used. Because useCaches is protected, programs access it using the
 getUseCaches() and setUseCaches() methods:
public void setUseCaches(boolean useCaches)
public boolean getUseCaches()
This code fragment disables caching to ensure that the most
 recent version of the document is retrieved:
try {
 URL u = new URL("http://www.sourcebot.com/");
 URLConnection uc = u.openConnection();
 if (uc.getUseCaches()) {
 uc.setUseCaches(false);
 }
}
catch (IOException ex) {
 System.err.println(ex);
}
Two methods define the initial value of the useCaches field, getDefaultUseCaches() and setDefaultUseCaches():
public void setDefaultUseCaches(boolean useCaches)
public boolean getDefaultUseCaches()
Although nonstatic, these methods do set and get a static field
 that determines the default behavior for all instances of the URLConnection class created after the
 change. The next code fragment disables caching by default; after this
 code runs, URLConnections that want
 caching must enable it explicitly using setUseCaches(true).
if (uc.getDefaultUseCaches()) {
 uc.setDefaultUseCaches(false);
}

Timeouts

Java 1.5 adds four methods that allow you to query and
 modify the timeout values for connections; that is, how long the
 underlying socket will wait for a response from the remote end before
 throwing a SocketTimeoutException.
 These are:
public void setConnectTimeout(int timeout) // Java 1.5
public int getConnectTimeout() // Java 1.5
public void setReadTimeout(int timeout) // Java 1.5
public int getReadTimeout() // Java 1.5
The setConnectTimeout()
 /getConnectTimeout()
 methods control how long the socket waits for the initial connection.
 The setReadTimeout() /getReadTimeout()
 methods control how long the input stream waits for data to arrive.
 All four methods measure timeouts in milliseconds. All four interpret
 as meaning never time out. Both setter methods throw an IllegalArgumentException if the timeout is
 negative. For example, this code fragment requests a 30-second connect
 timeout and a 45-second read timeout:
URL u = new URL("http://www.example.org");
URLConnuction uc = u.openConnection();
uc.setConnectTimeout(30000);
uc.setReadTimeout(45000);

Configuring the Client Request HTTP Header

 In HTTP 1.0 and later, the client sends the server not
 only a request line, but also a header. For example, here's the
 HTTP header that Wamcom Mozilla 1.3 for Mac OS
 uses:
Host: stallion.elharo.com:33119
User-Agent: Mozilla/5.0 (Macintosh; U; PPC; en-US; rv:1.3.1)
Gecko/20030723 wamcom.org
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1
Accept-Language: en-us
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Connection: close
A web server can use this information to serve different pages to
 different clients, to get and set cookies, to authenticate users through
 passwords, and more. Placing different fields in the header that the
 client sends and the server responds with does all of this.
Tip
It's important to understand that this is not the HTTP
 header that the server sends to the client and that it is
 read by the various getHeaderField(
) and getHeaderFieldKey()
 methods discussed previously. This is the HTTP header that
 the client sends to the server.

Each concrete subclass of URLConnection sets a number of different
 name-value pairs in the header by default. (Really, only HttpURLConnection does this, since HTTP is the
 only major protocol that uses headers in this way.) For instance, here's
 the HTTP header that a connection from the SourceViewer2 program of Example 15-1 sends:
User-Agent: Java/1.4.2_05
Host: localhost:33122
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
As you can see, it's a little simpler than the one Mozilla sends,
 and it has a different user agent and accepts different kinds of files.
 However, you can modify these and add new fields before
 connecting.
In Java 1.3 and later, you can add headers to the HTTP header
 using the setRequestProperty()
 method before you open the connection:
public void setRequestProperty(String name, String value)// Java 1.3
The setRequestProperty()
 method adds a field to the header of this URLConnection with a specified name and value.
 This method can be used only before the connection is opened. It throws
 an IllegalStateException (IllegalAccessError in Java 1.3) if the
 connection is already open. The getRequestProperty() method returns the value of the named field of the HTTP
 header used by this URLConnection.
HTTP allows one property to have multiple values. In this case,
 the separate values will be separated by commas. For example, the Accept
 header sent by Java 1.4.2 shown above has the four values text/html,
 image/gif, image/jpeg, and *.
Tip
These methods only really have meaning when the URL being
 connected to is an http URL, since only the HTTP
 protocol makes use of headers like this. While they could possibly
 have other meanings in other protocols, such as NNTP, this is really
 just an example of poor API design. These methods should be part of
 the more specific HttpURLConnection
 class, not the generic URLConnection class.

For example, web servers and clients store some limited persistent
 information by using cookies. A cookie is simply a name-value pair. The server
 sends a cookie to a client using the response HTTP header. From that
 point forward, whenever the client requests a URL from that server, it
 includes a Cookie field in the HTTP request header that looks like
 this:
Cookie: username=elharo; password=ACD0X9F23JJJn6G; session=100678945
This particular Cookie field sends three name-value pairs to the
 server. There's no limit to the number of name-value pairs that can be
 included in any one cookie. Given a URLConnection object uc, you could add this cookie to the
 connection, like this:
uc.setRequestProperty("Cookie",
 "username=elharo; password=ACD0X9F23JJJn6G; session=100678945");
The setRequestProperty()
 method does not support this. You can set the same
 property to a new value, but this changes the existing property value.
 To add an additional property value, use the addRequestProperty() method instead:
public void addRequestProperty(String name, String value)// Java 1.4
 There's no fixed list of legal headers. Servers will
 typically ignore any headers they don't recognize. HTTP does put some
 restrictions on the content of the names and values here. For instance,
 the names can't contain whitespace and the values can't contain any line
 breaks. Java enforces the restrictions on fields containing line breaks,
 but not much else. If a field contains a line break, setRequestProperty() and addRequestProperty() throw an IllegalArgumentException. Otherwise, it's
 quite easy to make a URLConnection
 send malformed headers to the server, so be careful. Some servers will
 handle the malformed headers gracefully. Some will ignore the bad header
 and return the requested document anyway, but some will reply with an
 HTTP 400, Bad Request error.
If for some reason you need to inspect the headers in a URLConnection, there's a standard getter
 method:
public String getRequestProperty(String name)// Java 1.3
Java 1.4 also adds a method to get all the request properties for
 a connection as a Map:
public Map getRequestProperties() // Java 1.4
The keys are the header field names. The values are lists of
 property values. Both names and values are stored as strings. In other
 words, using Java 1.5 generic syntax, the signature is:
public Map<String,List<String>> getRequestProperties()

Writing Data to a Server

Sometimes you need to write data to a URLConnection—for example, when you submit a
 form to a web server using POST or upload a file using PUT. The getOutputStream() method returns an OutputStream on which you can write data for
 transmission to a server:
public OutputStream getOutputStream()
Since a URLConnection doesn't
 allow output by default, you have to call setDoOutput(true) before asking for an output
 stream. When you set doOutput to true
 for an http URL, the request method is changed from
 GET to POST. In Chapter 7, you saw
 how to send data to server-side programs with GET. However, GET should be limited to safe operations,
 such as search requests or page navigation, and not used for unsafe
 operations that create or modify a resource, such as posting a comment
 on a web page or ordering a pizza. Safe operations can be bookmarked,
 cached, spidered, prefetched, and so on. Unsafe operations should not
 be.
Once you've got the OutputStream, buffer it by chaining it to a
 BufferedOutputStream or a BufferedWriter. You should generally also
 chain it to a DataOutputStream, an
 OutputStreamWriter, or some other
 class that's more convenient to use than a raw OutputStream. For example:
try {

 URL u = new URL("http://www.somehost.com/cgi-bin/acgi");
 // open the connection and prepare it to POST
 URLConnection uc = u.openConnection();
 uc.setDoOutput(true);

 OutputStream raw = uc.getOutputStream();
 OutputStream buffered = new BufferedOutputStream(raw);
 OutputStreamWriter out = new OutputStreamWriter(buffered, "8859_1");
 out.write("first=Julie&middle=&last=Harting&work=String+Quartet\r\n");
 out.flush();
 out.close();

}
catch (IOException ex) {
 System.err.println(ex);
}
Sending data with POST is almost as easy as with GET. Invoke
 setDoOutput(true) and use the
 URLConnection's getOutputStream() method to write the query
 string rather than attaching it to the URL. Java buffers all the data
 written onto the output stream until the stream is closed. This is
 necessary so that it can determine the necessary Content-length header.
 The query string contains two name-value pairs separated by ampersands.
 The complete transaction, including client request and server response,
 looks something like this:
% telnet www.ibiblio.org 80
Trying 152.2.210.81...
Connected to www.ibiblio.org.
Escape character is '^]'.
POST /javafaq/books/jnp3/postquery.phtml HTTP/1.0
 ACCEPT: text/plain
 Content-type: application/x-www-form-urlencoded
 Content-length: 65

 username=Elliotte+Rusty+Harold&email=elharo%40metalab%2eunc%2eedu
HTTP/1.1 200 OK
Date: Mon, 10 May 2004 21:08:52 GMT
Server: Apache/1.3.29 (Unix) DAV/1.0.3 mod_perl/1.29 PHP/4.3.5
X-Powered-By: PHP/4.3.5
Connection: close
Content-Type: text/html

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Query Results</title>
</head>
<body>

<h1>Query Results</h1>

<p>You submitted the following name/value pairs:</p>

username = Elliotte Rusty Harold
email = elharo@metalab.unc.edu

<hr />
Last Modified May 10, 2004

</body>
</html>
Connection closed by foreign host.
For that matter, as long as you control both the client and the
 server, you can use any other sort of data encoding you like. For
 instance, SOAP and XML-RPC both POST data to web servers as XML rather
 than an x-www-form-url-encoded query string. However, if you deviate
 from the standard, you'll find that your nonconforming client can't talk
 to most server-side programs or that your nonconforming server-side
 program can't process requests from most clients. The query string
 format used here is used by all web browsers and is expected by most
 server-side APIs and tools.
Example 15-8 is a
 program called FormPoster that uses
 the URLConnection class and the
 QueryString class from Chapter 7 to post form data. The
 constructor sets the URL. The query string is built using the add() method. The post() method actually sends the data to the
 server by opening a URLConnection to
 the specified URL, setting its doOutput field to true, and writing the query string on the
 output stream. It then returns the input stream containing the server's
 response.
The main() method is a simple
 test for this program that sends the name "Elliotte Rusty Harold" and
 the email address elharo@metalab.unc.edu to the resource
 at http://www.cafeaulait.org/books/jnp3/postquery.phtml.
 This resource is a simple form tester that accepts any input using
 either the POST or GET method and returns an HTML page showing the names
 and values that were submitted. The data returned is HTML; this example
 simply displays the HTML rather than attempting to parse it. It would be
 easy to extend this program by adding a user interface that lets you
 enter the name and email address to be posted—but since doing that
 triples the size of the program while showing nothing more of network
 programming, it is left as an exercise for the reader. Once you
 understand this example, it should be easy to write Java programs that
 communicate with other server-side scripts.
Example 15-8. Posting a form
import java.net.*;
import java.io.*;
import com.macfaq.net.*;

public class FormPoster {

 private URL url;
 // from Chapter 7, Example 7-9
 private QueryString query = new QueryString();

 public FormPoster (URL url) {
 if (!url.getProtocol().toLowerCase().startsWith("http")) {
 throw new IllegalArgumentException(
 "Posting only works for http URLs");
 }
 this.url = url;
 }

 public void add(String name, String value) {
 query.add(name, value);
 }

 public URL getURL() {
 return this.url;
 }

 public InputStream post() throws IOException {

 // open the connection and prepare it to POST
 URLConnection uc = url.openConnection();
 uc.setDoOutput(true);
 OutputStreamWriter out
 = new OutputStreamWriter(uc.getOutputStream(), "ASCII");

 // The POST line, the Content-type header,
 // and the Content-length headers are sent by the URLConnection.
 // We just need to send the data
 out.write(query.toString());
 out.write("\r\n");
 out.flush();
 out.close();

 // Return the response
 return uc.getInputStream();

 }

 public static void main(String args[]) {

 URL url;

 if (args.length > 0) {
 try {
 url = new URL(args[0]);
 }
 catch (MalformedURLException ex) {
 System.err.println("Usage: java FormPoster url");
 return;
 }
 }
 else {
 try {
 url = new URL(
 "http://www.cafeaulait.org/books/jnp3/postquery.phtml");
 }
 catch (MalformedURLException ex) { // shouldn't happen
 System.err.println(ex);
 return;
 }
 }

 FormPoster poster = new FormPoster(url);
 poster.add("name", "Elliotte Rusty Harold");
 poster.add("email", "elharo@metalab.unc.edu");

 try {
 InputStream in = poster.post();

 // Read the response
 InputStreamReader r = new InputStreamReader(in);
 int c;
 while((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 System.out.println();
 in.close();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 }

}

Here's the response from the server:
% java -classpath .:jnp3e.jar FormPoster
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Query Results</title>
</head>
<body>

<h1>Query Results</h1>

<p>You submitted the following name/value pairs:</p>

name = Elliotte Rusty Harold
email = elharo@metalab.unc.edu

<hr />
Last Modified May 10, 2004

</body>
</html>
The main() method tries to
 read the first command-line argument from args[0]. The argument is optional; if there is
 an argument, it is assumed to be a URL that can be POSTed to. If there
 are no arguments, main() initializes
 url with a default URL, http://www.cafeaulait.org/books/jnp3/postquery.phtml.
 main() then constructs a FormPoster object. Two name-value pairs are
 added to this FormPoster object.
 Next, the post() method is invoked
 and its response read and printed on System.out.
The post() method is the heart of the class. It first opens a
 connection to the URL stored in the url field. It sets the doOutput field of this connection to true since this URLConnection needs to send output and chains
 the OutputStream for this URL to an
 ASCII OutputStreamWriter that sends
 the data; then flushes and closes the stream. Do not forget to
 close the stream! If the stream isn't closed, no data will be
 sent. Finally, the URLConnection's
 InputStream is returned.
To summarize, posting data to a form requires these steps:
	Decide what name-value pairs you'll send to the server-side
 program.

	Write the server-side program that will accept and process the
 request. If it doesn't use any custom data encoding, you can test
 this program using a regular HTML form and a web browser.

	Create a query string in your Java program. The string should
 look like this:
name1=value1&name2=value2&name3=value3
Pass each name and value in the query string to URLEncoder.encode() before adding it to
 the query string.

	Open a URLConnection to the
 URL of the program that will accept the data.

	Set doOutput to true by
 invoking setDoOutput(true).

	Write the query string onto the URLConnection's OutputStream.

	Close the URLConnection's
 OutputStream.

	Read the server response from the URLConnection's InputStream.

Posting forms is considerably more complex than using the GET
 method described in Chapter 7.
 However, GET should only be used for safe operations that can be
 bookmarked and linked to. POST should be used for unsafe operations that
 should not be bookmarked or linked to.
The getOutputStream() method
 is also used for the PUT request method, a means of storing files on a
 web server. The data to be stored is written onto the OutputStream that getOutputStream() returns. However, this can
 be done only from within the HttpURLConnection subclass of URLConnection, so discussion of PUT will have
 to wait a little while.

Content Handlers

The URLConnection class is intimately tied to Java's protocol and content
 handler mechanism. The protocol handler is responsible for making
 connections, exchanging headers, requesting particular documents, and so
 forth. It handles all the overhead of the protocol for requesting files.
 The content handler deals only with the actual data. It takes the raw
 input after all headers and so forth are stripped and converts it to the
 right kind of object for Java to deal with; for instance, an InputStream or an ImageProducer.
Getting Content

The getContent() methods of URLConnection use a content handler to turn
 the raw data of a connection into a Java object.
public Object getContent() throws IOException

This method is virtually identical to the getContent() method of the URL class. In fact, that method just calls
 this method. getContent()
 downloads the object selected by the URL of this URLConnection. For getContent() to work, the virtual machine
 needs to recognize and understand the content type. The exact
 content types supported vary from one VM and version to the next.
 Sun's JDK 1.5 supports text/plain, image/gif, image/jpeg, image/png, audio/aiff, audio/basic, audio/wav, and a few others. Different VMs
 and applications may support additional types. For instance, HotJava
 3.0 includes a PDF content handler. Furthermore, you can install
 additional content handlers that understand other content
 types.
getContent() works only
 for protocols like HTTP, which has a clear understanding of MIME
 content types. If the content type is unknown or the protocol
 doesn't understand content types, getContent() throws an UnknownServiceException.

public Object getContent(Class[] classes) throws IOException
 // Java 1.3

This overloaded variant of the getContent() method lets you choose what
 class you'd like the content returned as in order to provide
 different object representations of data. The method attempts to
 return the content in the form of one of the classes in the classes array. The order of preference is
 the order of the array. For instance, if you'd prefer an HTML file
 to be returned as a String but
 your second choice is a Reader
 and your third choice is an InputStream, you would write:
URL u = new URL("http://www.thehungersite.com/");
URLConnection uc = u.openConnection()
Class[] types = {String.class, Reader.class, InputStream.class};
Object o = uc.getContent(types);
Then test for the type of the returned object using instanceof. For example:
if (o instanceof String) {
 System.out.println(o);
}
else if (o instanceof Reader) {
 int c;
 Reader r = (Reader) o;
 while ((c = r.read()) != -1) System.out.print((char) c);
}
else if (o instanceof InputStream) {
 int c;
 InputStream in = (InputStream) o;
 while ((c = in.read()) != -1) System.out.write(c);
}
else if (o == null) {
 System.out.println("None of the requested types were available.");
}
else {
 System.out.println("Error: unexpected type " + o.getClass());
}
That last else clause
 shouldn't be reached. If none of the requested types are available,
 this method is supposed to return null rather than returning an unexpected
 type.

ContentHandlerFactory

The URLConnection class
 contains a static Hashtable of
 ContentHandler objects. Whenever
 the getContent() method of
 URLConnection is invoked, Java
 looks in this Hashtable to find the
 right content handler for the current URL, as indicated by the URL's
 Content-type. If it doesn't find a ContentHandler object for the MIME type, it
 tries to create one using a ContentHandlerFactory (which you'll learn
 more about in Chapter 17). That
 is, a content handler factory tells the program where it can find a
 content handler for a text/html
 file, an image/gif file, or some
 other kind of file. You can set the ContentHandlerFactory by passing an instance
 of the java.net.ContentHandlerFactory interface to
 the setContentHandlerFactory()
 method:
public static void setContentHandlerFactory(ContentHandlerFactory factory)
 throws SecurityException, Error
You may set the ContentHandlerFactory only once per
 application; this method throws a generic Error if it is called a second time. As with
 most other setFactory() methods,
 untrusted applets will generally not be allowed to set the content
 handler factory whether one has already been set or not. Attempting to
 do so throws a SecurityException.

The Object Methods

The URLConnection class overrides only one method from java.lang.Object, toString():
public String toString()
Even so, there is little reason to print a URLConnection object or to convert one to a
 String, except perhaps if you are
 debugging. toString() is called the
 same way as every other toString()
 method.

Security Considerations for URLConnections

URLConnection objects are subject to all the usual security
 restrictions about making network connections, reading or writing files,
 and so forth. For instance, a URLConnection can be created by an untrusted
 applet only if the URLConnection is
 pointing to the host that the applet came from. However, the details can
 be a little tricky because different URL schemes and their corresponding
 connections can have different security implications. For example, a
 jar URL that points into the applet's own
 jar file should be fine. However, a file URL that
 points to a local hard drive should not be.
Before attempting to connect a URL, you may want to know whether
 the connection will be allowed. For this purpose, the URLConnection class has a getPermission() method:
public Permission getPermission() throws IOException// Java 1.2
This returns a java.security.Permission object that specifies
 what permission is needed to connect to the URL. It returns null if no permission is needed (e.g., there's
 no security manager in place). Subclasses of URLConnection return different subclasses of
 java.security.Permission. For
 instance, if the underlying URL points to
 www.gwbush.com, getPermission() returns a java.net.SocketPermission for the host
 www.gwbush.com with the connect and resolve
 actions.

Guessing MIME Content Types

If this were the best of all possible worlds, every protocol
 and every server would use MIME types to specify the kind of file being
 transferred. Unfortunately, that's not the case. Not only do we have to
 deal with older protocols such as FTP that predate MIME, but many HTTP
 servers that should use MIME don't provide MIME headers at all or lie
 and provide headers that are incorrect (usually because the server has
 been misconfigured). The URLConnection class provides two static
 methods to help programs figure out the MIME type of some data; you can
 use these if the content type just isn't available or if you have reason
 to believe that the content type you're given isn't correct. The first
 of these is URLConnection.guessContentTypeFromName()
 :
public static String guessContentTypeFromName(String name)[1]

This method tries to guess the content type of an object based
 upon the extension in the filename portion of the object's URL. It
 returns its best guess about the content type as a String. This guess is likely to be correct;
 people follow some fairly regular conventions when thinking up
 filenames.
The guesses are determined by the
 content-types.properties file, normally located in the
 jre/lib directory. On Unix, Java may also look at
 the mailcap file to help it guess. Table 15-1 shows the guesses the
 JDK 1.5 makes. These vary a little from one version of the JDK to the
 next.
Table 15-1. Java extension content-type mappings
	Extension
	MIME content type

	No extension, or unrecognized
 extension
	 content/unknown

	 .saveme, .dump, .hqx, .arc, .o, .a, .z,
 .bin, .exe, .zip, .gz
	 application/octet-stream

	 .oda
	 application/oda

	 .pdf
	 application/pdf

	 .eps, .ai, .ps

	 application/postscript

	 .dvi
	 application/x-dvi

	 .hdf
	 application/x-hdf

	 .latex
	 application/x-latex

	 .nc, .cdf
	 application/x-netcdf

	 .tex
	 application/x-tex:

	 .texinfo, .texi

	 application/x-texinfo

	 .t, .tr, .roff

	 application/x-troff

	 .man
	 application/x-troff-man

	 .me
	 application/x-troff-me

	 .ms
	 application/x-troff-ms

	 .src, .wsrc
	 application/x-wais-source

	 .zip
	 application/zip

	 .bcpio
	 application/x-bcpio

	 .cpio
	 application/x-cpio

	 .gtar
	 application/x-gtar

	 .sh, .shar
	 application/x-shar

	 .sv4cpio
	 application/x-sv4cpio:

	 .sv4crc
	 application/x-sv4crc

	 .tar
	 application/x-tar

	 .ustar
	 application/x-ustar

	 .snd, .au
	 audio/basic

	 .aifc, .aif, .aiff

	 audio/x-aiff

	 .wav
	 audio/x-wav

	 .gif
	 image/gif

	 .ief
	 image/ief

	 .jfif, .jfif-tbnl, .jpe, .jpg,
 .jpeg
	 image/jpeg

	 .tif, .tiff
	 image/tiff

	 .fpx, .fpix
	 image/vnd.fpx

	 .ras
	 image/x-cmu-rast

	 .pnm
	 image/x-portable-anymap

	 .pbm
	 image/x-portable-bitmap

	 .pgm
	 image/x-portable-graymap

	 .ppm
	 image/x-portable-pixmap

	 .rgb
	 image/x-rgb

	 .xbm, .xpm
	 image/x-xbitmap

	 .xwd
	 image/x-xwindowdump

	 .png
	 image/png

	 .htm, .html
	 text/html

	 .text, .c, .cc, .c++, .h, .pl, .txt,
 .java, .el
	 text/plain

	 .tsv
	 text/tab-separated-values

	 .etx
	 text/x-setext

	 .mpg, .mpe, .mpeg

	 video/mpeg

	 .mov, .qt
	 video/quicktime

	 .avi
	 application/x-troff-msvideo

	 .movie, .mv
	 video/x-sgi-movie

	 .mime
	 message/rfc822

	 .xml
	 application/xml

This list is not complete by any means. For instance, it omits
 various XML applications such as RDF (.rdf), XSL
 (.xsl), and so on that should have the MIME type
 application/xml. It also doesn't
 provide a MIME type for CSS stylesheets (.css).
 However, it's a good start.
The second MIME type guesser method is URLConnection.guessContentTypeFromStream()
 :
public static String guessContentTypeFromStream(InputStream in)
This method tries to guess the content type by looking at the
 first few bytes of data in the stream. For this method to work, the
 InputStream must support marking so
 that you can return to the beginning of the stream after the first bytes
 have been read. Java 1.5 inspects the first 11 bytes of the InputStream, although sometimes fewer bytes
 are needed to make an identification. Table 15-2 shows how Java 1.5
 guesses. Note that these guesses are often not as reliable as the
 guesses made by the previous method. For example, an XML document that
 begins with a comment rather than an XML declaration would be mislabeled
 as an HTML file. This method should be used only as a last
 resort.
Table 15-2. Java first bytes content-type mappings
	First bytes in hexadecimal
	First bytes in ASCII
	MIME content type

	0xACED
	 	 application/x-java-serialized-object

	0xCAFEBABE
	 	 application/java-vm

	0x47494638
	GIF8
	 image/gif

	0x23646566
	#def
	 image/x-bitmap

	0x2158504D32
	!XPM2
	 image/x-pixmap

	0x89504E 470D0A1A0A
	 	 image/png

	0x2E736E64
	 	 audio/basic

	0x646E732E
	 	 audio/basic

	0x3C3F786D6C
	<?xml
	 application/xml

	0xFEFF003C003F00F7
	 	 application/xml

	0xFFFE3C003F00F700
	 	 application/xml

	0x3C21
	<!
	 text/html

	0x3C68746D6C
	<html
	 text/html

	0x3C626F6479
	<body
	 text/html

	0x3C68656164
	<head
	 text/html

	0x3C48544D4C
	<HTML
	 text/html

	0x3C424F4459
	<BODY
	 text/html

	0x3C48454144
	<HEAD
	 text/html

	0xFFD8FFE0
	 	 image/jpeg

	0xFFD8FFEE
	 	 image/jpeg

	0xFFD8FFE1XXXX4578696600[2]
	 	 image/jpeg

	0x89504E470D0A1A0A
	 	 image/png

	0x52494646
	RIFF
	 audio/x-wav

	0xD0CF11E0A1B11AE1[3]
	 	 image/vnd.fpx

	[2] The XX bytes are not checked. They can be
 anything.

[3] This actually just checks for a Microsoft structured
 storage document. Several other more complicated checks have
 to be made before deciding whether this is indeed an
 image/vnd.fpx
 document.

ASCII mappings, where they exist, are case-sensitive. For example,
 guessContentTypeFromStream() does
 not recognize <Html> as the
 beginning of a text/html file.

[1] This method is protected in Java 1.3 and earlier, public in Java 1.4 and later.

HttpURLConnection

The java.net.HttpURLConnection class is an
 abstract subclass of URLConnection;
 it provides some additional methods that are helpful when working
 specifically with http URLs:
public abstract class HttpURLConnection extends URLConnection
In particular, it contains methods to get and set the request
 method, decide whether to follow redirects, get the response code and
 message, and figure out whether a proxy server is being used. It also
 includes several dozen mnemonic constants matching the various HTTP
 response codes. Finally, it overrides the getPermission() method from the URLConnection superclass, although it doesn't
 change the semantics of this method at all.
Since this class is abstract and its only constructor is
 protected, you can't directly create instances of HttpURLConnection. However, if you construct a
 URL object using an
 http URL and invoke its openConnection() method, the URLConnection object returned will be an
 instance of HttpURLConnection. Cast
 that URLConnection to HttpURLConnection like this:
URL u = new URL("http://www.amnesty.org/");
URLConnection uc = u.openConnection();
HttpURLConnection http = (HttpURLConnection) uc;
Or, skipping a step, like this:
URL u = new URL("http://www.amnesty.org/");
HttpURLConnection http = (HttpURLConnection) u.openConnection();
Tip
There's another HttpURLConnection class in the undocumented
 sun.net.www.protocol.http package,
 a concrete subclass of java.net.HttpURLConnection that actually
 implements the abstract connect()
 method:

public class HttpURLConnection extends java.net.HttpURLConnection
Note
There's little reason to access this class directly. It doesn't
 add any important methods that aren't already declared in java.net.HttpURLConnection or java.net.URLConnection. However, any
 URLConnection you open to an
 http URL will be an instance of this
 class.

The Request Method

When a web client contacts a web server, the first thing
 it sends is a request line. Typically, this line begins with GET and
 is followed by the name of the file that the client wants to retrieve
 and the version of the HTTP protocol that the client understands. For
 example:
GET /catalog/jfcnut/index.html HTTP/1.0
However, web clients can do more than simply GET files from web
 servers. They can POST responses to forms. They can PUT a file on a
 web server or DELETE a file from a server. And they can ask for just
 the HEAD of a document. They can ask the web server for a list of the
 OPTIONS supported at a given URL. They can even TRACE the request
 itself. All of these are accomplished by changing the request method
 from GET to a different keyword. For example, here's how a browser
 asks for just the header of a document using HEAD:
HEAD /catalog/jfcnut/index.html HTTP/1.1
User-Agent: Java/1.4.2_05
Host: www.oreilly.com
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
By default, HttpURLConnection
 uses the GET method. However, you can change this with the setRequestMethod() method:
public void setRequestMethod(String method) throws ProtocolException
The method argument should be one of these seven case-sensitive
 strings:
	GET

	POST

	HEAD

	PUT

	OPTIONS

	DELETE

	TRACE

If it's some other method, then a java.net.ProtocolException, a subclass of
 IOException, is thrown. However,
 it's generally not enough to simply set the request method. Depending
 on what you're trying to do, you may need to adjust the HTTP header
 and provide a message body as well. For instance, POSTing a form
 requires you to provide a Content-length header. We've already
 explored the GET and POST methods. Let's look at the other five
 possibilities.
Tip
Some web servers support additional, nonstandard request
 methods. For instance, Apache 1.3 also supports CONNECT, PROPFIND,
 PROPPATCH, MKCOL, COPY, MOVE, LOCK, and UNLOCK. However, Java
 doesn't support any of these.

HEAD

The HEAD function is possibly the simplest of all the
 request methods. It behaves much like GET. However, it tells the
 server only to return the HTTP header, not to actually send the
 file. The most common use of this method is to check whether a file
 has been modified since the last time it was cached. Example 15-9 is a simple
 program that uses the HEAD request method and prints the last time a
 file on a server was modified.
Example 15-9. Get the time when a URL was last changed
import java.net.*;
import java.io.*;
import java.util.*;

 public class LastModified {

 public static void main(String args[]) {

 for (int i=0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 HttpURLConnection http = (HttpURLConnection) u.openConnection();
 http.setRequestMethod("HEAD");
 System.out.println(u + "was last modified at "
 + new Date(http.getLastModified()));
 } // end try
 catch (MalformedURLException ex) {
 System.err.println(args[i] + " is not a URL I understand");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 System.out.println();
 } // end for

 } // end main

} // end LastModified

Here's the output from one run:
D:\JAVA\JNP3\examples\15>java LastModified http://www.ibiblio.org/xml/
http://www.ibiblio.org/xml/was last modified at Thu Aug 19 06:06:57 PDT 2004
It wasn't absolutely necessary to use the HEAD method here.
 We'd have gotten the same results with GET. But if we used GET, the
 entire file at http://www.ibiblio.org/xml/
 would have been sent across the network, whereas all we cared about
 was one line in the header. When you can use HEAD, it's much more
 efficient to do so.

OPTIONS

The OPTIONS request method asks what options are supported
 for a particular URL. If the request URL is an asterisk (*), the
 request applies to the server as a whole rather than to one
 particular URL on the server. For example:
OPTIONS /xml/ HTTP/1.1
User-Agent: Java/1.4.2_05
Host: www.ibiblio.org
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
The server responds to an OPTIONS request by sending an HTTP
 header with a list of the commands allowed on that URL. For example,
 when the previous command was sent, here's what Apache
 responded:
Date: Thu, 21 Oct 2004 18:06:10 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Content-Length: 0
Allow: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH, PROPFIND,
PROPPATCH, MKCOL, COPY, MOVE, LOCK, UNLOCK, TRACE
Connection: close
The list of legal commands is found in the Allow field.
 However, in practice these are just the commands the server
 understands, not necessarily the ones it will actually perform on
 that URL. For instance, let's look at what happens when you try the
 DELETE request method.

DELETE

The DELETE method removes a file at a specified URL from a
 web server. Since this request is an obvious security risk, not all
 servers will be configured to support it, and those that are will
 generally demand some sort of authentication. A typical DELETE
 request looks like this:
DELETE /javafaq/2004march.html HTTP/1.1
User-Agent: Java/1.4.2_05
Host: www.ibiblio.org
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
The server is free to refuse this request or ask for
 identification. For example:
Date: Thu, 19 Aug 2004 14:32:15 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Allow: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH, PROPFIND,
PROPPATCH, MKCOL, COPY, MOVE, LOCK, UNLOCK, TRACE
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html
content-length: 313

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>405 Method Not Allowed</TITLE>
</HEAD><BODY>
<H1>Method Not Allowed</H1>
The requested method DELETE is not allowed for the
URL /javafaq/2004march.html.<P>
<HR>
<ADDRESS>Apache/1.3.4 Server at www.ibiblio.org Port 80</ADDRESS>
</BODY></HTML>
Even if the server accepts this request, its response is
 implementation-dependent. Some servers may delete the file; others
 simply move it to a trash directory. Others simply mark it as not
 readable. Details are left up to the server vendor.

PUT

Many HTML editors and other programs that want to store files
 on a web server use the PUT method. It allows clients to place documents in
 the abstract hierarchy of the site without necessarily knowing how
 the site maps to the actual local filesystem. This contrasts with
 FTP, where the user has to know the actual directory structure as
 opposed to the server's virtual directory structure.
Here's a how a browser might PUT a file on a web
 server:
PUT /hello.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.6 [en] (WinNT; I)
Pragma: no-cache
Host: www.ibiblio.org
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Content-Length: 364

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
 <meta name="Author" content="Elliotte Rusty Harold">
 <meta name="GENERATOR" content="Mozilla/4.6 [en] (WinNT; I) [Netscape]">
 <title>Mine</title>
</head>
<body>
Hello
</body>
</html>
As with deleting files, allowing arbitrary users to PUT files
 on your web server is a clear security risk. Generally, some sort of
 authentication is required and the server must be specially
 configured to support PUT. The details are likely to vary from
 server to server. Most web servers do not include full support for
 PUT out of the box. For instance, Apache requires you to install an
 additional module just to handle PUT requests.

TRACE

The TRACE request method sends the HTTP header that the
 server received from the client. The main reason for this
 information is to see what any proxy servers between the server and
 client might be changing. For example, suppose this TRACE request is
 sent:
TRACE /xml/ HTTP/1.1
Hello: Push me
User-Agent: Java/1.4.2_05
Host: www.ibiblio.org
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
The server should respond like this:
Date: Thu, 19 Aug 2004 17:50:02 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Connection: close
Transfer-Encoding: chunked
Content-Type: message/http
content-length: 169

TRACE /xml/ HTTP/1.1
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
Hello: Push me
Host: www.ibiblio.org
User-Agent: Java/1.4.2_05
The first six lines are the server's normal response HTTP
 header. The lines from TRACE
 /xml/ HTTP/1.1 on are the echo of the original
 client request. In this case, the echo is faithful, although out of
 order. However, if there were a proxy server between the client and
 server, it might not be.

Disconnecting from the Server

Recent versions of HTTP support what's known as
 Keep-Alive. Keep-Alive enhances the performance
 of some web connections by allowing multiple requests and responses to
 be sent in a series over a single TCP connection. A client indicates
 that it's willing to use HTTP Keep-Alive by including a Connection
 field in the HTTP request header with the value Keep-Alive:
Connection: Keep-Alive
However, when Keep-Alive is used, the server can no longer close
 the connection simply because it has sent the last byte of data to the
 client. The client may, after all, send another request. Consequently,
 it is up to the client to close the connection when it's done.
Java marginally supports HTTP Keep-Alive, mostly by piggybacking
 on top of browser support. It doesn't provide any convenient API for
 making multiple requests over the same connection. However, in
 anticipation of a day when Java will better support Keep-Alive, the
 HttpURLConnection class adds a
 disconnect() method that allows
 the client to break the connection:
public abstract void disconnect()
In practice, you rarely if ever need to call this.

Handling Server Responses

The first line of an HTTP server's response includes a
 numeric code and a message indicating what sort of response is made.
 For instance, the most common response is 200 OK, indicating that the
 requested document was found. For example:
HTTP/1.1 200 OK
Date: Fri, 20 Aug 2004 15:33:40 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Last-Modified: Sun, 06 Jun 1999 16:30:33 GMT
ETag: "28d907-657-375aa229"
Accept-Ranges: bytes
Content-Length: 1623
Connection: close
Content-Type: text/html

<HTML>
<HEAD>
rest of document follows...
Another response that you're undoubtedly all too familiar with
 is 404 Not Found, indicating that the URL you requested no longer
 points to a document. For example:
HTTP/1.1 404 Not Found
Date: Fri, 20 Aug 2004 15:39:16 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Last-Modified: Mon, 20 Sep 1999 19:25:05 GMT
ETag: "5-14ab-37e68a11"
Accept-Ranges: bytes
Content-Length: 5291
Connection: close
Content-Type: text/html

<html>
<head>
<title>Lost ... and lost</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#FFFFFF">
<div align="left">
 <h1>404 FILE NOT FOUND</h1>
Rest of error message follows...
There are many other, less common responses. For instance, code
 301 indicates that the resource has permanently moved to a new
 location and the browser should redirect itself to the new location
 and update any bookmarks that point to the old location. For
 example:
HTTP/1.1 301 Moved Permanently
Date: Fri, 20 Aug 2004 15:36:44 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Location: http://www.ibiblio.org/javafaq/books/beans/index.html
Connection: close
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved <A HREF="http://www.ibiblio.org/javafaq/books/beans/index
.html">here.<P>
<HR>
<ADDRESS>Apache/1.3.4 Server at www.ibiblio.org Port 80</ADDRESS>
</BODY></HTML>
The first line of this response is called the response
 message . It will not be returned by the various getHeaderField() methods in URLConnection. However, HttpURLConnection has a method to read and
 return just the response message. This is the aptly named getResponseMessage() :
public String getResponseMessage() throws IOException
Often all you need from the response message is the numeric
 response code. HttpURLConnection
 also has a getResponseCode()
 method to return this as an int:
public int getResponseCode() throws IOException
HTTP 1.0 defines 16 response codes. HTTP 1.1 expands this to 40 different
 codes. While some numbers, notably 404, have become slang almost
 synonymous with their semantic meaning, most of them are less
 familiar. The HttpURLConnection
 class includes 36 named constants representing the most common
 response codes. These are summarized in Table 15-3.
Table 15-3. The HTTP 1.1 response codes
	Code
	Meaning
	HttpURLConnection constant

	1XX
	Informational
	
	100
	The server is prepared to accept the request body
 and the client should send it; a new feature in HTTP 1.1 that
 allows clients to ask whether the server will accept a request
 before they send a large amount of data as part of the
 request.
	N/A

	101
	The server accepts the client's request in the
 Upgrade header field to change the application protocol; e.g.,
 from HTTP 1.0 to HTTP 1.1.
	N/A

	2XX
	Request succeeded.
	
	200
	The most common response code. If the request
 method was GET or POST, the requested data is contained in the
 response along with the usual headers. If the request method
 was HEAD, only the header information is
 included.
	 HTTP_OK

	201
	The server has created a resource at the URL
 specified in the body of the response. The client should now
 attempt to load that URL. This code is sent only in response
 to POST requests.
	 HTTP_CREATED

	202
	This rather uncommon response indicates that a
 request (generally from POST) is being processed, but the
 processing is not yet complete, so no response can be
 returned. However, the server should return an HTML page that
 explains the situation to the user and provide an estimate of
 when the request is likely to be completed, and, ideally, a
 link to a status monitor of some kind.
	 HTTP_ACCEPTED

	203
	The resource representation was returned from a
 caching proxy or other local source and is not guaranteed to
 be up to date.
	 HTTP_NOT_AUTHORITATIVE

	204
	The server has successfully processed the request
 but has no information to send back to the client. This is
 normally the result of a poorly written form-processing
 program on the server that accepts data but does not return a
 response to the user.
	 HTTP_NO_CONTENT

	205
	The server has successfully processed the request
 but has no information to send back to the client.
 Furthermore, the client should clear the form to which the
 request is sent.
	 HTTP_RESET

	206
	The server has returned the part of the document
 the client requested using the byte range extension to HTTP,
 rather than the whole document.
	 HTTP_PARTIAL

	3XX
	Relocation and redirection.
	
	300
	The server is providing a list of different
 representations (e.g., PostScript and PDF) for the requested
 document.
	 HTTP_MULT_CHOICE

	301
	The resource has moved to a new URL. The client
 should automatically load the resource at this URL and update
 any bookmarks that point to the old URL.
	 HTTP_MOVED_PERM

	302
	The resource is at a new URL temporarily, but its
 location will change again in the foreseeable future;
 therefore, bookmarks should not be updated.
	 HTTP_MOVED_TEMP

	303
	Generally used in response to a POST form
 request, this code indicates that the user should retrieve a
 document other than the one requested (as opposed to a
 different location for the requested document).
	 HTTP_SEE_OTHER

	304
	The If-Modified-Since header indicates that the
 client wants the document only if it has been recently
 updated. This status code is returned if the document has not
 been updated. In this case, the client should load the
 document from its cache.
	 HTTP_NOT_MODIFIED

	305
	The Location header field contains the address of
 a proxy that will serve the response.
	 HTTP_USE_PROXY

	307
	Almost the same as code 303, a 307 response
 indicates that the resource has moved to a new URL, although
 it may move again to a different URL in the future. The client
 should automatically load the page at this URL.
	N/A

	4XX
	Client error.
	
	400
	The client request to the server used improper
 syntax. This is rather unusual in normal web browsing but more
 common when debugging custom clients.
	 HTTP_BAD_REQUEST

	401
	Authorization, generally a username and password,
 is required to access this page. Either a username and
 password have not yet been presented or the username and
 password are invalid.
	 HTTP_UNAUTHORIZED

	402
	Not used today, but may be used in the future to
 indicate that some sort of digital cash transaction is
 required to access the resource.
	 HTTP_PAYMENT_REQUIRED

	403
	The server understood the request, but is
 deliberately refusing to process it. Authorization will not
 help. This might be used when access to a certain page is
 denied to a certain range of IP addresses.
	 HTTP_FORBIDDEN

	404
	This most common error response indicates that
 the server cannot find the requested resource. It may indicate
 a bad link, a document that has moved with no forwarding
 address, a mistyped URL, or something similar.
	 HTTP_NOT_FOUND

	405
	The request method is not allowed for the
 specified resource; for instance, you tried to PUT a file on a
 web server that doesn't support PUT or tried to POST to a URI
 that only allows GET.
	 HTTP_BAD_METHOD

	406
	The requested resource cannot be provided in a
 format the client is willing to accept, as indicated by the
 Accept field of the request HTTP header.
	 HTTP_NOT_ACCEPTABLE

	407
	An intermediate proxy server requires
 authentication from the client, probably in the form of a
 username and password, before it will retrieve the requested
 resource.
	 HTTP_PROXY_AUTH

	408
	The client took too long to send the request,
 perhaps because of network congestion.
	 HTTP_CLIENT_TIMEOUT

	409
	A temporary conflict prevents the request from
 being fulfilled; for instance, two clients are trying to PUT
 the same file at the same time.
	 HTTP_CONFLICT

	410
	Like a 404, but makes a stronger assertion about
 the existence of the resource. The resource has been
 deliberately deleted (not moved) and will not be restored.
 Links to it should be removed.
	 HTTP_GONE

	411
	The client must but did not send a Content-length
 field in the client request HTTP header.
	 HTTP_LENGTH_REQUIRED

	412
	A condition for the request that the client
 specified in the request HTTP header is not
 satisfied.
	 HTTP_PRECON_FAILED

	413
	The body of the client request is larger than the
 server is able to process at this time.
	 HTTP_ENTITY_TOO_LARGE

	414
	The URI of the request is too long. This is
 important to prevent certain buffer overflow
 attacks.
	 HTTP_REQ_TOO_LONG

	415
	The server does not understand or accept the MIME
 content-type of the request body.
	 HTTP_UNSUPPORTED_TYPE

	416
	The server cannot send the byte range the client
 requested.
	N/A

	417
	The server cannot meet the client's expectation
 given in an Expect-request header field.
	N/A

	5XX
	Server error.
	
	500
	An unexpected condition occurred that the server
 does not know how to handle.
	 HTTP_SERVER_ERROR

 HTTP_INTERNAL_ERROR

	501
	The server does not have a feature that is needed
 to fulfill this request. A server that cannot handle POST
 requests might send this response to a client that tried to
 POST form data to it.
	 HTTP_NOT_IMPLEMENTED

	502
	This code is applicable only to servers that act
 as proxies or gateways. It indicates that the proxy received
 an invalid response from a server it was connecting to in an
 effort to fulfill the request.
	 HTTP_BAD_GATEWAY

	503
	The server is temporarily unable to handle the
 request, perhaps due to overloading or
 maintenance.
	 HTTP_UNAVAILABLE

	504
	The proxy server did not receive a response from
 the upstream server within a reasonable amount of time, so it
 can't send the desired response to the client.
	 HTTP_GATEWAY_TIMEOUT

	505
	The server does not support the version of HTTP
 the client is using (e.g., the as-yet-nonexistent HTTP
 2.0).

	 HTTP_VERSION

Example 15-10 is a
 revised source viewer program that now includes the response message.
 The lines added since SourceViewer2
 are in bold.
Example 15-10. A SourceViewer that includes the response code and
 message
import java.net.*;
import java.io.*;
import javax.swing.*;
import java.awt.*;

public class SourceViewer3 {

 public static void main (String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {

 //Open the URLConnection for reading
 URL u = new URL(args[i]);
 HttpURLConnection uc = (HttpURLConnection) u.openConnection();
 int code = uc.getResponseCode();
 String response = uc.getResponseMessage();
 System.out.println("HTTP/1.x " + code + " " + response);
 for (int j = 1; ; j++) {
 String header = uc.getHeaderField(j);
 String key = uc.getHeaderFieldKey(j);
 if (header == null || key == null) break;
 System.out.println(uc.getHeaderFieldKey(j) + ": " + header);
 } // end for
 InputStream in = new BufferedInputStream(uc.getInputStream());
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }

 } // end if

 } // end main

} // end SourceViewer3

The only thing this program doesn't read that the server sends
 is the version of HTTP the server is using. There's currently no
 method to return that. If you need it, you'll just have to use a raw
 socket instead. Consequently, in this example, we just fake it as
 "HTTP/1.x", like this:
% java SourceViewer3 http://www.oreilly.com
HTTP/1.x 200 OK
Server: WN/1.15.1
Date: Mon, 01 Nov 1999 23:39:19 GMT
Last-modified: Fri, 29 Oct 1999 23:40:06 GMT
Content-type: text/html
Title: www.oreilly.com -- Welcome to O'Reilly & Associates! --
computer books, software, online publishing
Link: <mailto:webmaster@ora.com>; rev="Made"
<HTML>
<HEAD>
...
Error conditions

On occasion, the server encounters an error but
 returns useful information in the message body nonetheless. For
 example, when a client requests a nonexistent page from the
 www.ibiblio.org web site, rather than simply
 returning a 404 error code, the server sends the search page shown
 in Figure 15-2 to help
 the user figure out where the missing page might have gone.
[image: IBiblio's 404 page]

Figure 15-2. IBiblio's 404 page

The getErrorStream()
 method returns an InputStream
 containing this data or null if
 no error was encountered or no data returned:
public InputStream getErrorStream() // Java 1.2
In practice, this isn't necessary. Most implementations will
 return this data from getInputStream() as well.

Redirects

The 300-level response codes all indicate some sort of
 redirect; that is, the requested resource is no longer available at
 the expected location but it may be found at some other location.
 When encountering such a response, most browsers automatically load
 the document from its new location. However, this can be a security
 risk, because it has the potential to move the user from a trusted
 site to an untrusted one, perhaps without the user even
 noticing.
By default, an HttpURLConnection follows redirects.
 However, the HttpURLConnection
 class has two static methods that let you decide whether to follow
 redirects:
public static boolean getFollowRedirects()
public static void setFollowRedirects(boolean follow)
The getFollowRedirects()
 method returns true if redirects
 are being followed, false if they
 aren't. With an argument of true, the setFollowRedirects() method makes
 HttpURLConnection objects follow
 redirects. With an argument of false, it prevents them from following
 redirects. Since these are static methods, they change the behavior
 of all HttpURLConnection objects
 constructed after the method is invoked. The setFollowRedirects() method may throw a
 SecurityException if the security
 manager disallows the change. Applets especially are not allowed to
 change this value.
Java has two methods to configure redirection on an
 instance-by-instance basis. These are:
public boolean getInstanceFollowRedirects() // Java 1.3
public void setInstanceFollowRedirects(boolean followRedirects) // Java 1.3
If setInstanceFollowRedirects(
) is not invoked on a given HttpURLConnection, that HttpURLConnection simply follows the
 default behavior as set by the class method HttpURLConnection.setFollowRedirects(
).

Proxies

Many users behind firewalls or using AOL or other
 high-volume ISPs access the web through proxy servers. The usingProxy() method tells you whether the
 particular HttpURLConnection is
 going through a proxy server:
public abstract boolean usingProxy() // Java 1.3
It returns true if a proxy is
 being used, false if not. In some
 contexts, the use of a proxy server may have security
 implications.

Streaming Mode

Every request sent to an HTTP server has an HTTP header.
 One field in this header is the Content-length; that is, the number of
 bytes in the body of the request. The header comes before the body.
 However, to write the header you need to know the length of the body,
 which you may not have yet. Normally the way Java solves this Catch-22
 is by caching every thing you write onto the OutputStream retrieved from the HttpURLConnection until the stream is
 closed. At that point, it knows how many bytes are in the body so it
 has enough information to write the Content-length header.
This scheme is fine for small requests sent in response to
 typical web forms. However, it's burdensome for responses to very long
 forms or some SOAP messages. It's very wasteful and slow for
 medium-to-large documents sent with HTTP PUT. It's much more efficient
 if Java doesn't have to wait for the last byte of data to be written
 before sending the first byte of data over the network. Java 1.5
 offers two solutions to this problem. If you know the size of your
 data—for instance, you're uploading a file of known size using HTTP
 PUT—you can tell the HttpURLConnection object the size of that
 data. If you don't know the size of the data in advance, the you can
 use chunked transfer encoding instead. In chunked transfer encoding,
 the body of the request is sent in multiple pieces, each with its own
 separate content length. To turn on chunked transfer encoding, just
 pass the size of the chunks you want to the setChunkedStreamingMode() method before you
 connect the URL.
public void setChunkedStreamingMode(int chunkLength) // Java 1.5
Java will then use a slightly different form of HTTP than the
 examples in this book. However, to the Java programmer the difference
 is irrelevant. As long as you're using the URLConnection class instead of raw sockets
 and as long as the server supports chunked transfer encoding, it
 should all just work without any further changes to your code.
 However, not all servers support chunked encoding, though most of the
 late-model, major ones do. Even more importantly, chunked transfer
 encoding does get in the way of authentication and redirection. If
 you're trying to send chunked files to a redirected URL or one that
 requires password authentication, an HttpRetryException will be thrown. You'll
 then need to retry the request at the new URL or at the old URL with
 the appropriate credentials; and this all needs to be done manually
 without the full support of the HTTP protocol handler you normally
 have. Therefore, don't use chunked transfer encoding unless you really
 need it. As with most performance advice, this means you shouldn't
 implement this optimization until measurements prove the non-streaming
 default is a bottleneck.
If you do happen to know the size of the request data in
 advance, Java 1.5 lets you optimize the connection by providing this
 information to the HttpURLConnection object. If you do this
 Java can start streaming the data over the network immediately.
 Otherwise, it has to cache everything you write in order to determine
 the content length, and only send it over the network after you've
 closed the stream. If you know exactly how big your data is, pass that
 number to the setFixedLengthStreamingMode(
) method:
public void setFixedLengthStreamingMode(int contentLength)
Java will use this number in the HTTP Content-length HTTP header
 field. However, if you then try to write more or less than the number
 of bytes given here, Java will throw an IOException. Of course, that will happen
 later, when you're writing data, not when you first call this method.
 The setFixedLengthStreamingMode()
 method itself will throw an IllegalArgumentException if you pass in a
 negative number, or an IllegalStateException if the connection is
 connected or has already been set to chunked transfer encoding. (You
 can't use both chunked transfer encoding and fixed-length streaming
 mode on the same request.)
Fixed-length streaming mode is transparent on the server side.
 Servers neither know nor care how the Content-length was set as long
 as it's correct. However, like chunked transfer encoding, streaming
 mode does interfere authentication and redirection. If either of these
 is required for a given URL, an HttpRetryException will be thrown; you have
 to manually retry. Therefore, don't use this mode unless you really
 need it.

Caches

 Web browsers have been caching pages and images for years.
 If a logo is repeated on every page of a site, the browser normally
 loads it from the remote server only once, stores it in its cache, and
 reloads it from the cache whenever it's needed rather than returning to
 the remote server every time the same page is needed. Several HTTP headers, including Expires and Cache-Control, can
 control caching.
Java 1.5 finally adds the ability to cache data to the URL and URLConnection classes. By default, Java 1.5
 does not cache anything, but you can create your own cache by
 subclassing the java.net.ResponseCache class and installing it as the system default. Whenever
 the system tries to load a new URL thorough a protocol handler, it will
 first look for it in the cache. If the cache returns the desired
 content, the protocol handler won't need to connect to the remote
 server. However, if the requested data is not in the cache, the protocol
 handler will download it. After it's done so, it will put its response
 into the cache so the content is more quickly available the next time
 that URL is loaded.
Two abstract methods in the ResponseCache class store and retrieve data
 from the system's single cache:
public abstract CacheResponse get(URI uri, String requestMethod,
 Map<String,List<String>> requestHeaders) throws IOException
public abstract CacheRequest put(URI uri, URLConnection connection)
 throws IOException
The put() method returns a CacheRequest object that wraps an OutputStream into which the protocol handler
 will write the data it reads. CacheRequest is an abstract class with two
 methods, as shown in Example
 15-11.
Example 15-11. The CacheRequest class
package java.net

public abstract class CacheRequest {

 public abstract OutputStream getBody() throws IOException;
 public abstract void abort();

}

The getOutputStream()
 method in the subclass should return an OutputStream that points into the cache's data
 store for the URI passed to the put(
) method at the same time. For instance, if you're storing the
 data in a file, then you'd return a FileOutputStream connected to that file. The
 protocol handler will copy the data it reads onto this OutputStream. If a problem arises while
 copying (e.g., the server unexpectedly closes the connection), the
 protocol handler calls the abort()
 method. This method should then remove any data that has been stored
 from the cache.
Example 15-12
 demonstrates a basic CacheRequest
 subclass that passes back a ByteArrayOutputStream. Later the data can be
 retrieved using the getData()
 method, a custom method in this subclass just retrieving the data Java
 wrote onto the OutputStream this
 class supplied. An obvious alternative strategy would be to store
 results in files and use a FileOutputStream instead.
Example 15-12. A basic CacheRequest subclass
import java.net.*;
import java.io.*;
import java.util.*;

public class SimpleCacheRequest extends CacheRequest {

 ByteArrayOutputStream out = new ByteArrayOutputStream();

 public OutputStream getBody() throws IOException {
 return out;
 }

 public void abort() {
 out = null;
 }

 public byte[] getData() {
 if (out == null) return null;
 else return out.toByteArray();
 }

}

The get() method retrieves the
 data and headers from the cache and returns them wrapped in a CacheResponse object. It returns null if the desired URI is not in the cache,
 in which case the protocol handler loads the URI from the remote server
 as normal. Again, this is an abstract class that you have to implement
 in a subclass. Example 15-13
 summarizes this class. It has two methods, one to return the data of the
 request and one to return the headers. When caching the original
 response, you need to store both. The headers should be returned in an
 unmodifiable map with keys that are the HTTP header field names and
 values that are lists of values for each named HTTP header.
Example 15-13. The CacheResponse class
package java.net;

public abstract class CacheRequest {

 public abstract InputStream getBody() ;
 public abstract Map<String,List<String>> getHeaders();

}

Example 15-14 shows a
 simple CacheResponse subclass that is tied to a SimpleCacheRequest. In this example, shared
 references pass data from the request class to the response class. If we
 were storing responses in files, we'd just need to share the filenames
 instead. Along with the SimpleCacheRequest object from which it will
 read the data, we must also pass the original URLConnection object into the constructor.
 This is used to read the HTTP header so it can be stored for later
 retrieval. The object also keeps track of the expiration date (if any)
 provided by the server for the cached representation of the
 resource.
Example 15-14. A basic CacheResponse subclass
import java.net.*;
import java.io.*;
import java.util.*;

public class SimpleCacheResponse extends CacheResponse {

 private Map<String,List<String>> headers;
 private SimpleCacheRequest request;
 private Date expires;

 public SimpleCacheResponse(SimpleCacheRequest request, URLConnection uc)
 throws IOException {

 this.request = request;

 // deliberate shadowing; we need to fill the map and
 // then make it unmodifiable
 Map<String,List<String>> headers = new HashMap<String,List<String>>();
 String value = "";
 for (int i = 0;; i++) {
 String name = uc.getHeaderFieldKey(i);
 value = uc.getHeaderField(i);
 if (value == null) break;
 List<String> values = headers.get(name);
 if (values == null) {
 values = new ArrayList<String>(1);
 headers.put(name, values);
 }
 values.add(value);
 }
 long expiration = uc.getExpiration();
 if (expiration != 0) {
 this.expires = new Date(expiration);
 }

 this.headers = Collections.unmodifiableMap(headers);

 }

 public InputStream getBody() {
 return new ByteArrayInputStream(request.getData());
 }

 public Map<String,List<String>> getHeaders()
 throws IOException {
 return headers;
 }

 public boolean isExpired() {
 if (expires == null) return false;
 else {
 Date now = new Date();
 return expires.before(now);
 }
 }

}

Finally, we need a simple ResponseCache subclass that passes SimpleCacheRequests and SimpleCacheResponses back to the protocol
 handler as requested. Example
 15-15 demonstrates such a simple class that stores a finite
 number of responses in memory in one big HashMap.
Example 15-15. An in-memory ResponseCache
import java.net.*;
import java.io.*;
import java.util.*;
import java.util.concurrent.*;

public class MemoryCache extends ResponseCache {

 private Map<URI, SimpleCacheResponse> responses
 = new ConcurrentHashMap<URI, SimpleCacheResponse>();
 private int maxEntries = 100;

 public MemoryCache() {
 this(100);
 }

 public MemoryCache(int maxEntries) {
 this.maxEntries = maxEntries;
 }

 public CacheRequest put(URI uri, URLConnection uc)
 throws IOException {

 if (responses.size() >= maxEntries) return null;

 String cacheControl = uc.getHeaderField("Cache-Control");
 if (cacheControl != null && cacheControl.indexOf("no-cache") >= 0) {
 return null;
 }

 SimpleCacheRequest request = new SimpleCacheRequest();
 SimpleCacheResponse response = new SimpleCacheResponse(request, uc);

 responses.put(uri, response);
 return request;

 }

 public CacheResponse get(URI uri, String requestMethod,
 Map<String,List<String>> requestHeaders)
 throws IOException {

 SimpleCacheResponse response = responses.get(uri);
 // check expiration date
 if (response != null && response.isExpired()) {
 responses.remove(response);
 response = null;
 }
 return response;

 }

}

Once a ResponseCache like this
 one is installed, Java's HTTP protocol handler always uses it, even when
 it shouldn't. The client code needs to check the expiration dates on
 anything it's stored and watch out for Cache-Control header fields. The
 key value of concern is no-cache. If you see this string in a
 Cache-Control header field, it means any resource representation is
 valid only momentarily and any cached copy is likely to be out of date
 almost immediately, so you really shouldn't store it at all.
Each retrieved resource stays in the HashMap until it expires. This example waits
 for an expired document to be requested again before it deletes it from
 the cache. A more sophisticated implementation could use a low-priority
 thread to scan for expired documents and remove them to make way for
 others. Instead of or in addition to this, an implementation might cache
 the representations in a queue and remove the oldest documents or those
 closest to their expiration date as necessary to make room for new ones.
 An even more sophisticated implementation could track how often each
 document in the store was accessed and expunge only the oldest and
 least-used documents.
I've already mentioned that you could implement this on top of the
 filesystem instead of sitting on top of the Java Collections API. You
 could also store the cache in a database and you could do a lot of
 less-common things as well. For instance, you could redirect requests
 for certain URLs to a local server rather than a remote server halfway
 around the world, in essence using a local web server as the cache. Or a
 ResponseCache could load a fixed set
 of files at launch time and then only serve those out of memory. This
 might be useful for a server that processes many different SOAP
 requests, all of which adhere to a few common schemas that can be stored
 in the cache. The abstract ResponseCache class is flexible enough to
 support all of these and other usage patterns.
Regrettably, Java only allows one cache at a time. To change the
 cache object, use the static ResponseCache.setDefault() and ResponseCache.getDefault() methods:
public static ResponseCache getDefault()
public static void setDefault(ResponseCache responseCache)
These set the single cache used by all programs running within the
 same Java virtual machine. For example, this one line of code installs
 Example 15-13 in an
 application:
ResponseCache.setDefault(new MemoryCache());

JarURLConnection

 Applets often store their .class
 files in a JAR archive, which bundles all the classes in one package
 that still maintains the directory hierarchy needed to resolve fully
 qualified class names like com.macfaq.net.QueryString. Furthermore, since
 the entire archive is compressed and can be downloaded in a single HTTP
 connection, it requires much less time to download the
 .jar file than to download its contents one file at
 a time. Some programs store needed resources such as sounds, images, and
 even text files inside these JAR archives. Java provides several
 mechanisms for getting the resources out of the JAR archive, but the one
 that we'll address here is the jar URL. The
 JarURLConnection class supports URLs
 that point inside JAR archives:
public abstract class JarURLConnection extends URLConnection// Java 1.2
A jar URL starts with a normal URL that
 points to a JAR archive, such as http://www.cafeaulait.org/network.jar or
 file:///D%7C/javafaq/network.jar. Then the protocol
 jar: is prefixed to this URL. Finally,
 !/ and the path to the desired file inside the JAR
 archive are suffixed to the original URL. For example, to find the file
 com/macfaq/net/QueryString.class inside the
 previous .jar files, you'd use the URLs
 jar:http://www.cafeaulait.org/network.jar!/com/macfaq/net/QueryString.class
 or
 jar:file://D%7C/javafaq/network.jar!/com/macfaq/net/QueryString.class.
 Of course, this isn't limited simply to Java .class
 files. You can use jar URLs to point to any kind of
 file that happens to be stored inside a JAR archive, including images,
 sounds, text, HTML files, and more. If the path is left off, the URL
 refers to the entire JAR archive, e.g.,
 jar:http://www.cafeaulait.org/network.jar!/ or
 jar:file:///D%7C/javafaq/network.jar!/.
Web browsers don't understand jar
 URLs, though. They're used only inside Java programs. To get a JarURLConnection, construct a URL object using a jar
 URL and cast the return value of its openConnection() method to JarURLConnection. Java downloads the entire
 JAR archive to a temporary file, opens it, and positions the file
 pointer at the beginning of the particular entry you requested. You can
 then read the contents of the particular file inside the JAR archive
 using the InputStream returned by
 getInputStream() . For example:
try {
 //Open the URLConnection for reading
 URL u = new URL(
 "jar:http://www.cafeaulait.org/course/week1.jar!/week1/05.html");
 URLConnection uc = u.openConnection();

 InputStream in = uc.getInputStream();
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
}
catch (IOException ex) {
 System.err.println(ex);
}
Besides the usual methods of the URLConnection class that JarURLConnection inherits, this class adds eight new methods, mostly to
 return information about the JAR archive itself. These are:
public URL getJarFileURL() // Java 1.2
public String getEntryName() // Java 1.2
public JarEntry getJarEntry() throws IOException // Java 1.2
public Manifest getManifest() throws IOException // Java 1.2
public Attributes getAttributes() throws IOException // Java 1.2
public Attributes getMainAttributes() throws IOException // Java 1.2
public Certificate[] getCertificates() throws IOException // Java 1.2
public abstract JarFile getJarFile() throws IOException // Java 1.2
The getJarFileURL() method is the simplest. It merely returns the URL of the
 jar file being used by this connection. This
 generally differs from the URL of the file in the archive being used for
 this connection. For instance, the jar file URL of
 jar:http://www.cafeaulait.org/network.jar!/com/macfaq/net/QueryString.class
 is http://www.cafeaulait.org/network.jar. The
 getEntryName() returns the other
 part of the jar URL; that is, the path to the file
 inside the archive. The entry name of
 jar:http://www.cafeaulait.org/network.jar!/com/macfaq/net/QueryString.class
 is com/macfaq/net/QueryString.class.
The getJarFile() method returns a java.util.jar.JarFile object that you can use
 to inspect and manipulate the archive contents. The getJarEntry() method returns a java.util.jar.JarEntry object for the
 particular file in the archive that this URLConnection is connected to. It returns null
 if the URL points to a whole JAR archive rather than a particular entry
 in the archive.
Much of the functionality of both JarFile and JarEntry is duplicated by other methods in the
 JarURLConnection class; which to use
 is mostly a matter of personal preference. For instance, the getManifest() method returns a java.util.jar.Manifest object representing the
 contents of the JAR archive's manifest file. A manifest
 file is included in the archive to supply metainformation
 about the contents of the archive, such as which file contains the
 main() method and which classes are
 Java beans. It's called MANIFEST.MF and placed in
 the META-INF directory; its contents typically look
 something like this:
Manifest-Version: 1.0
Required-Version: 1.0

Name: com/macfaq/net/FormPoster.class
Java-Bean: true
Last-modified: 10-21-2003
Depends-On: com/macfaq/net/QueryString.class
Digest-Algorithms: MD5
MD5-Digest: XD4578YEEIK9MGX54RFGT7UJUI9810

Name: com/macfaq/net/QueryString.class
Java-Bean: false
Last-modified: 5-17-2003
Digest-Algorithms: MD5
MD5-Digest: YP7659YEEIK0MGJ53RYHG787YI8900
The name-value pairs associated with each entry are called the
 attributes of that entry. The name-value pairs not
 associated with any entry are called the main
 attributes of the archive. The getAttributes() method returns a java.util.jar.Attributes object representing
 the attributes that the manifest file specifies for this
 jar entry, or null if the URL points to a whole JAR archive.
 The getMainAttributes() method
 returns a java.util.jar.Attributes
 object representing the attributes that the manifest file specifies for
 the entire JAR archive as a whole.
Finally, the getCertificates()
 method returns an array of digital signatures (each
 represented as a java.security.cert.Certificate object) that
 apply to this jar entry, or null if the URL points to a JAR archive
 instead of a particular entry. These are actually read from separate
 signature files for each jar entry, not from the
 manifest file. Unlike the other methods of JarURLConnection, getCertificates() can be called only after
 the entire input stream for the jar URL has been
 read. This is because the current hash of the data needs to be
 calculated, which can be done only when the entire entry is
 available.
More details about the java.util.jar package, JAR archives, manifest
 files, entries, attributes, digital signatures, how this all relates to
 Zip files and Zip and JAR streams, and so forth can be found on Sun's
 web site at http://java.sun.com/j2se/1.4.2/docs/guide/jar/ or in
 Chapter 9 of my book, Java I/O
 (O'Reilly).

Chapter 16. Protocol Handlers

When designing an architecture that would allow them to
 build a self-extensible browser, the engineers at Sun divided the problem
 into two parts: handling protocols and handling content. Handling a protocol involves the interaction between a
 client and a server: generating requests in the correct format,
 interpreting the headers that come back with the data, acknowledging that
 the data has been received, etc. Handling the content involves converting
 the raw data into a format Java understands—for example, an InputStream or an AudioClip. These two problems, handling
 protocols and handling content, are distinct. The software that displays a
 GIF image doesn't care whether the image was retrieved via FTP, HTTP,
 gopher, or some new protocol. Likewise, the protocol handler, which
 manages the connection and interacts with the server, doesn't care if it's
 receiving an HTML file or an MPEG movie file; at most, it will extract a
 content type from the headers to pass along to the content handler.
Java divides the task of handling protocols into a number of pieces.
 As a result, there is no single class called ProtocolHandler. Instead, four different classes
 in the java.net package work together
 to implement the protocol handler mechanism. Those classes are URL
 , URLStreamHandler
 , URLConnection
 , and URLStreamHandlerFactory. URL is the only concrete class in this group;
 URLStreamHandler and URLConnection are abstract classes and URLStreamHandlerFactory is an interface.
 Therefore, if you are going to implement a new protocol handler, you have
 to write concrete subclasses for the URLStreamHandler and the URLConnection. To use these classes, you may
 also have to write a class that implements the URLStreamHandlerFactory interface.
What Is a Protocol Handler?

The way the URL, URLStreamHandler, URLConnection, and URLStreamHandlerFactory classes work together
 can be confusing. Everything starts with a URL, which represents a
 pointer to a particular Internet resource. Each URL specifies the
 protocol used to access the resource; typical values for the protocol
 include mailto, http, and ftp. When you construct a URL object from the URL's string
 representation, the constructor strips the protocol field and passes it
 to the URLStreamHandlerFactory
 . The factory's job is to take the protocol, locate the
 right subclass of URLStreamHandler
 for the protocol, and create a new instance of that stream handler,
 which is stored as a field within the URL object. Each application has at most one
 URLStreamHandlerFactory; once the
 factory has been installed, attempting to install another will throw an
 Error.
Now that the URL object has a
 stream handler, it asks the stream handler to finish parsing the URL
 string and create a subclass of URLConnection that knows how to talk to
 servers using this protocol. URLStreamHandler subclasses and URLConnection subclasses always come in pairs;
 the stream handler for a protocol always knows how to find an
 appropriate URLConnection for its
 protocol. It is worth noting that the stream handler does most of the
 work of parsing the URL. The format of the URL, although standard,
 depends on the protocol; therefore, it must be parsed by a URLStreamHandler, which knows about a
 particular protocol, and not by the URL object, which is generic and has no
 knowledge of specific protocols. This also means that if you are writing
 a new stream handler, you can define a new URL format that's appropriate
 to your task.
Warning
New URL schemes should be defined only for genuinely new
 protocols. They should not be defined for different uses of existing
 protocols. The iTunes Music Store itms scheme and
 the RSS feed scheme are examples of what not to
 do. Both of these should use http.

The URLConnection class, which you learned about in the previous chapter,
 represents an active connection to an Internet resource. It is
 responsible for interacting with the server. A URLConnection knows how to generate requests
 and interpret the headers that the server returns. The output from a
 URLConnection is the raw data
 requested with all traces of the protocol (headers, etc.) stripped,
 ready for processing by a content handler.
In most applications, you don't need to worry about URLConnection objects and stream handlers;
 they are hidden by the URL class,
 which provides a simple interface to the functionality you need. When
 you call the getInputStream(),
 getOutputStream(), and getContent() methods of the URL class, you are really calling similarly
 named methods in the URLConnection
 class. We have seen that interacting directly with a URLConnection can be convenient when you need
 a little more control over communication with a server, such as when
 downloading binary files or posting data to a server-side
 program.
However, the URLConnection and
 URLStreamHandler classes are even more important when you need to add new
 protocols. By writing subclasses of these classes, you can add support
 for standard protocols such as finger, whois, or NTP that Java doesn't
 support out of the box. Furthermore, you're not limited to established
 protocols with well-known services. You can create new protocols that
 perform database queries, search across multiple Internet search
 engines, view pictures from binary newsgroups, and more. You can add new
 kinds of URLs as needed to represent the new types of resources.
 Furthermore, Java applications can be built so that they load new
 protocol handlers at runtime. Unlike current browsers such as Mozilla
 and Internet Explorer, which contain explicit knowledge of all the
 protocols and content types they can handle, a Java browser can be a relatively lightweight skeleton that
 loads new handlers as needed. Supporting a new protocol just means
 adding some new classes in predefined locations, not writing an entirely
 new release of the browser.
What's involved in adding support for a new protocol? As I
 said earlier, you need to write two new classes: a subclass of URLConnection and a subclass of URLStreamHandler. You may also need to write a
 class that implements the URLStreamHandlerFactory interface. The
 URLConnection subclass handles the
 interaction with the server, converts anything the server sends into an
 InputStream, and converts anything
 the client sends into an OutputStream. This subclass must implement the
 abstract method connect(); it may
 also override the concrete methods getInputStream(), getOutputStream(), and getContentType().
The URLStreamHandler subclass
 parses the string representation of the URL into its separate parts and
 creates a new URLConnection object
 that understands that URL's protocol. This subclass must implement the
 abstract openConnection() method,
 which returns the new URLConnection
 to its caller. If the String
 representation of the URL doesn't look like a standard hierarchical URL,
 you should also override the parseURL(
) and toExternalForm()
 methods.
Finally, you may need to create a class that implements the
 URLStreamHandlerFactory interface.
 The URLStreamHandlerFactory helps the
 application find the right protocol handler for each type of URL. The
 URLStreamHandlerFactory interface has
 a single method, createURLStreamHandler(
), which returns a URLStreamHandler object. This method must find
 the appropriate subclass of URLStreamHandler given only the protocol
 (e.g., ftp); that is, it must understand the
 package and class-naming conventions used for stream handlers. Since
 URLStreamHandlerFactory is an
 interface, you can place the createURLStreamHandler() method in any
 convenient class, perhaps the main class of your application.
When it first encounters a protocol, Java looks for URLStreamHandler classes in this order:
	First, Java checks to see whether a URLStreamHandlerFactory is installed. If
 it is, the factory is asked for a URLStreamHandler for the protocol.

	If a URLStreamHandlerFactory isn't installed or
 if Java can't find a URLStreamHandler for the protocol, Java
 looks in the packages named in the java.protocol.handler.pkgs system property
 for a sub-package that shares the protocol name and a class called
 Handler. The value of this
 property is a list of package names separated by a vertical bar
 (|). Thus, to indicate that Java should seek protocol
 handlers in the com.macfaq.net.www and org.cafeaulait.protocols packages, you
 would add this line to your properties file:
java.protocol.handler.pkgs=com.macfaq.net.www|org.cafeaulait.protocols
To find an FTP protocol handler (for example), Java first
 looks for the class com.macfaq.net.www.ftp.Handler. If that's
 not found, Java next tries to instantiate org.cafeaulait.protocols.ftp.Handler.

	Finally, if all else fails, Java looks for a URLStreamHandler named sun.net.www.protocol.name
 .Handler, where
 name is replaced by the name of the
 protocol; for example, sun.net.www.protocol.ftp.Handler.
Tip
In the early days of Java (circa 1995), Sun promised that
 protocols could be installed at runtime from the server that used
 them. For instance, in 1996, James Gosling and Henry McGilton
 wrote: "The HotJava Browser is given a reference to an object (a
 URL). If the handler for that protocol is already loaded, it will
 be used. If not, the HotJava Browser will search first the local
 system and then the system that is the target of the URL."
 (The Java Language Environment, A White
 Paper, May 1996, http://java.sun.com/docs/white/langenv/HotJava.doc1.html)
 However, the loading of protocol handlers from web sites was never
 implemented, and Sun doesn't talk much about it anymore.

Most of the time, an end user who wants to permanently install an
 extra protocol handler in a program such as HotJava will place the
 necessary classes in the program's class path and add the package prefix
 to the java.protocol.handler.pkgs
 property. However, a programmer who just wants to add a custom protocol
 handler to their program at compile time will write and install a
 URLStreamHandlerFactory that knows
 how to find their custom protocol handlers. The factory can tell an
 application to look for URLStreamHandler classes in any place that's
 convenient: on a web site, in the same directory as the application, or
 somewhere in the user's class path.
When each of these classes has been written and compiled, you're
 ready to write an application that uses the new protocol handler.
 Assuming that you're using a URLStreamHandlerFactory, pass the factory
 object to the static URL.setURLStreamHandlerFactory() method like
 this:
URL.setURLStreamHandlerFactory(new MyURLStreamHandlerFactory());
This method can be called only once in the lifetime of an
 application. If it is called a second time, it will throw an Error. Untrusted code will generally not be
 allowed to install factories or change the java.protocol.handler.pkgs property.
 Consequently, protocol handlers are primarily of use to standalone
 applications such as HotJava; Netscape and Internet Explorer use their
 own native C code instead of Java to handle protocols, so they're
 limited to a fixed set of protocols.
To summarize, here's the sequence of events:
	The program constructs a URL object.

	The constructor uses the arguments it's passed to determine
 the protocol part of the URL, e.g.,
 http.

	The URL() constructor
 tries to find a URLStreamHandler
 for the given protocol like this:
	If the protocol has been used before, the URLStreamHandler object is retrieved
 from a cache.

	Otherwise, if a URLStreamHandlerFactory has been set,
 the protocol string is passed to the factory's createURLStreamHandler()
 method.

	If the protocol hasn't been seen before and there's no
 URLStreamHandlerFactory, the
 constructor attempts to instantiate a URLStreamHandler object named
 protocol .Handler in one of the packages listed
 in the java.protocol.handler.pkgs
 property.

	Failing that, the constructor attempts to instantiate a
 URLStreamHandler object named
 protocol .Handler in the sun.net.www.protocol package.

	If any of these attempts succeed in retrieving a URLStreamHandler object, the URL constructor sets the URL object's handler field. If none of the attempts
 succeed, the constructor throws a MalformedURLException.

	The program calls the URL
 object's openConnection()
 method.

	The URL object asks the
 URLStreamHandler to return a
 URLConnection object appropriate
 for this URL. If there's any problem, an IOException is thrown. Otherwise, a
 URLConnection object is
 returned.

	The program uses the methods of the URLConnection class to interact with the
 remote resource.

Instead of calling openConnection(
) in step 4, the program can call getContent() or getInputStream(). In this case, the URLStreamHandler still instantiates a URLConnection object of the appropriate class.
 However, instead of returning the URLConnection object itself, the URLStreamHandler returns the result of
 URLConnection's getContent() or getInputStream() method.

The URLStreamHandler Class

The abstract URLStreamHandler
 class is a superclass for classes that handle specific
 protocols—for example, HTTP. You rarely call the methods of the URLStreamHandler class; they are called by
 other methods in the URL and URLConnection classes. By overriding the
 URLStreamHandler methods in your own
 subclass, you teach the URL class how
 to handle new protocols. Therefore, I'll focus on overriding the methods
 of URLStreamHandler rather than
 calling the methods.
The Constructor

You do not create URLStreamHandler objects directly. Instead, when a URL is constructed
 with a protocol that hasn't been seen before, Java asks the
 application's URLStreamHandlerFactory to create the
 appropriate URLStreamHandler
 subclass for the protocol. If that fails, Java guesses at the fully
 package-qualified name of the URLStreamHandler class and uses Class.forName() to attempt to construct
 such an object. This means each concrete subclass should have a noargs
 constructor. The single constructor for URLStreamHandler doesn't take any
 arguments:
public URLStreamHandler()
Because URLStreamHandler is
 an abstract class, this constructor is never called directly; it is
 only called from the constructors of subclasses.

Methods for Parsing URLs

The first responsibility of a URLStreamHandler is to split a string representation of a URL into its component parts and use those
 parts to set the various fields of the URL object. The parseURL() method splits the URL into
 parts, possibly using setURL() to
 assign values to the URL's fields.
 It is very difficult to imagine a situation in which you would call
 parseURL() directly; instead, you
 override it to change the behavior of the URL class.
protected void parseURL(URL u, String spec, int start, int
 limit)

This method parses the String spec into a URL u.
 All characters in the spec string
 before start should already have
 been parsed into the URL u. Characters after limit are ignored. Generally, the protocol
 will have already been parsed and stored in u before this method is invoked, and
 start will be adjusted so that it
 starts with the character after the colon that delimits the
 protocol.
The task of parseURL() is
 to set u's protocol, host, port, file, and ref fields. It can assume that any parts
 of the String that are before
 start and after limit have already been parsed or can be
 ignored.
The parseURL() method that
 Java supplies assumes that the URL looks more or less like an
 http or other hierarchical URL:
protocol://www.host.com:port/directory/another_directory/file#fragmentID
This works for ftp and
 gopher URLs. It does not work for
 mailto or news URLs and
 may not be appropriate for any new URL schemes you define. If the
 protocol handler uses URLs that fit this hierarchical form, you
 don't have to override parseURL()
 at all; the method inherited from URLStreamHandler works just fine. If the
 URLs are completely different, you must supply a parseURL() method that parses the URL
 completely. However, there's often a middle ground that can make
 your task easier. If your URL looks somewhat like a standard URL,
 you can implement a parseURL()
 method that handles the nonstandard portion of the URL and then
 calls super.parseURL() to do the
 rest of the work, setting the offset and limit arguments to indicate the portion of
 the URL that you didn't parse.
For example, a mailto URL looks like
 mailto:elharo@metalab.unc.edu. First, you need to
 figure out how to map this into the URL class's protocol, host, port, file, and ref fields. The protocol is clearly
 mailto. Everything after the
 @ can be the host. The hard question is what to do with
 the username. Since a mailto URL really doesn't
 have a file portion, we will use the URL class's file field to hold the username. The
 ref can be set to the empty
 string or null. The parseURL() method that follows implements
 this scheme:
public void parseURL(URL u, String spec, int start, int limit) {

 String protocol = u.getProtocol();
 String host = "";
 int port = u.getPort();
 String file = ""; // really username
 String fragmentID = null;

 if(start < limit) {
 String address = spec.substring(start, limit);
 int atSign = address.indexOf('@');
 if (atSign >= 0) {
 host = address.substring(atSign+1);
 file = address.substring(0, atSign);
 }
 }
 this.setURL(u, protocol, host, port, file, fragmentID);
}
Rather than borrowing an unused field from the URL object, it's possibly a better idea to
 store protocol-specific parts of the URL, such as the username, in
 fields of the URLStreamHandler
 subclass. The disadvantage of this approach is that such fields can
 be seen only by your own code; in this example, you couldn't use the
 getFile() method in the URL class to retrieve the username. Here's
 a version of parseURL() that
 stores the username in a field of the Handler subclass. When the connection is
 opened, the username can be copied into the MailtoURLConnection object that results.
 That class would provide some sort of getUserName() method:
 String username = "";

public void parseURL(URL u, String spec, int start, int limit) {

 String protocol = u.getProtocol();
 String host = "";
 int port = u.getPort();
 String file = "";
 String fragmentID = null;

 if(start < limit) {
 String address = spec.substring(start, limit);
 int atSign = address.indexOf('@');
 if (atSign >= 0) {
 host = address.substring(atSign+1);
 this.username = address.substring(0, atSign);
 }
 }
 this.setURL(u, protocol, host, port, file, fragmentID);

}

protected String toExternalForm(URL u)

This method puts the pieces of the URL u—that is, its protocol, host, port, file, and ref fields—back together in a String. A class that overrides parseURL() should also override toExternalForm(). Here's a toExternalForm() method for a
 mailto URL; it assumes that the username has
 been stored in the URL's file field:
protected String toExternalForm(URL u) {

 return "mailto:" + u.getFile() + "@" + u.getHost();

}
Since toExternalForm() is
 protected, you probably won't call this method directly. However, it
 is called by the public toExternalForm(
) and toString()
 methods of the URL class, so any
 change you make here is reflected when you convert URL objects to strings.

protected void setURL(URL u, String protocol, String host,
 int port, String authority, String userInfo, String path, String
 query, String fragmentID) // Java 1.3

This method sets the protocol, host, port, authority, userInfo, path, query, and ref fields of the URL u
 to the given values. parseURL()
 uses this method to set these fields to the values it has found by
 parsing the URL. You need to call this method at the end of the
 parseURL() method when you
 subclass URLStreamHandler.
This method is a little flaky, since the host, port, and user
 info together make up the authority. In the event of a conflict
 between them, they're all stored separately, but the host, port, and
 user info are used in preference to the authority when deciding
 which site to connect to.
This is actually quite relevant to the
 mailto example, since
 mailto URLs often have query strings that
 indicate the subject or other header; for example,
 mailto:elharo@metalab.unc.edu?subject=JavaReading.
 Here the query string is subject=JavaReading.
 Rewriting the parseURL() method
 to support mailto URLs in this format, the
 result looks like this:
public void parseURL(URL u, String spec, int start, int limit) {

 String protocol = u.getProtocol();
 String host = "";
 int port = u.getPort();
 String file = "";
 String userInfo = null;
 String query = null;
 String fragmentID = null;

 if (start < limit) {
 String address = spec.substring(start, limit);
 int atSign = address.indexOf('@');
 int questionMark = address.indexOf('?');
 int hostEnd = questionMark >= 0 ? questionMark : address.length();
 if (atSign >= 0) {
 host = address.substring(atSign+1, hostEnd);
 userInfo = address.substring(0, atSign);
 }
 if (questionMark >= 0 && questionMark > atSign) {
 query = address.substring(questionMark + 1);
 }
 }
 String authority = "";
 if (userInfo != null) authority += userInfo + '@';
 authority += host;
 if (port >= 0) authority += ":" + port;

 this.setURL(u, protocol, host, port, authority, userInfo, file,
 query, fragmentID);

}

protected int getDefaultPort() // Java 1.3

The getDefaultPort()
 method returns the default port for the protocol,
 e.g., 80 for HTTP. The default implementation of this method simply
 returns -1, but each subclass should override that with the
 appropriate default port for the protocol it handles. For example,
 here's a getDefaultPort() method
 for the finger protocol that normally operates on port 79:
public int getDefaultPort() {
 return 79;
}
As well as providing the right port for finger, overriding
 this method also makes getDefaultPort(
) public. Although there's only a default implementation
 of this method in Java 1.3, there's no reason you can't provide it
 in your own subclasses in any version of Java. You simply won't be
 able to invoke it polymorphically from a reference typed as the
 superclass.

protected InetAddress getHostAddress(URL u) // Java
 1.3

The getHostAddress()
 method returns an InetAddress object pointing to the server
 in the URL. This requires a DNS lookup, and the method does block
 while the lookup is made. However, it does not throw any exceptions.
 If the host can't be located, whether because the URL does not
 contain host information as a result of a DNS failure or a SecurityException, it simply returns null.
 The default implementation of this method is sufficient for any
 reasonable case. It shouldn't be necessary to override it.

protected boolean hostsEqual(URL u1, URL u2) // Java
 1.3

The hostsEqual()
 method determines whether the two URLs refer to the
 same server. This method does use DNS to look up the hosts. If the
 DNS lookups succeed, it can tell that, for example, http://www.ibiblio.org/Dave/this-week.html and ftp://metalab.unc.edu/pub/linux/distributions/debian/
 are the same host. However, if the DNS lookup fails for any reason,
 then hostsEqual() falls back to
 a simple case-insensitive string comparison, in which case it would
 think these were two different hosts.
The default implementation of this method is sufficient for
 most cases. You probably won't need to override it. The only case I
 can imagine where you might want to is if you were trying to make
 mirror sites on different servers appear equal.

protected boolean sameFile(URL u1, URL u2) // Java
 1.3

The sameFile() method determines whether two URLs point to the same
 file. It does this by comparing the protocol, host, port, and path.
 The files are considered to be the same only if each of those four
 pieces is the same. However, it does not consider the query string
 or the fragment identifier. Furthermore, the hosts are compared by
 the hostsEqual() method so that
 www.ibiblio.org and
 metalab.unc.edu can be recognized as the same
 if DNS can resolve them. This is similar to the sameFile() method of the URL class. Indeed, that sameFile() method just calls this
 sameFile() method.
The default implementation of this method is sufficient for
 most cases. You probably won't need to override it. You might
 perhaps want to do so if you need a more sophisticated test that
 converts paths to canonical paths or follows redirects before
 determining whether two URLs have the same file part.

protected boolean equals(URL u1, URL u2) // Java 1.3

The final equality method tests almost the entire URL,
 including protocol, host, file, path, and fragment identifier. Only
 the query string is ignored. All five of these must be equal for the
 two URLs to be considered equal. Everything except the fragment
 identifier is compared by the sameFile() method, so overriding that
 method changes the behavior of this one. The fragment identifiers
 are compared by simple string equality. Since the sameFile() method uses hostsEqual() to compare hosts, this
 method does too. Thus, it performs a DNS lookup if possible and may
 block. The equals() method of
 the URL class calls this method
 to compare two URL objects for
 equality. Again, you probably won't need to override this method.
 The default implementation should suffice for most purposes.

protected int hashCode(URL u) // Java 1.3

URLStreamHandler s can change the default hash code calculation by
 overriding this method. You should do this if you override equals(), sameFile(), or hostsEqual() to make sure that two equal
 URL objects will have the same
 hash code, and two unequal URL
 objects will not have the same hash code, at least to a very high
 degree of probability.

A Method for Connecting

The second responsibility of a URLStreamHandler is to create a URLConnection object appropriate to the URL.
 This is done with the abstract openConnection() method.
protected abstract URLConnection openConnection(URL u) throws
 IOException

This method must be overridden in each subclass of
 URLConnection. It takes a single
 argument, u, which is the URL to
 connect to. It returns an unopened URLConnection, directed at the resource
 u points to. Each subclass of
 URLStreamHandler should know how
 to find the right subclass of URLConnection for the protocol it
 handles.
The openConnection()
 method is protected, so you usually do not call it directly; it is
 called by the openConnection()
 method of a URL class. The
 URL u that is passed as an argument is the
 URL that needs a connection.
 Subclasses override this method to handle a specific protocol. The
 subclass's openConnection()
 method is usually extremely simple; in most cases, it just calls the
 constructor for the appropriate subclass of URLConnection. For example, a URLStreamHandler for the
 mailto protocol might have an openConnection() method that looks like
 this:
protected URLConnection openConnection(URL u) throws IOException {
 return new com.macfaq.net.www.protocol.MailtoURLConnection(u);
}
Example 16-1
 demonstrates a complete URLStreamHandler for
 mailto URLs. The name of the class is Handler, following Sun's naming
 conventions. It assumes the existence of a MailtoURLConnection class.
Example 16-1. A mailto URLStreamHandler
package com.macfaq.net.www.protocol.mailto;

import java.net.*;
import java.io.*;
import java.util.*;

public class Handler extends URLStreamHandler {

 protected URLConnection openConnection(URL u) throws IOException {
 return new MailtoURLConnection(u);
 }

 public void parseURL(URL u, String spec, int start, int limit) {

 String protocol = u.getProtocol();
 String host = "";
 int port = u.getPort();
 String file = ""; // really username
 String userInfo = null;
 String authority = null;
 String query = null;
 String fragmentID = null;

 if(start < limit) {
 String address = spec.substring(start, limit);
 int atSign = address.indexOf('@');
 if (atSign >= 0) {
 host = address.substring(atSign+1);
 file = address.substring(0, atSign);
 }
 }

 // For Java 1.2 comment out this next line
 this.setURL(u, protocol, host, port, authority,
 userInfo, file, query, fragmentID);

 // In Java 1.2 and earlier uncomment the following line:
 // this.setURL(u, protocol, host, port, file, fragmentID);

 }

 protected String toExternalForm(URL u) {

 return "mailto:" + u.getFile() + "@" + u.getHost();;

 }
}

protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5

 Java 1.5 overloads the openConnection() method to allow you to
 specify a proxy server for the connection. The java.net.Proxy class (also new in Java
 1.5) encapsulates the address of a proxy server. Rather than
 connecting to the host directly, this URLConnection connects to the specified
 proxy server, which relays data back and forth between the client
 and the server. Protocols that do not support proxies can simply
 ignore the second argument.
Normally connections are opened with the usual proxy server
 settings within that VM. Calling this method is only necessary if
 you want to use a different proxy server. If you want to bypass the
 usual proxy server and connect directly instead, pass the constant
 Proxy.NO_PROXY as the second
 argument.

Writing a Protocol Handler

To demonstrate a complete protocol handler, let's write
 one for the finger protocol defined in RFC 1288 and introduced in
 Chapter 9. Finger is a relatively
 simple protocol compared to JDK-supported protocols such as HTTP and
 FTP. The client connects to port 79 on the server and sends a list of
 usernames followed by a carriage return/linefeed pair. The server
 responds with ASCII text containing information about each of the named
 users or, if no names are listed, a list of the currently logged in
 users. For example:
% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.

Login Name TTY Idle When Where
jacola Jane Colaginae *pts/7 Tue 08:01 208.34.37.104
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-dialup11.poly.e
matewan Sepin Matewan *pts/17 17: Thu 15:32 128.238.10.177
hengpi Heng Pin *pts/10 Tue 10:36 128.238.18.119
nadats Nabeel Datsun pts/12 56 Mon 10:38 128.238.213.227
matewan Sepin Matewan *pts/8 4 Sun 18:39 128.238.10.177
Connection closed by foreign host.
Or to request information about a specific user:
% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.
marcus
Login Name TTY Idle When Where
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-dialup11.poly.e
Since there's no standard for the format of a finger URL, we will
 start by creating one. Ideally, this should look as much like an
 http URL as possible. Therefore, we will implement
 a finger URL like this:
finger://hostname:port/usernames
Second, we need to determine the content type returned by the
 finger protocol's getContentType()
 method. New protocols such as HTTP use MIME headers to
 indicate the content type; in these cases, you do not need to override
 the default getContentType() method
 provided by the URLConnection class.
 However, since most protocols precede MIME, you often need to specify
 the MIME type explicitly or use the static methods URLConnection.guessContentTypeFromName(String
 name) and URLConnection.guessContentTypeFromStream(InputStream
 in) to make an educated guess. This
 example doesn't need anything so complicated, however. A finger server
 returns ASCII text, so the getContentType() method should return the
 string text/plain. The text/plain MIME type has the advantage that
 Java already understands it. In the next chapter, you'll learn how to
 write content handlers that let Java understand additional MIME
 types.
Example 16-2 is a
 FingerURLConnection class that subclasses URLConnection. This class overrides the
 getContentType() and getInputStream() methods of URLConnection and implements connect(). It also has a constructor that
 builds a new URLConnection from a
 URL.
Example 16-2. The FingerURLConnection class
package com.macfaq.net.www.protocol.finger;

import java.net.*;
import java.io.*;

public class FingerURLConnection extends URLConnection {

 private Socket connection = null;

 public final static int DEFAULT_PORT = 79;

 public FingerURLConnection(URL u) {
 super(u);
 }

 public synchronized InputStream getInputStream() throws IOException {

 if (!connected) this.connect();
 InputStream in = this.connection.getInputStream();
 return in;

 }

 public String getContentType() {
 return "text/plain";
 }
 public synchronized void connect() throws IOException {

 if (!connected) {
 int port = url.getPort();
 if (port < 1 || port > 65535) {
 port = DEFAULT_PORT;
 }
 this.connection = new Socket(url.getHost(), port);
 OutputStream out = this.connection.getOutputStream();
 String names = url.getFile();
 if (names != null && !names.equals("")) {
 // delete initial /
 names = names.substring(1);
 names = URLDecoder.decode(names);
 byte[] result;
 try {
 result = names.getBytes("ASCII");
 }
 catch (UnsupportedEncodingException ex) {
 result = names.getBytes();
 }
 out.write(result);
 }
 out.write('\r');
 out.write('\n');
 out.flush();
 this.connected = true;
 }
 }
}

This class has two fields. connection is a Socket between the client and the server. Both
 the getInputStream() method and the
 connect() method need access to this
 field, so it can't be a local variable. The second field is DEFAULT_PORT, a final static int,
 which contains the finger protocol's default port; this port is used if
 the URL does not specify the port explicitly.
The class's constructor holds no surprises. It just calls the
 superclass's constructor with the same argument, the URL u. The
 connect() method opens a connection
 to the specified server on the specified port or, if no port is
 specified, to the default finger port, 79. It sends the necessary
 request to the finger server. If any usernames were specified in the
 file part of the URL, they're sent. Otherwise, a blank line is sent.
 Assuming the connection is successfully opened (no exception is thrown),
 it sets the boolean field connected to true. Recall from the previous chapter that
 connected is a protected field in
 java.net.URLConnection, which is
 inherited by this subclass. The Socket that connect(
) opens is stored in the field connection for later use by getInputStream(). The connect() and getInputStream() methods are synchronized to
 avoid a possible race condition on the connected variable.
The getContentType() method
 returns a String containing a MIME
 type for the data. This is used by the getContent() method of java.net.URLConnection to select the
 appropriate content handler. The data returned by a finger server is
 almost always ASCII text or some reasonable approximation thereof, so
 this getContentType() method always
 returns text/plain. The getInputStream() method returns an InputStream, which it gets from the Socket that connect created. If the connection has not
 already been established when getInputStream(
) is called, the method calls connect() itself.
Once you have a URLConnection,
 you need a subclass of URLStreamHandler that knows how to handle a
 finger server. This class needs an openConnection() method that builds a new
 FingerURLConnection from a URL. Since
 we defined the finger URL as a hierarchical URL, we
 don't need to implement a parseURL()
 method. Example 16-3 is a
 stream handler for the finger protocol. For the moment, we're going to
 use Sun's convention for naming protocol handlers; we call this class
 Handler and place it in the package
 com.macfaq.net.www.protocol.finger.
Example 16-3. The finger handler class
package com.macfaq.net.www.protocol.finger;

import java.net.*;
import java.io.*;

public class Handler extends URLStreamHandler {

 public int getDefaultPort() {
 return 79;
 }

 protected URLConnection openConnection(URL u) throws IOException {
 return new FingerURLConnection(u);
 }

}

You can use HotJava to test this protocol handler. Add the
 following line to your .hotjava/properties file or
 some other place from which HotJava will load it:
java.protocol.handler.pkgs=com.macfaq.net.www.protocol
Some (but not all) versions of HotJava may also allow you to set
 the property from the command line:
% hotjava -Djava.protocol.handler.pkgs=com.macfaq.net.www.protocol
You also need to make sure that your classes are somewhere in
 HotJava's class path. HotJava does not normally use the CLASSPATH
 environment variable to look for classes, so just putting them someplace
 where the JDK or JRE can find them may not be sufficient. Using HotJava
 3.0 on Windows with the JDK 1.3, I was able to put my classes in the
 jdk1.3/jre/lib/classes folder. Your mileage may
 vary depending on the version of HotJava you're using with which version
 of the JDK on which platform.
Run it and ask for a URL of a site running finger, such as
 utopia.poly.edu. Figure 16-1 shows the
 result.

[image: HotJava using the finger protocol handler]

Figure 16-1. HotJava using the finger protocol handler

More Protocol Handler Examples and Techniques

Now that you've seen how to write one protocol handler,
 it's not at all difficult to write more. Remember the five basic steps
 of creating a new protocol handler:
	Design a URL for the protocol if a standard URL for that
 protocol doesn't already exist. As of mid-2004, the official list of
 URL schemes at the IANA (http://www.iana.org/assignments/uri-schemes) includes
 only 43 different URL schemes and reserves three more. For anything
 else, you need to define your own.

	Decide what MIME type should be returned by the protocol
 handler's getContentType()
 method. The text/plain content type is often appropriate for legacy
 protocols. Another option is to convert the incoming data to HTML
 inside getInputStream() and
 return text/html. Binary data often uses one of the many application
 types. In some cases, you may be able to use the URLConnection.guessContentTypeFromName()
 or URLConnection.guessContentTypeFromStream(
) methods to determine the right MIME type.

	Write a subclass of URLConnection that understands this
 protocol. It should implement the connect(
) method and may override the getContentType(), getOutputStream(), and getInputStream() methods of URLConnection. It also needs a constructor
 that builds a new URLConnection
 from a URL.

	Write a subclass of URLStreamHandler with an openConnection() method that knows how to
 return a new instance of your subclass of URLConnection. Also provide a getDefaultPort() method that returns the
 well-known port for the protocol. If your URL is not hierarchical,
 override parseURL() and toExternalForm() as well.

	Implement the URLStreamHandlerFactory interface and the
 createStreamHandler() method in
 a convenient class.

Let's look at handlers for two more protocols, daytime and
 chargen, which will bring up different challenges.
A daytime Protocol Handler

 For a daytime protocol handler, let's say that the URL
 should look like daytime:///vision.poly.edu.
 We'll allow for nonstandard port assignments in the same way as with
 HTTP: follow the hostname with a colon and the port
 (daytime:///vision.poly.edu:2082). Finally, allow
 a terminating slash and ignore everything following the slash. For
 example, daytime:///vision.poly.edu/index.html is
 equivalent to daytime:///vision.poly.edu. This is
 similar enough to an http URL that the default
 toExternalForm() and parseURL() methods will work.
Although the content returned by the daytime protocol is really
 text/plain, this protocol handler is going to reformat the data into
 an HTML page. Then it can return a content type of text/html and let
 the web browser display it more dramatically. The resulting HTML looks
 like this:
<html><head><title>The Time at metalab.unc.edu</title></head><body>
<h1>Fri Oct 29 14:32:07 1999</h1>
</body></html>
The trick is that the page can be broken up into three different
 strings:
	Everything before the time

	The time

	Everything after the time

The first and the third strings can be calculated before the
 connection is even opened. We'll formulate these as byte arrays of
 ASCII text and use them to create two ByteArrayInputStreams. Then we'll use a
 SequenceInputStream to combine
 those two streams with the data actually returned from the server.
 Example 16-4 demonstrates.
 This is a neat trick for protocols such as daytime that return a very
 limited amount of data; it can be inserted in a single place in an
 HTML document. Protocols such as finger that return more complex and
 less predictable text might need to use a FilterInputStream that inserts the HTML on
 the fly instead. And of course, a third possibility is to simply
 return a custom content type and use a custom content handler to
 display it. This third option is explored in the next chapter.
Example 16-4. The DaytimeURLConnection class
package com.macfaq.net.www.protocol.daytime;

import java.net.*;
import java.io.*;

public class DaytimeURLConnection extends URLConnection {

 private Socket connection = null;
 public final static int DEFAULT_PORT = 13;

 public DaytimeURLConnection (URL u) {
 super(u);
 }

 public synchronized InputStream getInputStream() throws IOException {

 if (!connected) connect();

 String header = "<html><head><title>The Time at "
 + url.getHost() + "</title></head><body><h1>";
 String footer = "</h1></body></html>";
 InputStream in1 = new ByteArrayInputStream(header.getBytes("8859_1"));
 InputStream in2 = this.connection.getInputStream();
 InputStream in3 = new ByteArrayInputStream(footer.getBytes("8859_1"));

 SequenceInputStream result = new SequenceInputStream(in1, in2);
 result = new SequenceInputStream(result, in3);
 return result;

 }

 public String getContentType() {
 return "text/html";
 }

 public synchronized void connect() throws IOException {

 if (!connected) {
 int port = url.getPort();
 if (port <= 0 || port > 65535) {
 port = DEFAULT_PORT;
 }
 this.connection = new Socket(url.getHost(), port);
 this.connected = true;
 }
 }
}

This class declares two fields. The first is connection, which is a Socket between the client and the server.
 The second field is DEFAULT_PORT, a
 final static int variable that holds the default port for
 the daytime protocol (port 13) and is used if the URL doesn't specify
 the port explicitly.
The constructor has no surprises. It just calls the superclass's
 constructor with the same argument, the URL u.
 The connect() method opens a
 connection to the specified server on the specified port (or, if no
 port is specified, to the default port); if the connection opens
 successfully, connect() sets the
 boolean variable connected to true. Recall from the previous chapter that
 connected is a protected field in
 URLConnection that is inherited by
 this subclass. The Socket that's
 opened by this method is stored in the connection field for later use by getInputStream().
The getContentType() method
 returns a String containing a MIME
 type for the data. This method is called by the getContent() method of URLConnection to select the appropriate
 content handler. The getInputStream(
) method reformats the text into HTML, so the getContentType() method returns text/html.
The getInputStream() method
 builds a SequenceInputStream out of
 several string literals, the host property of url, and the actual stream provided by the
 Socket connecting the client to the
 server. If the socket is not connected when this method is called, the
 method calls connect() to
 establish the connection.
Next, you need a subclass of URLStreamHandler that knows how to handle a
 daytime server. This class needs an openConnection() method that builds a new
 DaytimeURLConnection from a URL and
 a getDefaultPort() method that
 returns the well-known daytime port 13. Since the daytime URL has been
 made similar to an http URL, we don't need to
 override parseURL(); once we have
 written openConnection(), we're
 done. Example 16-5 shows
 the daytime protocol's URLStreamHandler.
Example 16-5. The DaytimeURLStreamHandler class
package com.macfaq.net.www.protocol.daytime;

import java.net.*;
import java.io.*;

public class Handler extends URLStreamHandler {

 public int getDefaultPort() {
 return 13;
 }

 protected URLConnection openConnection(URL u) throws IOException {
 return new DaytimeURLConnection(u);
 }
}

Since we've used the same package-naming convention here as for
 the previous finger protocol handler, no further changes to HotJava's
 properties need to be made to let HotJava find this. Just compile the
 files, put the classes somewhere in HotJava's class path, and load a
 URL that points to an active daytime server. Figure 16-2
 demonstrates.
[image: HotJava using the daytime protocol handler]

Figure 16-2. HotJava using the daytime protocol handler

A chargen Protocol Handler

 The chargen protocol, defined in RFC 864, is a very
 simple protocol designed for testing clients. The server listens for
 connections on port 19. When a client connects, the server sends an
 endless stream of characters until the client disconnects. Any input
 from the client is ignored. The RFC does not specify which character
 sequence to send but recommends that the server use a recognizable
 pattern. One common pattern is rotating, 72-character carriage
 return/linefeed delimited lines of the 95 ASCII printing characters,
 like this:
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij
$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk
%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm
'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmn
()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmno
The big trick with this protocol is deciding when to stop. A TCP
 chargen server sends an unlimited amount of data. Most web browsers
 don't deal well with this. HotJava won't even attempt to display a
 file until it sees the end of the stream. Consequently, the first
 thing we'll need is a FilterInputStream subclass that cuts off the
 server (or at least starts ignoring it) after a certain amount of data
 has been sent. Example 16-6
 is such a class.
Example 16-6. FiniteInputStream
package com.macfaq.io;

import java.io.*;

public class FiniteInputStream extends FilterInputStream {

 private int limit = 8192;
 private int bytesRead = 0;

 public FiniteInputStream(InputStream in) {
 this(in, 8192);
 }

 public FiniteInputStream(InputStream in, int limit) {
 super(in);
 this.limit = limit;
 }

 public int read() throws IOException {

 if (bytesRead >= limit) return -1;
 int c = in.read();
 bytesRead++;
 return c;

 }

 public int read(byte[] data) throws IOException {
 return this.read(data, 0, data.length);
 }

 public int read(byte[] data, int offset, int length)
 throws IOException {

 if (data == null) throw new NullPointerException();
 else if ((offset < 0) || (offset > data.length) || (length < 0) ||
 ((offset + length) > data.length) || ((offset + length) < 0)) {
 throw new IndexOutOfBoundsException();
 }
 else if (length == 0) {
 return 0;
 }

 if (bytesRead >= limit) return -1;
 else if (bytesRead + length > limit) {
 int numToRead = bytesRead + length - limit;
 int numRead = in.read(data, offset, numToRead);
 if (numRead == -1) return -1;
 bytesRead += numRead;
 return numRead;
 }
 else { // will not exceed limit
 int numRead = in.read(data, offset, length);
 if (numRead == -1) return -1;
 bytesRead += numRead;
 return numRead;
 }
 }

 public int available() throws IOException {
 if (bytesRead >= limit) return 1;
 else return in.available();
 }
}

Next, since there's no standard for the format of a chargen URL,
 we have to create one. Ideally, this should look as much like an
 http URL as possible. Therefore, we will
 implement a chargen URL like this:
chargen://hostname:port
Second, we need to choose the content type to be returned by the
 chargen protocol handler's getContentType() method. A chargen server
 returns ASCII text, so the getContentType(
) method should return the string text/plain. The advantage of the text/plain MIME type is that Java already
 understands it.
Example 16-7 is a
 ChargenURLConnection class that
 subclasses URLConnection. This
 class overrides the getContentType(
) and getInputStream()
 methods of URLConnection and
 implements connect(). It also has
 a constructor that builds a new URLConnection from a URL.
Example 16-7. The ChargenURLConnection class
package com.macfaq.net.www.protocol.chargen;

import java.net.*;
import java.io.*;
import com.macfaq.io.*;

public class ChargenURLConnection extends URLConnection {

 private Socket connection = null;

 public final static int DEFAULT_PORT = 19;

 public ChargenURLConnection(URL u) {
 super(u);
 }

 public synchronized InputStream getInputStream() throws IOException {

 if (!connected) this.connect();
 return new FiniteInputStream(this.connection.getInputStream());

 }

 public String getContentType() {
 return "text/plain";
 }

 public synchronized void connect() throws IOException {

 if (!connected) {
 int port = url.getPort();
 if (port < 1 || port > 65535) {
 port = DEFAULT_PORT;
 }
 this.connection = new Socket(url.getHost(), port);
 this.connected = true;
 }
 }
}

This class has two fields. connection is a Socket between the client and the server.
 The second field is DEFAULT_PORT, a
 final static int that contains the chargen protocol's
 default port; this port is used if the URL does not specify the port
 explicitly.
The class's constructor just passes the URL u to
 the superclass's constructor. The connect(
) method opens a connection to the specified server on the
 specified port (or, if no port is specified, to the default chargen
 port, 19) and, assuming the connection is successfully opened, sets
 the boolean field connected to true. The Socket that connect() opens is stored in the field
 connection for later use by
 getInputStream(). The connect() method is synchronized to avoid a
 possible race condition on the connected variable.
The getContentType() method
 returns a String containing a MIME
 type for the data. The data returned by a chargen server is always
 ASCII text, so this getContentType(
) method always returns text/plain.
The getInputStream()
 connects if necessary, then gets the InputStream from this.connection. Rather than returning it
 immediately, getInputStream()
 first chains it to a FiniteInputStream.
Now that we have a URLConnection, we need a subclass of
 URLStreamHandler that knows how to
 handle a chargen server. This class needs an openConnection() method that builds a new
 ChargenURLConnection from a URL and
 a getDefaultPort() method that
 returns the well-known chargen port. Since we defined the
 chargen URL so that it is similar to an
 http URL, we don't need to implement a parseURL() method. Example 16-8 is a stream handler
 for the chargen protocol.
Example 16-8. The chargen Handler class
package com.macfaq.net.www.protocol.chargen;

import java.net.*;
import java.io.*;

public class Handler extends URLStreamHandler {

 public int getDefaultPort() {
 return 19;
 }

 protected URLConnection openConnection(URL u) throws IOException {
 return new ChargenURLConnection(u);
 }
}

You can use HotJava to test this protocol handler. Run it and
 ask for a URL of a site running a chargen server, such as
 vision.poly.edu. Figure 16-3 shows the
 result.
[image: HotJava using the chargen protocol handler]

Figure 16-3. HotJava using the chargen protocol handler

The URLStreamHandlerFactory Interface

 The last section showed you how to install new protocol
 handlers that you wrote into HotJava, an application that someone else
 wrote. However, if you write your own application, you can implement
 your own scheme for finding and loading protocol handlers. The easiest
 way is to install a URLStreamHandlerFactory in the
 application:
public abstract interface URLStreamHandlerFactory
Tip
Only applications are allowed to install a new URLStreamHandlerFactory. Applets that run in
 the applet viewer or a web browser must use the URLStreamHandlerFactory that is provided. An
 attempt to set a different one will fail, either because another
 factory is already installed or because of a SecurityException.

The URLStreamHandlerFactory
 interface declares a single method, createURLStreamHandler() :
public abstract URLStreamHandler createURLStreamHandler(String protocol)
This method loads the appropriate protocol handler for the
 specified protocol. To use this method, write a class that implements
 the URLStreamHandlerFactory interface
 and include a createURLStreamHandler(
) method in that class. The method needs to know how to find
 the protocol handler for a given protocol. This step is no more
 complicated than knowing the names and packages of the custom protocols
 you've implemented.
The createURLStreamHandler()
 method does not need to know the names of all the installed protocol
 handlers. If it doesn't recognize a protocol, it should simply return
 null, which tells Java to follow the
 default procedure for locating stream handlers; that is, to look for a
 class named protocol .Handler in one of the packages listed in the
 java.protocol.handler.pkgs system
 property or in the sun.net.www.protocol package.
To install the stream handler factory, pass an instance of the
 class that implements the URLStreamHandlerFactory interface to the
 static method URL.setURLStreamHandlerFactory(
) at the start of the program. Example 16-9 is a URLStreamHandlerFactory() with a createURLStreamHandler() method that
 recognizes the finger, daytime, and chargen protocols and returns the
 appropriate handler from the last several examples. Since these classes
 are all named Handler, fully
 package-qualified names are used.
Example 16-9. A URLStreamHandlerFactory for finger, daytime, and
 chargen
package com.macfaq.net.www.protocol;

import java.net.*;

public class NewFactory implements URLStreamHandlerFactory {

 public URLStreamHandler createURLStreamHandler(String protocol) {

 if (protocol.equalsIgnoreCase("finger")) {
 return new com.macfaq.net.www.protocol.finger.Handler();
 }
 else if (protocol.equalsIgnoreCase("chargen")) {
 return new com.macfaq.net.www.protocol.chargen.Handler();
 }
 else if (protocol.equalsIgnoreCase("daytime")) {
 return new com.macfaq.net.www.protocol.daytime.Handler();
 }
 else {
 return null;
 }
 }
}

Example 16-9 uses the
 equalsIgnoreCase() method from
 java.lang.String to test the identity
 of the protocol; it shouldn't make a difference whether you ask for
 finger://rama.poly.edu or
 FINGER://RAMA.POLY.EDU. If the protocol is
 recognized, createURLStreamHandler()
 creates an instance of the proper Handler class and returns it; otherwise, the
 method returns null, which tells the
 URL class to look for a URLStreamHandler in the standard
 locations.
Since browsers, HotJava included, generally don't allow you to
 install your own URLStreamHandlerFactory, this will be of use
 only in applications. Example
 16-10 is a simple character mode program that uses this factory
 and its associated protocol handlers to print server data on System.out. Notice that it does not import
 com.macfaq.net.www.protocol.chargen,
 com.macfaq.net.www.protocol.finger,
 or com.macfaq.net.www.protocol.daytime. All this
 program knows is that it has a URL. It does not need to know how that
 protocol is handled or even how the right URLConnection object is instantiated.
Example 16-10. A SourceViewer program that sets a
 URLStreamHandlerFactory
import java.net.*;
import java.io.*;
import com.macfaq.net.www.protocol.*;

public class SourceViewer4 {
 public static void main (String[] args) {

 URL.setURLStreamHandlerFactory(new NewFactory());

 if (args.length > 0) {
 try {
 //Open the URL for reading
 URL u = new URL(args[0]);
 InputStream in = new BufferedInputStream(u.openStream());
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 } // end if
 } // end main
} // end SourceViewer3

Aside from the one line that sets the URLStreamHandlerFactory, this is almost
 exactly like the earlier SourceViewer
 program in Example 7-5 (Chapter 7).
 For instance, here the program reads from a finger
 URL:
D:\JAVA\JNP2\examples\16>java SourceViewer4 finger://rama.poly.edu/
Login Name TTY Idle When Where
nadats Nabeel Datsun pts/0 55 Fri 16:54 128.238.213.227
marcus Marcus Tullius *pts/1 20 Thu 12:12 128.238.10.177
marcus Marcus Tullius *pts/5 2:24 Thu 16:42 128.238.10.177
wri Weber Research Insti pts/10 55 Fri 13:26 rama.poly.edu
jbjovi John B. Jovien pts/9 25d Mon 14:54 128.238.213.229
Here it reads from a daytime URL:
% java SourceViewer4 daytime://tock.usno.navy.mil/
<html><head><title>The Time at tock.usno.navy.mil</title></head><body>
<h1>Fri Oct 29 21:22:49 1999
</h1></body></html>
However, it still works with all the usual protocol handlers that
 come bundled with the JDK. For instance here are the first few lines of
 output when it reads from an http URL:
% java SourceViewer4 http://www.oreilly.com/oreilly/about.html
<HTML>
<HEAD>
<TITLE>About O'Reilly & Associates</TITLE>
</HEAD>
<BODY LINK="#770000" VLINK="#0000AA" BGCOLOR="#ffffff">

<table border=0 cellspacing=0 cellpadding=0 width=515>
<tr>
<td>
<img src="http://www.oreilly.com/graphics_new/generic_ora_header_wide.gif"
width="515" height="37" ALT="O'Reilly and Associates">
...

Chapter 17. Content Handlers

 Content handlers are one of the ideas that got developers
 excited about Java in the first place. At the time that Java was first
 released, Netscape, NCSA, Spyglass, and a few other combatants were
 fighting a battle over who would control the standards for web browsing.
 One of the battlegrounds was different browsers' ability to handle various
 kinds of files. The first browsers understood only HTML. The next
 generation understood HTML and GIF. JPEG support was soon added. The
 intensity of this battle meant that new versions of browsers were released
 every couple of weeks. Netscape made the first attempt to break this
 infinite loop by introducing plug-ins in Navigator 2.0. Plug-ins are platform-dependent
 browser extenders written in C that add the ability to view new content
 types such as Adobe PDF and VRML. However, plug-ins have drawbacks. Each
 new content type requires the user to download and install a new plug-in,
 if indeed the right plug-in is even available for the user's platform. To
 keep up, users had to expend bandwidth and time downloading new browsers
 and plug-ins, each of which fixed a few bugs and added a few new
 features.
The Java team saw a way around this dilemma. Their idea was to use
 Java to download only the parts of the program that had to be updated
 rather than the entire browser. Furthermore, when the user encountered a
 web page that used a new content type, the browser could automatically
 download the code that was needed to view that content type. The user
 wouldn't have to stop, FTP a plug-in, quit the browser, install the
 plug-in, restart the browser, and reload the page. The mechanism that the
 Java team envisioned was the content handler. Each
 new data type that a web site wanted to serve would be associated with a
 content handler written in Java. The content handler would be responsible
 for parsing the content and displaying it to the user in the web browser
 window. The abstract class that content handlers for specific data types
 such as PNG or RTF would extend was java.net.ContentHandler. James Gosling and Henry
 McGilton described this scenario in 1996:
HotJava's dynamic behavior is also used for understanding
 different types of objects. For example, most Web browsers can
 understand a small set of image formats (typically GIF, X11 pixmap, and
 X11 bitmap). If they see some other type, they have no way to deal with
 it. HotJava, on the other hand, can dynamically link the code from the
 host that has the image, allowing it to display the new format. So, if
 someone invents a new compression algorithm, the inventor just has to
 make sure that a copy of its Java code is installed on the server that
 contains the images they want to publish; they don't have to upgrade all
 the browsers in the world. HotJava essentially upgrades itself on the
 fly when it sees this new type. (James Gosling and Henry McGilton,
 The Java Language Environment, A White Paper, May
 1996, http://java.sun.com/docs/white/langenv/HotJava.doc1.html)

Unfortunately, content handlers never really made it out of Sun's
 white papers into shipping software. The ContentHandler class still exists in the standard library, and it has some
 uses in custom applications. However, neither HotJava nor any other web
 browser actually uses it to display content. When HotJava downloads an
 HTML page or a bitmapped image, it handles it with hardcoded routines that
 process that particular kind of data. When HotJava encounters an unknown
 content type, it simply asks the user to locate a helper application that
 can display the file, almost exactly like a traditional web browser such
 as Netscape Navigator or Internet Explorer, as xref linkend="ch17-35419"/
 proves. The promise of dynamically extensible web browsers automatically
 downloading content handlers for new data types as they encounter them was
 never realized. Perhaps the biggest problem was that the ContentHandler class was too generic, providing
 too little information about what kind of object was being downloaded and
 how it should be displayed.
[image: HotJava's reaction to an unexpected content type, even though a content handler for this type is installed]

Figure 17-1. HotJava's reaction to an unexpected content type, even though a
 content handler for this type is installed

Tip
A much more robust and better thought-out content handler
 mechanism is now available under the name JavaBeans Activation
 Framework. This is a standard extension to Java that provides the
 necessary API for deciding what to do with arbitrary datatypes at
 runtime. However, JAF has not yet been used inside web browsers or even
 widely adopted, although that shouldn't stop you from using it inside
 your own applications if you find it useful. See http://java.sun.com/beans/glasgow/jaf.html for more
 details.

What Is a Content Handler?

A content handler is an instance of a subclass of java.net.ContentHandler:
public abstract class ContentHandler extends Object
Tip
The SAX2 API for XML parsing defines a completely separate
 interface named ContentHandler.
 This has nothing to do with the content handlers we're discussing in
 this chapter.

This class knows how to take a URLConnection and a MIME type and turn the
 data coming from the URLConnection
 into a Java object of an appropriate type. Thus, a content handler
 allows a program to understand new kinds of data. Since Java lowers the
 bar for writing code below what's needed to write a browser or a
 Netscape plug-in, the theory is that many different web sites can write
 custom handlers, rather than having to rely on the overworked browser
 manufacturers.
Java can already download classes from the Internet. Thus, there
 isn't much magic to getting it to download a class that can understand a
 new content type. A content handler is just a
 .class file like any other. The magic is all inside
 the browser, which knows when and where to request a
 .class file to view a new content type. Of course,
 some browsers are more magical than others. Currently, the only way to
 make this work in a browser is in conjunction with an applet that knows
 how to request the content handler explicitly. It can also be used—in
 fact, more easily—in a standalone application that ignores browsers
 completely.
Specifically, a content handler reads data from a URLConnection and constructs an object
 appropriate for the content type from the data. Each subclass of
 ContentHandler handles a specific
 MIME type and subtype, such as text/plain or image/gif. Thus, an image/gif content handler returns a URLImageSource object (a class that implements
 the ImageProducer interface), while a
 text/plain content handler returns a
 String. A database content handler
 might return a java.sql.ResultSet
 object. An application/x-macbinhex40
 content handler might return a BinhexDecoder object written by the same
 programmer who wrote the application/x-macbinhex40 content
 handler.
 Content handlers are intimately tied to protocol handlers.
 In the previous chapter, the getContent() method of the URLConnection class returned an InputStream that fed the data from the server
 to the client. This works for simple protocols that only return ASCII
 text, such as finger, whois, and daytime. However, returning an input
 stream doesn't work well for protocols such as FTP, gopher, and HTTP,
 which can return a lot of different content types, many of which can't
 be understood as a stream of ASCII text. For protocols like these,
 getContent() needs to check the MIME type and use the createContentHandler() method of the application's ContentHandlerFactory to produce a matching
 content handler. Once a ContentHandler exists, the URLConnection's getContent() method calls the ContentHandler's getContent() method, which creates the Java
 object to be returned. Outside of the getContent() method of a URLConnection, you rarely, if ever, call any
 ContentHandler method. Applications
 should never call the methods of a ContentHandler directly. Instead, they should
 use the getContent() method of
 URL or URLConnection.
An object that implements the ContentHandlerFactory interface is responsible
 for choosing the right ContentHandler
 to go with a MIME type. The static URLConnection.setContentHandlerFactory()
 method installs a ContentHandlerFactory in a program. Only one
 ContentHandlerFactory may be chosen
 during the lifetime of an application. When a program starts running,
 there is no ContentHandlerFactory;
 that is, the ContentHandlerFactory is
 null.
When there is no factory, Java looks for content handler classes with the name
 type.subtype,
 where type is the MIME type of the content
 (e.g., text) and
 subtype is the MIME subtype (e.g., html). It looks for these classes first in any
 packages named by the java.content.handler.pkgs property, then in
 the sun.net.www.content package. The
 java.content.handler.pkgs property
 should contain a list of package prefixes separated from each other by a
 vertical bar (|). This is similar to how Java finds protocol handlers.
 For example, if the java.content.handler.pkgs property has the
 value com.macfaq.net.www.content|org.cafeaulait.content
 and a program needs a content handler for application/xml files, it
 first tries to instantiate com.macfaq.net.www.content.application.xml. If
 that fails, it next tries to instantiate org.cafeaulait.content.application.xml. If
 that fails, as a last resort, it tries to instantiate sun.net.www.content.application.xml. These
 conventions are also used to search for a content handler if a ContentHandlerFactory is installed but the
 createContentHandler() method
 returns null.
To summarize, here's the sequence of events:
	A URL object is created
 that points at some Internet resource.

	The URL's getContent() method is invoked.

	The getContent() method of
 the URL calls the getContent() method of its underlying
 URLConnection.

	The URLConnection.getContent(
) method calls the nonpublic method getContentHandler() to find a content
 handler for the MIME type and subtype.

	getContentHandler() checks
 to see whether it already has a handler for this type in its cache.
 If it does, that handler is returned to getContent(). Thus, browsers won't
 download content handlers for common types such as text/html every time the user goes to a
 new web page.

	If there wasn't an appropriate ContentHandler in the cache and the
 ContentHandlerFactory isn't
 null, getContentHandler() calls the ContentHandlerFactory's createContentHandler() method to
 instantiate a new ContentHandler.
 If this is successful, the ContentHandler object is returned to
 getContent().

	If the ContentHandlerFactory is null or createContentHandler() fails to
 instantiate a new ContentHandler,
 Java looks for a content handler class named
 type.subtype,
 where type is the MIME type of the
 content and subtype is the MIME subtype
 in one of the packages named in the java.content.handler.pkgs system property.
 If a content handler is found, it is returned. Otherwise...

	Java looks for a content handler class named sun.net.www.content.type.subtype.
 If it's found, it's returned. Otherwise, createContentHandler() returns null.

	If the ContentHandler
 object is not null, the ContentHandler's getContent() method is called. This
 method returns an object appropriate for the content type. If the
 ContentHandler is null, an IOException is thrown.

	Either the returned object or the exception is passed up the
 call chain, eventually reaching the method that invoked getContent().

You can affect this chain of events in three ways: first, by
 constructing a URL and calling its
 getContent() method; second, by
 creating a new ContentHandler
 subclass that getContent() can use;
 and third, by installing a ContentHandlerFactory with URLConnection.setContentHandlerFactory(),
 changing the way the application looks for content handlers.

The ContentHandler Class

A subclass of ContentHandler overrides the getContent() method to return an object that's
 the Java equivalent of the content. This method can be quite simple or
 quite complex, depending almost entirely on the complexity of the
 content type you're trying to parse. A text/plain content handler is quite simple; a
 text/rtf content handler would be
 very complex.
The ContentHandler class has only a simple noargs constructor:
public ContentHandler()
Since ContentHandler is an
 abstract class, you never call its constructor directly, only from
 inside the constructors of subclasses.
The primary method of the class, albeit an abstract one, is
 getContent() :
public abstract Object getContent(URLConnection uc) throws IOException
This method is normally called only from inside the getContent() method of a URLConnection object. It is overridden in a
 subclass that is specific to the type of content being handled. getContent() should use the URLConnection's InputStream to create an object. There are no
 rules about what type of object a content handler should return. In
 general, this depends on what the application requesting the content
 expects. Content handlers for text-like content bundled with the JDK
 return some subclass of InputStream.
 Content handlers for images return ImageProducer objects.
The getContent() method of a
 content handler does not get the full InputStream that the URLConnection has access to. The InputStream that a content handler sees should
 include only the content's raw data. Any MIME headers or other
 protocol-specific information that come from the server should be
 stripped by the URLConnection before
 it passes the stream to the ContentHandler. A ContentHandler is only responsible for
 content, not for any protocol overhead that may be present. The URLConnection should have already performed
 any necessary handshaking with the server and interpreted any headers it
 sends.
A Content Handler for Tab-Separated Values

 To see how content handlers work, let's create a
 ContentHandler that handles the
 text/tab-separated-values content
 type. We aren't concerned with how the tab-separated values get to us.
 That's for a protocol handler to deal with. All a ContentHandler needs to know is the MIME
 type and format of the data.
Tab-separated values are produced by many database and
 spreadsheet programs. A tab-separated file may look something like
 this (tabs are indicated by arrows).
JPE Associates → 341 Lafayette Street, Suite 1025 →
New York → NY → 10012
O'Reilly & Associates → 103 Morris Street, Suite A →
Sebastopol → CA → 95472
In database parlance, each line is a record
 , and the data before each tab is a
 field . It is usually (though not necessarily) true that each
 field has the same meaning in each record. In the previous example,
 the first field is the company name.
The first question to ask is: what kind of Java object should we
 convert the tab- separated values to? The simplest and most general
 way to store each record is as an array of Strings. Successive records can be collected
 in a Vector. In many applications,
 however, you have a great deal more knowledge about the exact format
 and meaning of the data than we do here. The more you know about the
 data you're dealing with, the better a ContentHandler you can write. For example, if you know that the data
 you're downloading represents U.S. addresses, you could define a class
 like this:
public class Address {

 private String name;
 private String street;
 private String city;
 private String state;
 private String zip;

}
This class would also have appropriate constructors and other
 methods to represent each record. In this example, we don't know
 anything about the data in advance, or how many records we'll have to
 store. Therefore, we will take the most general approach and convert
 each record into an array of strings, using a Vector to store each array until there are
 no more records. The getContent()
 method can return the Vector of
 String arrays.
Example 17-1 shows
 the code for such a ContentHandler.
 The full package-qualified name is com.macfaq.net.www.content.text.tab_separated_values.
 This unusual class name follows the naming convention for a content
 handler for the MIME type text/tab-separated-values. Since MIME types
 often contain hyphens, as in this example, a convention exists to
 replace these with the underscore (_). Thus text/tab-separated-values becomes text.tab_separated_values. To install this
 content handler, all that's needed is to put the compiled
 .class file somewhere the class loader can find
 it and set the java.content.handler.pkgs property to
 com.macfaq.net.www.content.
Example 17-1. A ContentHandler for text/tab-separated-values
package com.macfaq.net.www.content.text;

import java.net.*;
import java.io.*;
import java.util.*;
import com.macfaq.io.SafeBufferedReader // From Chapter 4

public class tab_separated_values extends ContentHandler {

 public Object getContent(URLConnection uc) throws IOException {

 String theLine;
 Vector lines = new Vector();

 InputStreamReader isr = new InputStreamReader(uc.getInputStream());
 SafeBufferedReader in = new SafeBufferedReader(isr);
 while ((theLine = in.readLine()) != null) {
 String[] linearray = lineToArray(theLine);
 lines.addElement(linearray);
 }

 return lines;

 }

 private String[] lineToArray(String line) {

 int numFields = 1;
 for (int i = 0; i < line.length(); i++) {
 if (line.charAt(i) == '\t') numFields++;
 }
 String[] fields = new String[numFields];
 int position = 0;
 for (int i = 0; i < numFields; i++) {
 StringBuffer buffer = new StringBuffer();
 while (position < line.length() && line.charAt(position) != '\t') {
 buffer.append(line.charAt(position));
 position++;
 }
 fields[i] = buffer.toString();
 position++;
 }

 return fields;

 }
}

Example 17-1 has two
 methods. The private utility method lineToArray() converts a tab-separated
 string into an array of strings. This method is for the private use of
 this subclass and is not required by the ContentHandler interface. The more
 complicated the content you're trying to parse, the more such methods
 your class will need. The lineToArray(
) method begins by counting the number of tabs in the
 string. This sets the numFields
 variable to one more than the number of tabs. An array is created for
 the fields with the length numFields; a for loop fills the array with the strings
 between the tabs; and this array is returned.
Tip
You may have expected a StringTokenizer to split the line into
 parts. However, that class has unusual ideas about what makes up a
 token. In particular, it interprets multiple tabs in a row as a
 single delimiter. That is, it never returns an empty string as a
 token.

The getContent() method
 starts by instantiating a Vector.
 Then it gets the InputStream from
 the URLConnection uc and chains this to an InputStreamReader, which is in turn chained
 to the SafeBufferedReader
 (introduced in Chapter 4) so
 getContent() can read the array
 one line at a time in a while loop.
 Each line is fed to the lineToArray(
) method, which splits it into a String array. This array is then added to
 the Vector. When no more lines are
 left, the loop exits and the Vector
 is returned.

Using Content Handlers

 Now that you've written your first ContentHandler, let's see how to use it in a
 program. Files of MIME type text/tab-separated-values can be served by
 gopher servers, HTTP servers, FTP servers, and more. Let's assume
 you're retrieving a tab-separated-values file from an HTTP server. The
 filename should end with the .tsv or
 .tab extension so that the server knows it's a
 text/tab-separated-values
 file.
Tip
Not all servers are configured to support this type out of the
 box. Consult your server documentation to see how to set up a
 MIME-type mapping for your server. For instance, to configure my
 Apache server, I added these lines to my .htaccess file:
AddType text/tab-separated-values tab
AddType text/tab-separated-values tsv

You can test the web server configuration by connecting to port
 80 of the web server with Telnet and requesting the file
 manually:
% telnet www.ibiblio.org 80
Trying 127.0.0.1...
Connected to www.ibiblio.org.
Escape character is '^]'.
GET /javafaq/addresses.tab HTTP 1.0

HTTP 1.0 200 OK
Date: Mon, 15 Nov 1999 18:36:51 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Last-Modified: Thu, 04 Nov 1999 18:22:51 GMT
Content-type: text/tab-separated-values
Content-length: 163

JPE Associates 341 Lafayette Street, Suite 1025 New York NY 10012
O'Reilly & Associates 103 Morris Street, Suite A Sebastopol CA 95472
Connection closed by foreign host.
You're looking for a line that says Content-type: text/tab-separated-values. If you see a
 Content-type of text/plain, application/octet-stream, or some other
 value, or you don't see any Content-type at all, the server is
 misconfigured and must be fixed before you continue.
The application that uses the tab-separated-values content
 handler does not need to know about it explicitly. It simply has to
 call the getContent() method of
 URL or URLConnection on a URL with a matching MIME
 type. Furthermore, the package where the content handler can be found
 has to be listed in the java.content.handlers.pkg property.
Example 17-2 is a
 class that downloads and prints a text/tab-separated-values file using the
 ContentHandler of Example 17-1. However, note that
 it does not import com.macfaq.net.www.content.text and never
 references the tab_separated_values
 class. It does explicitly add com.macfaq.net.www.content to the java.content.handlers.pkgs property because
 that's the simplest way to make sure this standalone program works.
 However, the lines that do this could be deleted if the property were
 set in a property file or from the command line.
Example 17-2. The tab-separated-values ContentTester class
import java.io.*;
import java.net.*;
import java.util.*;

public class TSVContentTester {

 private static void test(URL u) throws IOException {

 Object content = u.getContent();
 Vector v = (Vector) content;
 for (Enumeration e = v.elements() ; e.hasMoreElements() ;) {
 String[] sa = (String[]) e.nextElement();
 for (int i = 0; i < sa.length; i++) {
 System.out.print(sa[i] + "\t");
 }
 System.out.println();
 }

 }

 public static void main (String[] args) {

 // If you uncomment these lines, then you don't have to
 // set the java.content.handler.pkgs property from the
 // command line or your properties files.

/* String pkgs = System.getProperty("java.content.handler.pkgs", "");
 if (!pkgs.equals("")) {
 pkgs = pkgs + "|";
 }
 pkgs += "com.macfaq.net.www.content";
 System.setProperty("java.content.handler.pkgs", pkgs); */

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 test(u);
 }
 catch (MalformedURLException ex) {
 System.err.println(args[i] + " is not a good URL");
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
}

Here's how you run this program. The arrows indicate
 tabs:
% java -Djava.content.handler.pkgs=com.macfaq.net.www.content\
 TSVContentTester http://www.ibiblio.org/javafaq/addresses.tab
JPE Associates → 341 Lafayette Street, Suite 1025 → New York →
NY → 10012
O'Reilly & Associates → 103 Morris Street, Suite A →
Sebastopol → CA → 95472

Choosing Return Types

There is one overloaded variant of the getContent() method in the ContentHandler class:
public Object getContent(URLConnection uc, Class[] classes) // Java 1.3
 throws IOException
The difference is the array of java.lang.Class objects passed as the second
 argument. This allows the caller to request that the content be
 returned as one of the types in the array and enables content handlers
 to support multiple types. For example, the text/tab-separated-values content handler
 could return data as a Vector, an
 array, a string, or an InputStream.
 One would be the default used by the single argument getContent() method, while the others would
 be options that a client could request. If the client doesn't request
 any of the classes this ContentHandler knows how to provide, it
 returns null.
To call this method, the client invokes the method with the same
 arguments in a URL or URLConnection object. It passes an array of
 Class objects in the order it
 wishes to receive the data. Thus, if it prefers to receive a String but is willing to accept an InputStream and will take a Vector as a last resort, it puts String.class in the zeroth component of the
 array, InputStream.class in the
 first component of the array, and Vector.class in the last component of the
 array. Then it uses instanceof to
 test what was actually returned and either process it or convert it
 into the preferred type. For example:
Class[] requestedTypes = {String.class, InputStream.class,
 Vector.class};
Object content = url.getContent(requestedTypes);
if (content instanceof String) {
 String s = (String) content;
 System.out.println(s);
}
else if (content instanceof InputStream) {
 InputStream in = (InputStream) content;
 int c;
 while ((c = in.read()) != -1) System.out.write(c);
}
else if (content instanceof Vector) {
 Vector v = (Vector) content;
 for (Enumeration e = v.elements() ; e.hasMoreElements() ;) {
 String[] sa = (String[]) e.nextElement();
 for (int i = 0; i < sa.length; i++) {
 System.out.print(sa[i] + "\t");
 }
 System.out.println();
 }
}
else {
 System.out.println("Unrecognized content type " + content.getClass());
}
To demonstrate this, let's write a content handler that can be
 used in association with the time protocol. Recall that the time
 protocol returns the current time at the server as a 4-byte,
 big-endian, unsigned integer giving the number of seconds since
 midnight, January 1, 1900, Greenwich Mean Time. There are several
 obvious candidates for storing this data in a Java content handler,
 including java.lang.Long (java.lang.Integer won't work since the
 unsigned value may overflow the bounds of an int), java.util.Date, java.util.Calendar, java.lang.String, and java.io.InputStream, which often works as a
 last resort. Example 17-3
 provides all five options. There's no standard MIME type for the time
 format. We'll use application for
 the type to indicate that this is binary data and x-time for the subtype to indicate that this
 is a nonstandard extension type. It will be up to the time protocol
 handler to return the right content type.
Example 17-3. A time content handler
package com.macfaq.net.www.content.application;

import java.net.*;
import java.io.*;
import java.util.*;

public class x_time extends ContentHandler {

 public Object getContent(URLConnection uc) throws IOException {

 Class[] classes = new Class[1];
 classes[0] = Date.class;
 return this.getContent(uc, classes);

 }

 public Object getContent(URLConnection uc, Class[] classes)
 throws IOException {

 InputStream in = uc.getInputStream();
 for (int i = 0; i < classes.length; i++) {
 if (classes[i] == InputStream.class) {
 return in;
 }
 else if (classes[i] == Long.class) {
 long secondsSince1900 = readSecondsSince1900(in);
 return new Long(secondsSince1900);
 }
 else if (classes[i] == Date.class) {
 long secondsSince1900 = readSecondsSince1900(in);
 Date time = shiftEpochs(secondsSince1900);
 return time;
 }
 else if (classes[i] == Calendar.class) {
 long secondsSince1900 = readSecondsSince1900(in);
 Date time = shiftEpochs(secondsSince1900);
 Calendar c = Calendar.getInstance();
 c.setTime(time);
 return c;
 }
 else if (classes[i] == String.class) {
 long secondsSince1900 = readSecondsSince1900(in);
 Date time = shiftEpochs(secondsSince1900);
 return time.toString();
 }
 }

 return null; // no requested type available

 }

 private long readSecondsSince1900(InputStream in)
 throws IOException {

 long secondsSince1900 = 0;
 for (int j = 0; j < 4; j++) {
 secondsSince1900 = (secondsSince1900 << 8) | in.read();
 }
 return secondsSince1900;

 }

 private Date shiftEpochs(long secondsSince1900) {

 // The time protocol sets the epoch at 1900, the Java Date class
 // at 1970. This number converts between them.
 long differenceBetweenEpochs = 2208988800L;

 long secondsSince1970 = secondsSince1900 - differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);
 return time;

 }
}

Most of the work is performed by the second getContent() method, which checks to see
 whether it recognizes any of the classes in the classes array. If so, it attempts to convert
 the content into an object of that type. The for loop is arranged so that classes earlier
 in the array take precedence; that is, it first tries to match the
 first class in the array; next it tries to match the second class in
 the array; then the third class in the array; and so on. As soon as
 one class is matched, the method returns so later classes won't be
 matched even if they're an allowed choice.
Once a type is matched, a simple algorithm converts the four
 bytes that the time server sends into the right kind of object, either
 an InputStream, a Long, a Date, a Calendar, or a String. The InputStream conversion is trivial. The
 Long conversion is one of those
 times when it seems a little inconvenient that primitive data types
 aren't objects. Although you can convert to and return any object
 type, you can't convert to and return a primitive data type like
 long, so we return the type wrapper
 class Long instead. The Date and Calendar conversions require shifting the
 origin of the time from January 1, 1900 to January 1, 1970 and
 changing the units from seconds to milliseconds, as discussed in Chapter 9. Finally, the conversion to a
 String simply converts to a
 Date and then invokes the Date object's toString() method.
While it would be possible to configure a web server to send
 data of MIME type application/x-time, this class is really
 designed to be used by a custom protocol handler. This handler would
 know not only how to speak the time protocol, but also how to return
 application/x-time from the
 getContentType() method. Example 17-4 and Example 17-5 demonstrate such a
 protocol handler. It assumes that time URLs look like
 time://vision.poly.edu:3737/.
Example 17-4. The URLConnection for the time protocol handler
package com.macfaq.net.www.protocol.time;

import java.net.*;
import java.io.*;
import com.macfaq.net.www.content.application.*;

public class TimeURLConnection extends URLConnection {

 private Socket connection = null;
 public final static int DEFAULT_PORT = 37;

 public TimeURLConnection (URL u) {
 super(u);
 }

 public String getContentType() {
 return "application/x-time";
 }

 public Object getContent() throws IOException {
 ContentHandler ch = new x_time();
 return ch.getContent(this);
 }

 public Object getContent(Class[] classes) throws IOException {
 ContentHandler ch = new x_time();
 return ch.getContent(this, classes);
 }

 public InputStream getInputStream() throws IOException {
 if (!connected) this.connect();
 return this.connection.getInputStream();
 }

 public synchronized void connect() throws IOException {

 if (!connected) {
 int port = url.getPort();
 if (port < 0) {
 port = DEFAULT_PORT;
 }
 this.connection = new Socket(url.getHost(), port);
 this.connected = true;
 }
 }
}

In general, it should be enough for the protocol handler to
 simply know or be able to deduce the correct MIME content type.
 However, in a case like this, where both content and protocol handlers
 must be provided, you can tie them a little more closely together by
 overriding getContent() as well.
 This allows you to avoid messing with the java.content.handler.pkgs property or
 installing a ContentHandlerFactory.
 You will still need to set the java.protocolhandler.pkgs property to point
 to your package or install a URLStreamHandlerFactory, however. Example 17-5 is a simple URLStreamHandler for the time protocol
 handler.
Example 17-5. The URLStreamHandler for the time protocol handler
package com.macfaq.net.www.protocol.time;

import java.net.*;
import java.io.*;
public class Handler extends URLStreamHandler {

 protected URLConnection openConnection(URL u) throws IOException {
 return new TimeURLConnection(u);
 }
}

We could install the time protocol handler into HotJava as we
 did with protocol handlers in the previous chapter. However, even if
 we place the time content handler in HotJava's class path, HotJava
 won't use it. Consequently, I've written a simple standalone
 application, shown in Example
 17-6, that uses these protocol and content handlers to tell the
 time. Notice that it does not need to import or directly refer to any
 of the classes involved. It simply lets the URL find the right content handler.
Example 17-6. URLTimeClient
import java.net.*;
import java.util.*;
import java.io.*;

public class URLTimeClient {

 public static void main(String[] args) {

 System.setProperty("java.protocol.handler.pkgs",
 "com.macfaq.net.www.protocol");

 try {
 // You can replace this with your own time server
 URL u = new URL("time://tock.usno.navy.mil/");
 Class[] types = {String.class, Date.class,
 Calendar.class, Long.class};
 Object o = u.getContent(types);
 System.out.println(o);
 }
 catch (IOException ex) {
 // Let's see what went wrong
 ex.printStackTrace();
 }
 }
}

Here's a sample run:
D:\JAVA\JNP3\examples\17>java URLTimeClient
Mon Aug 23 21:30:34 EDT 2004
In this case, a String object
 was returned. This was the first choice of URLTimeClient but the last choice of the
 content handler. The client choice always takes precedence.

The ContentHandlerFactory Interface

A ContentHandlerFactory
 defines the rules for where ContentHandler classes are stored. Create a
 class that implements ContentHandlerFactory and give this class a
 createContentHandler() method that
 knows how to instantiate the right ContentHandler. The createContentHandler() method should return
 null if it can't find a ContentHandler appropriate for a MIME type;
 null signals Java to look for
 ContentHandler classes in the default
 locations. When the application starts, call the URLConnection's setContentHandlerFactory() method to set the
 ContentHandlerFactory. This method
 may be called only once in the lifetime of an application.
The createContentHandler() Method

Just as the createURLStreamHandler(
) method of the URLStreamHandlerFactory interface was
 responsible for finding and loading the appropriate protocol handler,
 so too the createContentHandler()
 method of the ContentHandlerFactory interface is
 responsible for finding and loading the appropriate ContentHandler given a MIME type:
public abstract ContentHandler createContentHandler(String mimeType)
This method should be called only by the getContent() method of a URLConnection object. For instance, Example 17-7 is a ContentHandlerFactory that knows how to find
 the right handler for the text/tab-separated-values content handler of
 Example 17-1.
Example 17-7. TabFactory
package com.macfaq.net.www.content;

import java.net.*;

public class TabFactory implements ContentHandlerFactory {

 public ContentHandler createContentHandler(String mimeType)) {

 if (mimeType.equals("text/tab-separated-values") {
 return new com.macfaq.net.www.content.text.tab_separated_values();
 }
 else {
 return null; // look for the handler in the default locations
 }
 }
}

This factory knows how to find only one kind of content handler,
 but there's no limit to how many a factory can know about. For
 example, this createContentHandler(
) method also suggests handlers for application/x-time, text/plain, video/mpeg, and model/vrml. Notice that when you're using a
 ContentHandlerFactory, you don't
 necessarily have to stick to standard naming conventions for ContentHandler subclasses:
public ContentHandler createContentHandler(String mimeType)) {

 if (mimeType.equals("text/tab-separated-values") {
 return new com.macfaq.net.www.content.text.tab_separated_values();
 }
 else if (mimeType.equals("application/x-time") {
 return new com.macfaq.net.www.content.application.x_time();
 }
 else if (mimeType.equals("text/plain") {
 return new sun.net.www.content.text.plain();
 }
 if (mimeType.equals("video/mpeg") {
 return new com.macfaq.video.MPEGHandler();
 }
 if (mimeType.equals("model/vrml") {
 return new com.macfaq.threed.VRMLModel();
 }
 else {
 return null; // look for the handler in the default locations
 }
}

Installing Content Handler Factories

A ContentHandlerFactory
 is installed in an application using the static
 URLConnection.setContentHandlerFactory()
 method:
public static void setContentHandlerFactory(ContentHandlerFactory fac)
Note that this method is in the URLConnection class, not the ContentHandler class. It may be invoked at
 most once during any run of an application. It throws an Error if it is called a second time.
Using a ContentHandlerFactory
 such as the TabFactory in Example 17-5, it's possible to
 write a standalone application that can automatically load the
 tab-separated-values content handler and that runs without any major
 hassles with the class path. Example 17-8 is such a program.
 However, as with most other setFactory(
) methods, untrusted, remotely loaded code such as an applet
 will generally not be allowed to set the content handler factory.
 Attempting to do so will throw a SecurityException. Consequently, installing
 new content handlers in applets pretty much requires directly
 accessing the getContent() method
 of the ContentHandler subclass
 itself. Ideally, this shouldn't be necessary, but until Sun provides
 better support for downloadable content handlers in browsers, we're
 stuck with it.
Example 17-8. TabLoader that uses a ContentHandlerFactory
import java.io.*;
import java.net.*;
import java.util.*;
import com.macfaq.net.www.content.*;

public class TabLoader {

 public static void main (String[] args) {

 URLConnection.setContentHandlerFactory(new TabFactory());

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 Object content = u.getContent();
 Vector v = (Vector) content;
 for (Enumeration e = v.elements() ; e.hasMoreElements() ;) {
 String[] sa = (String[]) e.nextElement();
 for (int j = 0; j < sa.length; j++) {
 System.out.print(sa[j] + "\t");
 }
 System.out.println();
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[i] + " is not a good URL");
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
}

Here's a typical run. As usual, tabs are indicated by
 arrows:
% java TabLoader http://www.ibiblio.org/javafaq/addresses.tab
JPE Associates → 341 Lafayette Street, Suite 1025 → New York →
NY → 10012
O'Reilly & Associates → 103 Morris Street, Suite A →
Sebastopol → CA → 95472

A Content Handler for the FITS Image Format

That's really all there is to content handlers. As one
 final example, I'll show you how to write a content handler for image
 files. This kind of handler differs from the text-based content handlers
 you've already seen in that they generally produce an object that
 implements the java.awt.ImageProducer
 interface rather than an InputStream
 object. The specific example we'll choose is the Flexible Image Transport System (FITS) format in common
 use among astronomers. FITS files are grayscale, bitmapped images with
 headers that determine the bit depth of the picture, the width and the
 height of the picture, and the number of pictures in the file. Although
 FITS files often contain several images (typically pictures of the same
 thing taken at different times), in this example we look at only the
 first image in a file. For more details about
 the FITS format and how to handle FITS files, see The
 Encyclopedia of Graphics File Formats by James D. Murray and
 William vanRyper (O'Reilly).
There are a few key things you need to know to process FITS files. First, FITS files are broken up into blocks of
 exactly 2,880 bytes. If there isn't enough data to fill a block, it is
 padded with spaces at the end. Each FITS file has two parts, the header
 and the primary data unit. The header occupies an integral number of
 blocks, as does the primary data unit. If the FITS file contains
 extensions, there may be additional data after the primary data unit,
 but we ignore that here. Any extensions that are present will not change
 the image contained in the primary data unit.
The header begins in the first block of the FITS file. It may
 occupy one or more blocks; the last block may be padded with spaces at
 the end. The header is ASCII text. Each line of the header is exactly 80
 bytes wide; the first eight characters of each header line contain a
 keyword, which is followed by an equals sign (character 9), followed by
 a space (10). The keyword is padded on the right with spaces to make it
 eight characters long. Columns 11 through 30 contain a value; the value
 may be right-justified and padded on the left with spaces if necessary.
 The value may be an integer, a floating point number, a T or an F
 signifying the boolean values true and false, or a string delimited with
 single quotes. A comment may appear in columns 31 through 80; comments
 are separated from the value of a field by a slash (/). Here's a simple
 header taken from a FITS image produced by K. S. Balasubramaniam using
 the Dunn Solar Telescope at the National Solar Observatory in Sunspot,
 New Mexico (http://www.sunspot.noao.edu/):
SIMPLE = T /
BITPIX = 16 /
NAXIS = 2 /
NAXIS1 = 242 /
NAXIS2 = 252 /
DATE = '19 Aug 1996' /
TELESC = 'NSO/SP - VTT' /
IMAGE = 'Continuum' /
COORDS = 'N29.1W34.2' /
OBSTIME = '13:59:00 UT' /
END
Every FITS file begins with the keyword SIMPLE. This keyword
 always has the value T. If this isn't
 the case, the file is not valid. The second line of a FITS file always
 has the keyword BITPIX, which tells you how the data is stored. There
 are five possible values for BITPIX, four of which correspond exactly to
 Java primitive data types. The most common value of BITPIX is 16,
 meaning that there are 16 bits per pixel, which is equivalent to a Java
 short. A BITPIX of 32 is a Java
 int. A BITPIX of -32 means that each
 pixel is represented by a 32-bit floating point number (equivalent to a
 Java float); a BITPIX of -64 is
 equivalent to a Java double. A BITPIX
 of 8 means that 8 bits are used to represent each pixel; this is similar
 to a Java byte, except that FITS uses
 unsigned bytes ranging from 0 to 255; Java's byte data type is signed, taking values that
 range from -128 to 127.
The remaining keywords in a FITS file may appear in any order.
 They are not necessarily in the order shown here.
 In our FITS content handler, we first read all the keywords into a
 Hashtable and then extract the ones
 we want by name.
The NAXIS header specifies the number of axes (that is, the
 dimension) of the primary data array. A NAXIS value of one identifies a
 one-dimensional image. A NAXIS value of two indicates a normal
 two-dimensional rectangular image. A NAXIS value of three is called a
 data cube and generally means the file contains a series of
 pictures of the same object taken at different moments in time. In other
 words, time is the third dimension. On rare occasions, the third
 dimension can represent depth: i.e., the file contains a true
 three-dimensional image. A NAXIS of four means the file contains a
 sequence of three-dimensional pictures taken at different moments in
 time. Higher values of NAXIS, while theoretically possible, are rarely
 seen in practice. Our example is going to look at only the first
 two-dimensional image in a file.
The NAXISn headers (where
 n is an integer ranging from 1 to NAXIS) give the
 length of the image in pixels along that dimension. In this example,
 NAXIS1 is 242, so the image is 242 pixels wide. NAXIS2 is 252, so this
 image is 252 pixels high. Since FITS images are normally pictures of
 astronomical bodies like the sun, it doesn't really matter if you
 reverse width and height. All FITS images contain the SIMPLE, BITPIX,
 END, and NAXIS keywords, plus a series of NAXISn
 keywords. These keywords all provide information that is essential for
 displaying the image.
The next five keywords are specific to this file and may not be
 present in other FITS files. They give meaning to the image, although
 they are not needed to display it. The DATE keyword says this image was
 taken on August 19, 1996. The TELESC keyword says this image was taken
 by the Vacuum Tower Telescope (VTT) at the National Solar Observatory
 (NSO) on Sacramento Peak (SP). The IMAGE keyword says that this is a
 picture of the white light continuum; images taken through spectrographs
 might look at only a particular wavelength in the spectrum. The COORDS
 keyword gives the latitude and longitude of the telescope. Finally, the
 OBSTIME keyword says this image was taken at 1:59 P.M. Universal Time
 (essentially, Greenwich Mean Time). There are many more optional headers
 that don't appear in this example. Like the five discussed here, the
 remaining keywords may help someone interpret an image, but they don't
 provide the information needed to display it.
The keyword END terminates the header. Following the END keyword,
 the header is padded with spaces so that it fills a 2,880-byte block. A
 header may take up more than one 2,880-byte block, but it must always be
 padded to an integral number of blocks.
The image data follows the header. How the image is stored depends
 on the value of BITPIX, as explained earlier. Fortunately, these data
 types are stored in formats (big-endian, two's complement) that can be
 read directly with a DataInputStream.
 The exact meaning of each number in the image data is completely
 file-dependent. More often than not, it's the number of electrons that
 were collected in a specific time interval by a particular pixel in a
 charge coupled device (CCD); in older FITS files, the numbers could
 represent the value read from photographic film by a densitometer.
 However, the unifying theme is that larger numbers represent brighter
 light. To interpret these numbers as a grayscale image, we map the
 smallest value in the data to pure black, the largest value in the data
 to pure white, and scale all intermediate values appropriately. A
 general-purpose FITS reader cannot interpret the numbers as anything
 except abstract brightness levels. Without scaling, differences tend to
 get washed out. For example, a dark spot on the Sun tends to be about
 4,000K. That is dark compared to the normal solar surface temperature of
 6,000K, but considerably brighter than anything you're likely to see on
 the surface of the Earth.
Example 17-9 is a FITS
 content handler. FITS files should be served with the MIME type image/x-fits. This is almost certainly not
 included in your server's default MIME-type mappings, so make sure to
 add a mapping between files that end in . fit,
 .fts, or .fits and the MIME
 type image/x-fits.
Example 17-9. An x-fits content handler
package com.macfaq.net.www.content.image;

import java.net.*;
import java.io.*;
import java.awt.image.*;
import java.util.*;

public class x_fits extends ContentHandler {

 public Object getContent(URLConnection uc) throws IOException {

 int width = -1;
 int height = -1;
 int bitpix = 16;
 int[] data = null;
 int naxis = 2;
 Hashtable header = null;

 DataInputStream dis = new DataInputStream(uc.getInputStream());
 header = readHeader(dis);

 bitpix = getIntFromHeader("BITPIX ", -1, header);
 if (bitpix <= 0) return null;
 naxis = getIntFromHeader("NAXIS ", -1, header);
 if (naxis < 1) return null;
 width = getIntFromHeader("NAXIS1 ", -1, header);
 if (width <= 0) return null;
 if (naxis == 1) height = 1;
 else height = getIntFromHeader("NAXIS2 ", -1, header);
 if (height <= 0) return null;

 if (bitpix == 16) {
 short[] theInput = new short[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readShort();
 }
 data = scaleArray(theInput);
 }
 else if (bitpix == 32) {
 int[] theInput = new int[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readInt();
 }
 data = scaleArray(theInput);
 }
 else if (bitpix == 64) {
 long[] theInput = new long[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readLong();
 }
 data = scaleArray(theInput);
 }
 else if (bitpix == -32) {
 float[] theInput = new float[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readFloat();
 }
 data = scaleArray(theInput);
 }
 else if (bitpix == -64) {
 double[] theInput = new double[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readDouble();
 }
 data = scaleArray(theInput);
 }
 else {
 System.err.println("Invalid BITPIX");
 return null;
 } // end if-else-if

 return new MemoryImageSource(width, height, data, 0, width);

 } // end getContent

 private Hashtable readHeader(DataInputStream dis)
 throws IOException {

 int blocksize = 2880;
 int fieldsize = 80;
 String key, value;
 int linesRead = 0;

 byte[] buffer = new byte[fieldsize];

 Hashtable header = new Hashtable();
 while (true) {
 dis.readFully(buffer);
 key = new String(buffer, 0, 8, "ASCII");
 linesRead++;
 if (key.substring(0, 3).equals("END")) break;
 if (buffer[8] != '=' || buffer[9] != ' ') continue;
 value = new String(buffer, 10, 20, "ASCII");
 header.put(key, value);
 }
 int linesLeftToRead
 = (blocksize - ((linesRead * fieldsize) % blocksize))/fieldsize;
 for (int i = 0; i < linesLeftToRead; i++) dis.readFully(buffer);

 return header;

 }

 private int getIntFromHeader(String name, int defaultValue,
 Hashtable header) {

 String s = "";
 int result = defaultValue;

 try {
 s = (String) header.get(name);
 }
 catch (NullPointerException ex) {
 return defaultValue;
 }
 try {
 result = Integer.parseInt(s.trim());
 }
 catch (NumberFormatException ex) {
 System.err.println(ex);
 System.err.println(s);
 return defaultValue;
 }

 return result;

 }

 private int[] scaleArray(short[] theInput) {

 int data[] = new int[theInput.length];
 int max = 0;
 int min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 long r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;

 }

 private int[] scaleArray(int[] theInput) {

 int data[] = new int[theInput.length];
 int max = 0;
 int min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 long r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;

 }

 private int[] scaleArray(long[] theInput) {

 int data[] = new int[theInput.length];
 long max = 0;
 long min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 long r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;

 }

 private int[] scaleArray(double[] theInput) {

 int data[] = new int[theInput.length];
 double max = 0;
 double min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 double r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;

 }

 private int[] scaleArray(float[] theInput) {

 int data[] = new int[theInput.length];
 float max = 0;
 float min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 double r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;
 }
}

The key method of the x_fits
 class is getContent(); it is the one
 method that the ContentHandler class
 requires subclasses to implement. The other methods in this class are
 all utility methods that help to break up the program into
 easier-to-digest chunks. getContent(
) is called by a URLConnection, which passes a reference to
 itself in the argument uc. The
 getContent() method reads data from
 that URLConnection and uses it to
 construct an object that implements the ImageProducer interface. To simplify the task
 of creating an ImageProducer, we
 create an array of image data and use a MemoryImageSource object, which implements the
 ImageProducer interface, to convert
 that array into an image. getContent(
) returns this MemoryImageSource.
MemoryImageSource has several
 constructors. The one invoked here requires us to provide the width and
 height of the image, an array of integer values containing the RGB data
 for each pixel, the offset of the start of that data in the array, and
 the number of pixels per line in the array:
public MemoryImageSource(int width, int height, int[] pixels,
 int offset, int scanlines);
The width, height, and pixel data can be read from the header of
 the FITS image. Since we are creating a new array to hold the pixel
 data, the offset is zero and the scanlines are the width of the
 image.
Our content handler has a utility method called readHeader() that reads the image header from
 uc's InputStream. This method returns a Hashtable containing the keywords and their
 values as String objects. Comments
 are thrown away. readHeader() reads
 80 bytes at a time, since that's the length of each field. The first
 eight bytes are transformed into the String key. If there is no key, the line is a
 comment and is ignored. If there is a key, then the eleventh through
 thirtieth bytes are stored in a String called value. The key-value pair is stored in the
 Hashtable. This continues until the
 END keyword is spotted. At this point, we break out of the loop and read
 as many lines as necessary to finish the block. (Recall that the header
 is padded with spaces to make an integral multiple of 2,880.) Finally,
 readHeader() returns the Hashtable header.
After the header has been read into the Hashtable, the InputStream is now pointing at the first byte
 of data. However, before we're ready to read the data, we must extract
 the height, width, and bits per pixel of the primary data unit from the
 header. These are all integer values, so to simplify the code we use the
 getIntFromHeader(String name, int
 defaultValue, Hashtable header) method. This method takes as arguments
 the name of the header whose value we want (e.g., BITPIX), a default
 value for that header, and the Hashtable that contains the header. This
 method retrieves the value associated with the string name from the Hashtable and casts the result to a String object—we know this cast is safe
 because we put only String data into
 the Hashtable. This String is then converted to an int using Integer.parseInt(s.trim()); we then return
 the resulting int. If an exception is
 thrown, getIntFromHeader() returns
 the defaultValue argument instead. In
 this content handler, we use an impossible flag value (-1) as the
 default to indicate that getIntFromHeader(
) failed.
getContent() uses getIntFromHeader() to retrieve four crucial
 values from the header: NAXIS, NAXIS1, NAXIS2, and BITPIX. NAXIS is the
 number of dimensions in the primary data array; if it is greater than or
 equal to two, we read the width and height from NAXIS1 and NAXIS2. If
 there are more than two dimensions, we still read a single
 two-dimensional frame from the data. A more advanced FITS content
 handler might read subsequent frames and include them below the original
 image or display the sequence of images as an animation. If NAXIS is
 one, the width is read from NAXIS1 and the height is set to one. (A FITS
 file with NAXIS as one would typically be produced from observations
 that used a one-dimensional CCD.) If NAXIS is less than one, there's no
 image data at all, so we return null.
Now we are ready to read the image data. The data can be stored in
 one of five formats, depending on the value of BITPIX: unsigned bytes,
 shorts, ints, floats, or doubles. This is where the lack of generics
 that can handle primitive types makes coding painful: we need to repeat
 the algorithm for reading data five times, once for each of the five
 possible data types. In each case, the data is first read from the
 stream into an array of the appropriate type called theInput. Then this array is passed to the
 scaleArray() method, which returns a
 scaled array. scaleArray() is an
 overloaded method that reads the data in theInput and copies the data into the int array theData, while scaling the data to fall from 0
 to 255; there is a different version of scaleArray() for each of the five data types
 it might need to handle. Thus, no matter what format the data starts in,
 it becomes an int array with values
 from 0 to 255. This data now needs to be converted into grayscale RGB
 values. The standard 32-bit RGB color model allows 256 different shades
 of gray, ranging from pure black to pure white; 8 bits are used to
 represent opacity, usually called "alpha". To get a particular shade of
 gray, the red, green, and blue bytes of an RGB triple should all be set
 to the same value, and the alpha value should be 255 (fully opaque).
 Thinking of these as four byte values, we need colors like
 255.127.127.127 (medium gray) or 255.255.255.255 (pure white). These
 colors are produced by the lines:
int temp = (int) (theInput[i] * a + b);
theData[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
Once it has converted every pixel in theInput[] into a 32-bit color value and
 stored the result in theData[],
 scaleArray() returns theData. The only thing left for getContent() to do is feed this array, along
 with the header values previously retrieved, into the MemoryImageSource constructor and return the
 result.
This FITS content handler has one glaring problem. The image has
 to be completely loaded before the method returns. Since FITS images are
 quite literally astronomical in size, loading the image can take a
 significant amount of time. It would be better to create a new class for
 FITS images that implements the ImageProducer interface and into which the
 data can be streamed asynchronously. The ImageConsumer that eventually displays the
 image can use the methods of ImageProducer to determine when the height and
 width are available, when a new scanline has been read, when the image
 is completely loaded or errored out, and so on. getContent() would spawn a separate thread to
 feed the data into the ImageProducer
 and would return almost immediately. However, a FITS ImageProducer would not be able to take
 significant advantage of progressive loading because the file format
 doesn't unambiguously define what each data value means; before we can
 generate RGB pixels, we must read all of the data and find the minimum
 and maximum values.
Example 17-10 is a
 simple ContentHandlerFactory that
 recognizes FITS images. For all types other than image/x-fits, it returns null so that the default locations will be
 searched for content handlers.
Example 17-10. The FITS ContentHandlerFactory
import java.net.*;

public class FitsFactory implements ContentHandlerFactory {

 public ContentHandler createContentHandler(String mimeType) {

 if (mimeType.equalsIgnoreCase("image/x-fits")) {
 return new com.macfaq.net.www.content.image.x_fits();
 }
 return null;

 }
}

Example 17-11 is a
 simple program that tests this content handler by loading and displaying
 a FITS image from a URL. In fact, it can display any image type for
 which a content handler is installed. However, it does use the FitsFactory to recognize FITS images.
Example 17-11. The FITS viewer
import java.awt.*;
import javax.swing.*;
import java.awt.image.*;
import java.net.*;
import java.io.*;

public class FitsViewer extends JFrame {

 private URL url;
 private Image theImage;

 public FitsViewer(URL u) {
 super(u.getFile());
 this.url = u;
 }

 public void loadImage() throws IOException {

 Object content = this.url.getContent();
 ImageProducer producer;
 try {
 producer = (ImageProducer) content;
 }
 catch (ClassCastException e) {
 throw new IOException("Unexpected type " + content.getClass());
 }
 if (producer == null) theImage = null;
 else {
 theImage = this.createImage(producer);
 int width = theImage.getWidth(this);
 int height = theImage.getHeight(this);
 if (width > 0 && height > 0) this.setSize(width, height);
 }

 }

 public void paint(Graphics g) {
 if (theImage != null) g.drawImage(theImage, 0, 0, this);
 }

 public static void main(String[] args) {

 URLConnection.setContentHandlerFactory(new FitsFactory());
 for (int i = 0; i < args.length; i++) {
 try {
 FitsViewer f = new FitsViewer(new URL(args[i]));
 f.setSize(252, 252);
 f.loadImage();
 f.show();
 }
 catch (MalformedURLException ex) {
 System.err.println(args[i] + " is not a URL I recognize.");
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
}

The FitsViewer program extends
 JFrame. The main() method loops through all the
 command-line arguments, creating a new window for each one. Then it
 loads the image into the window and shows it. The loadImage() method actually downloads the
 requested picture by implicitly using the content handler of Example
 17-9 to convert the FITS data into a java.awt.Image object stored in the field
 theImage. If the width and the height
 of the image are available (as they will be for a FITS image using our
 content handler but maybe not for some other image types that load the
 image in a separate thread), then the window is resized to the exact
 size of the image. The paint()
 method simply draws this image on the screen. Most of the work is done
 inside the content handler. In fact, this program can actually display
 images of any type for which a content handler is installed and
 available. For instance, it works equally well for GIF and JPEG images.
 Figure 17-2 shows this
 program displaying a picture of part of solar granulation.
[image: The FitsViewer application displaying a FITS image of solar granulation]

Figure 17-2. The FitsViewer application displaying a FITS image of solar
 granulation

Chapter 18. Remote Method Invocation

Historically, networking has been concerned with two fundamental
 applications. The first application is moving files and data between hosts
 and is handled by FTP, SMTP, HTTP, NFS, IMAP, POP, and many other
 protocols. The second application is allowing one host to run programs on
 another host. This is the traditional province of Telnet, rlogin, Remote
 Procedure Call (RPC), and a lot of database middleware. Most of this book
 has implicitly concerned itself with file and data transfer. Remote Method Invocation (RMI), however, is an example of
 the second application for networking: running a program on a remote host
 from a local machine.
RMI is a core Java API and class library that allows Java programs
 running in one Java virtual machine to call methods in objects running in
 a different virtual machine, even when the two virtual machines are
 running on physically separate hosts. In essence, parts of a single Java
 program run on a local computer while other parts of the same program run
 on a remote host. RMI creates the illusion that this distributed program
 is running on one system with one memory space holding all the code and
 data used on either side of the actual physical connection.
What Is Remote Method Invocation?

RMI lets Java objects on different hosts communicate with
 each other in a way that's similar to how objects running in the same
 virtual machine communicate with each other: by calling methods in
 objects. A remote object lives on a server. Each remote object
 implements a remote interface that specifies which of its methods can be
 invoked by clients. Clients invoke the methods of the remote object
 almost exactly as they invoke local methods. For example, an object
 running on a local client can pass a database query as a String argument to a method in a database
 object running on a remote server to ask it to sum up a series of
 records. The server can return the result to the client as a double. This is more efficient than
 downloading all the records and summing them up locally. Java-compatible
 web servers can implement remote methods that allow clients to ask for a
 complete index of the public files on the site. This could dramatically
 reduce the time a server spends filling requests from web spiders such
 as Google. Indeed, Excite already uses a non-Java-based version of this
 idea.
From the programmer's perspective, remote objects and methods work
 pretty much like the local objects and methods you're accustomed to. All
 the implementation details are hidden. You just import one package, look
 up the remote object in a registry (which takes one line of code), and
 make sure that you catch RemoteException when you call the object's methods. From that point on,
 you can use the remote object almost as freely and easily as you use an
 object running on your own system. The abstraction is not perfect.
 Remote method invocation is much slower and less reliable than regular
 local method invocation. Things can and do go wrong with remote method
 invocation that do not affect local method invocations. For instance, a
 local method invocation is not subject to a Verizon technician
 disconnecting your DSL line while working on the phone line next door.
 Network failures of this type are represented as RemoteExceptions. However, RMI tries to hide
 the difference between local and remote method invocation to the maximum
 extent possible.
More formally, a remote object is an object with methods that may be invoked from a
 different Java virtual machine than the one in which the object itself
 lives, generally one running on a different computer. Each remote object
 implements one or more remote interfaces that
 declare which methods of the remote object can be invoked by the foreign
 system. RMI is the facility by which a Java program running on one
 machine, say java.oreilly.com, can invoke a method
 in an object on a completely different machine, say
 www.ibiblio.org.
For example, suppose weather.centralpark.org
 is an Internet-connected PC at the Central Park weather station that
 monitors the temperature, humidity, pressure, wind speed and direction,
 and similar information through connections to various instruments, and
 it needs to make this data available to remote users. A Java program
 running on that PC can offer an interface like Example 18-1 that provides the
 current values of the weather data.
Example 18-1. The weather interface
import java.rmi.*;
import java.util.Date;

public interface Weather extends Remote {

 public double getTemperature() throws RemoteException;
 public double getHumidity() throws RemoteException;
 public double getPressure() throws RemoteException;
 public double getWindSpeed() throws RemoteException;
 public double getWindDirection() throws RemoteException;
 public double getLatitude() throws RemoteException;
 public double getLongitude() throws RemoteException;
 public Date getTime() throws RemoteException;

}

Normally, this interface is limited to other programs running on
 that same PC—indeed, in the same virtual machine. However, remote method
 invocations allow other virtual machines running on other computers in
 other parts of the world to invoke these methods to retrieve the weather
 data. For instance, a Java program running on my workstation at stallion.elharo.com could look
 up the current weather object in the RMI registry at weather.centralpark.org.
 The registry would send it a reference to the object running in weather.centralpark.org's
 virtual machine. My program could then use this reference to invoke the
 getTemperature() method. The
 getTemperature() method would
 execute on the server in Central Park, not on my local machine. However,
 it would return the double value back to my local program running in
 Brooklyn. This is simpler than designing and implementing a new
 socket-based protocol for communication between the weather station and
 its clients. The details of making the connections between the hosts and
 transferring the data are hidden in the RMI classes.
So far we've imagined a public service that's accessible to all.
 However, clearly there are some methods you don't want just anyone
 invoking. More RMI applications than not will have a strictly limited
 set of permitted users. RMI itself does not provide any means of
 limiting who's allowed to access RMI servers. These capabilities can be
 added to RMI programs through the Java Authentication and Authorization
 Service (JAAS). JAAS is an abstract interface that can be configured
 with different service providers to support a range of different
 authentication schemes and different stores for the authentication
 data.
Object Serialization

 When an object is passed to or returned from a Java
 method, what's really transferred is a reference to the object. In
 most current implementations of Java, references are handles (doubly
 indirected pointers) to the location of the object in memory. Passing
 objects between two machines thus raises some problems. The remote
 machine can't read what's in the memory of the local machine. A
 reference that's valid on one machine isn't meaningful on the
 other.
There are two ways around this problem. The first way is to
 convert the object to a sequence of bytes and send these bytes to the
 remote machine. The remote machine receives the bytes and reconstructs
 them into a copy of the object. However, changes to this copy are not
 automatically reflected in the original object. This is like
 pass-by-value.
The second way around this problem is to pass a special remote
 reference to the object. When the remote machine invokes a method on
 this reference, that invocation travels back across the Internet to
 the local machine that originally created the object. Changes made on
 either machine are reflected on both ends of the connection because
 they share the same object. This is like pass-by-reference.
Converting an object into a sequence of bytes is more difficult
 than it appears at first glance because object fields can be
 references to other objects; the objects these fields point to also
 need to be copied when the object is copied. And these objects may
 point to still other objects that also need to be copied. Object
 serialization is a scheme by which objects can be converted into bytes
 and then passed around to other machines, which rebuild the original
 object from the bytes. These bytes can also be written to disk and
 read back from disk at a later time, allowing you to save the state of
 an entire program or a single object.
 For security reasons, Java places some limitations on
 which objects can be serialized. All Java primitive types can be
 serialized, but nonremote Java objects can be serialized only if they
 implement the java.io.Serializable
 interface. Basic Java types that implement Serializable include String and Component. Container classes such as
 Vector are serializable if all the
 objects they contain are serializable. Furthermore, subclasses of a
 serializable class are also serializable. For example, java.lang.Integer and java.lang.Float are serializable because the
 class they extend, java.lang.Number, is serializable.
 Exceptions, errors, and other throwable objects are always
 serializable. Most AWT and Swing components, containers, and events
 are serializable. However, event adapters, image filters, and peer
 classes are not. Streams, readers and writers, and most other I/O
 classes are not serializable. Type wrapper classes are serializable
 except for Void. Classes in
 java.math are serializable. Classes
 in java.lang.reflect are not
 serializable. The URL class is
 serializable. However, Socket,
 URLConnection, and most other
 classes in java.net are not. If in
 doubt, the class library documentation will tell you whether a given
 class is serializable.
Tip
Object serialization is discussed in much greater detail in
 Chapter 11 of my previous book,
 Java I/O (O'Reilly).

CORBA
RMI isn't the final word in distributed object systems. Its
 biggest limitation is that you can call only methods written in
 Java. What if you already have an application written in some other
 language, such as C++, and you want to communicate with it? The most
 general solution for distributed objects is CORBA, the Common Object Request Broker Architecture.
 CORBA lets objects written in different languages communicate with
 each other. Java hooks into CORBA through the Java-IDL. This goes
 beyond the scope of this book; to find out about these topics,
 see:
	Java-IDL (http://java.sun.com/products/jdk/idl/)

	CORBA for Beginners (http://www.omg.org/gettingstarted/corbafaq.htm)

	The CORBA FAQ list (http://www4.informatik.uni-erlangen.de/~geier/corba-faq/)

	Client/Server Programming with Java and
 CORBA by Dan Harkey and Robert Orfali (Wiley)

Under the Hood

The last two sections skimmed over a lot of details.
 Fortunately, Java hides most of the details from you. However, it
 never hurts to understand how things really work.
The fundamental difference between remote objects and local
 objects is that remote objects reside in a different virtual machine.
 Normally, object arguments are passed to methods and object values are
 returned from methods by referring to something in a particular
 virtual machine. This is called passing a
 reference . However, this method doesn't work when the invoking
 method and the invoked method aren't in the same virtual machine; for
 example, object 243 in one virtual machine has nothing to do with
 object 243 in a different virtual machine. In fact, different virtual
 machines may implement references in completely different and
 incompatible ways.
Therefore, three different mechanisms are used to pass arguments
 to and return results from remote methods, depending on the type of
 the data being passed. Primitive types (int, boolean, double, and so on) are passed by value, just
 as in local Java method invocation. References to remote objects (that
 is, objects that implement the Remote interface) are passed as
 remote references that allow the recipient to invoke methods on the
 remote objects. This is similar to the way local object references are
 passed to local Java methods. Objects that do not
 implement the Remote interface are
 passed by value; that is, complete copies are passed, using object
 serialization. Objects that do not allow themselves to be serialized
 cannot be passed to remote methods. Remote objects run on the server
 but can be called by objects running on the client. Nonremote,
 serializable objects run on the client system.
To make the process as transparent to the programmer as
 possible, communication between a remote object client and a server is
 implemented in a series of layers, as shown in Figure 18-1.
[image: The RMI layer model]

Figure 18-1. The RMI layer model

To the programmer, the client appears to talk directly to the
 server. In reality, the client program talks only to a stub object
 that stands in for the real object on the remote system. The stub
 passes that conversation along to the remote reference layer, which
 talks to the transport layer. The transport layer on the client passes
 the data across the Internet to the transport layer on the server. The
 server's transport layer then communicates with the server's remote
 reference layer, which talks to a piece of server software called the
 skeleton . The skeleton communicates with the server itself.
 (Servers written in Java 1.2 and later can omit the skeleton layer.)
 In the other direction (server-to-client), the flow is simply
 reversed. Logically, data flows horizontally (client-to-server and
 back), but the actual flow of data is vertical.
This approach may seem overly complex, but remember that most of
 the time you don't need to think about it, any more than you need to
 think about how a telephone translates your voice into a series of
 electrical impulses that get translated back to sound at the other end
 of the phone call. The goal of RMI is to allow your program to pass
 arguments to and return values from methods without worrying about how
 those arguments and return values will move across the network. At
 worst, you'll simply need to handle one additional kind of exception a
 remote method might throw.
Before you can call a method in a remote object, you need a
 reference to that object. To get this reference, ask a
 registry for it by name. The registry is like a mini-DNS for
 remote objects. A client connects to the registry and gives it the URL
 of the remote object that it wants. The registry replies with a
 reference to the object that the client can use to invoke methods on
 the server.
In reality, the client is only invoking local methods in a
 stub . The stub is a local object that implements the remote
 interfaces of the remote object; this means that the stub has methods
 matching the signatures of all the methods the remote object exports.
 In effect, the client thinks it is calling a method in the remote
 object, but it is really calling an equivalent method in the stub.
 Stubs are used in the client's virtual machine in place of the real
 objects and methods that live on the server; you may find it helpful
 to think of the stub as the remote object's surrogate on the client.
 When the client invokes a method, the stub passes the invocation to
 the remote reference layer.
The remote reference layer carries out a specific remote
 reference protocol, which is independent of the specific client stubs
 and server skeletons. The remote reference layer is responsible for
 understanding what a particular remote reference means. Sometimes the
 remote reference may refer to multiple virtual machines on multiple
 hosts. In other situations, the reference may refer to a single
 virtual machine on the local host or a virtual machine on a remote
 host. In essence, the remote reference layer translates the local
 reference to the stub into a remote reference to the object on the
 server, whatever the syntax or semantics of the remote reference may
 be. Then it passes the invocation to the transport layer.
The transport layer sends the invocation across the Internet. On
 the server side, the transport layer listens for incoming connections.
 Upon receiving an invocation, the transport layer forwards it to the
 remote reference layer on the server. The remote reference layer
 converts the remote references sent by the client into references for
 the local virtual machine. Then it passes the request to the skeleton.
 The skeleton reads the arguments and passes the data to the server
 program, which makes the actual method call. If the method call
 returns a value, that value is sent down through the skeleton, remote
 reference, and transport layers on the server side, across the
 Internet and then up through the transport, remote reference, and stub
 layers on the client side. In Java 1.2 and later, the skeleton layer
 is omitted and the server talks directly to the remote reference
 layer. Otherwise, the protocol is the same.

Implementation

Most of the methods you need for working with remote
 objects are in three packages: java.rmi,
 java.rmi.server, and java.rmi.registry. The java.rmi package defines the classes,
 interfaces, and exceptions that will be seen on the client side. You
 need these when you're writing programs that access remote objects but
 are not themselves remote objects. The java.rmi.server package defines the classes,
 interfaces, and exceptions that will be visible on the server side. Use
 these classes when you are writing a remote object that will be called
 by clients. The java.rmi.registry
 package defines the classes, interfaces, and exceptions that are used to
 locate and name remote objects.
Tip
In this chapter and in Sun's documentation, the server side is
 always considered to be "remote" and the client is always considered
 "local". This can be confusing, particularly when you're writing a
 remote object. When writing a remote object, you're probably thinking
 from the viewpoint of the server, so that the client appears to be
 remote.

The Server Side

To create a new remote object, first define an interface
 that extends the java.rmi.Remote
 interface. Remote is a marker interface that does not have any methods of
 its own; its sole purpose is to tag remote objects so that they can be
 identified as such. One definition of a remote object is an instance
 of a class that implements the Remote interface, or any interface that
 extends Remote.
Your subinterface of Remote
 determines which methods of the remote object clients may call. A
 remote object may have many public methods, but only those declared in
 a remote interface can be invoked remotely. The other public methods
 may be invoked only from within the virtual machine where the object
 lives.
Each method in the subinterface must declare that it throws
 RemoteException. RemoteException is the superclass for most
 of the exceptions that can be thrown when RMI is used. Many of these
 are related to the behavior of external systems and networks and are
 thus beyond your control.
Example 18-2 is a
 simple interface for a remote object that calculates Fibonacci numbers
 of arbitrary size. (Fibonacci numbers are the sequence that begins 1,
 1, 2, 3, 5, 8, 13 . . . in which each number is the sum of the
 previous two.) This remote object can run on a high-powered server to
 calculate results for low-powered clients. The interface declares two
 overloaded getFibonacci() methods,
 one of which takes an int as an
 argument and the other of which takes a BigInteger. Both methods return BigInteger because Fibonacci numbers grow
 very large very quickly. A more complex remote object could have many
 more methods.
Example 18-2. The Fibonacci interface
import java.rmi.*;
import java.math.BigInteger;

public interface Fibonacci extends Remote {

 public BigInteger getFibonacci(int n) throws RemoteException;
 public BigInteger getFibonacci(BigInteger n) throws RemoteException;

}

Nothing in this interface says anything about how the
 calculation is implemented. For instance, it could be calculated
 directly, using the methods of the java.math.BigInteger class. It could be done
 equally easily with the more efficient methods of the com.ibm.BigInteger class from IBM's
 alphaWorks (http://www.alphaworks.ibm.com/tech/bigdecimal). It
 could be calculated with ints for
 small values of n and BigInteger for large values of n. Every calculation could be performed
 immediately, or a fixed number of threads could be used to limit the
 load that this remote object places on the server. Calculated values
 could be cached for faster retrieval on future requests, either
 internally or in a file or database. Any or all of these are possible.
 The client neither knows nor cares how the server gets the result as
 long as it produces the correct one.
The next step is to define a class that implements this remote
 interface. This class should extend java.rmi.server.UnicastRemoteObject, either
 directly or indirectly (i.e., by extending another class that extends
 UnicastRemoteObject):
public class UnicastRemoteObject extends RemoteServer
Without going into too much detail, the UnicastRemoteObject provides a number of methods that make remote method
 invocation work. In particular, it marshals and unmarshals remote
 references to the object. (Marshalling is the process by which arguments and return values are
 converted into a stream of bytes that can be sent over the network.
 Unmarshalling is the reverse: the conversion of a
 stream of bytes into a group of arguments or a return value.)
If extending UnicastRemoteObject isn't convenient—for
 instance, because you'd like to extend some other class—you can
 instead export your object as a remote object by passing it to one of
 the static UnicastRemoteObject.exportObject()
 methods:
public static RemoteStub exportObject(Remote obj)
 throws RemoteException
public static Remote exportObject(Remote obj, int port) // Java 1.2
 throws RemoteException
public static Remote exportObject(Remote obj, int port, // Java 1.2
 RMIClientSocketFactory csf, RMIServerSocketFactory ssf)
 throws RemoteException
These create a remote object that uses your object to do the
 work. It's similar to how a Runnable object can be used to give a thread
 something to do when it's inconvenient to subclass Thread. However, this approach has the
 downside of preventing the use of dynamic proxies in Java 1.5, so you
 need to manually deploy stubs. (In Java 1.4 and earlier, you always
 have to use stubs.)
There's one other kind of RemoteServer in the standard Java class
 library, the java.rmi.activation.Activatable class:
public abstract class Activatable extends RemoteServer // Java 1.2
A UnicastRemoteObject exists
 only as long as the server that created it still runs. When the server
 dies, the object is gone forever. Activatable objects allow clients to
 reconnect to servers at different times across server shutdowns and
 restarts and still access the same remote objects. It also has static
 Activatable.exportObject() methods
 to invoke if you don't want to subclass Activatable.
Example 18-3, the
 FibonacciImpl class, implements the
 remote interface Fibonacci. This
 class has a constructor and two getFibonacci(
) methods. Only the getFibonacci(
) methods will be available to the client, because they're
 the only ones defined by the Fibonacci interface. The constructor is used
 on the server side but is not available to the client.
Example 18-3. The FibonacciImpl class
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.math.BigInteger;

public class FibonacciImpl extends UnicastRemoteObject implements Fibonacci {

 public FibonacciImpl() throws RemoteException {
 super();
 }

 public BigInteger getFibonacci(int n) throws RemoteException {
 return this.getFibonacci(new BigInteger(Long.toString(n)));
 }

 public BigInteger getFibonacci(BigInteger n) throws RemoteException {

 System.out.println("Calculating the " + n + "th Fibonacci number");
 BigInteger zero = new BigInteger("0");
 BigInteger one = new BigInteger("1");

 if (n.equals(zero)) return one;
 if (n.equals(one)) return one;

 BigInteger i = one;
 BigInteger low = one;
 BigInteger high = one;

 while (i.compareTo(n) == -1) {
 BigInteger temp = high;
 high = high.add(low);
 low = temp;
 i = i.add(one);
 }

 return high;

 }
}

The FibonacciImpl()
 constructor just calls the superclass constructor that exports the
 object; that is, it creates a UnicastRemoteObject on some port and starts
 it listening for connections. The constructor is declared to throw
 RemoteException because the
 UnicastRemoteObject constructor can
 throw that exception.
The getFibonacci(int
 n) method is trivial. It simply
 returns the result of converting its argument to a BigInteger and calling the second getFibonacci() method. The second method
 actually performs the calculation. It uses BigInteger throughout the calculation to
 allow for arbitrarily large Fibonacci numbers of an arbitrarily large
 index to be calculated. This can use a lot of CPU power and huge
 amounts of memory. That's why you might want to move it to a
 special-purpose calculation server rather than performing the
 calculation locally.
Although getFibonacci() is a
 remote method, there's nothing different about the method itself. This
 is a simple case, but even vastly more complex remote methods are not
 algorithmically different than their local counterparts. The only
 difference—that a remote method is declared in a remote interface and
 a local method is not—is completely external to the method
 itself.
Next, we need to write a server that makes the Fibonacci remote object available to the
 world. Example 18-4 is such
 a server. All it has is a main()
 method. It begins by entering a try
 block that catches RemoteException.
 Then it constructs a new FibonacciImpl object and binds that object
 to the name "fibonacci" using the Naming class to talk to the local registry.
 A registry keeps track of the available objects on an RMI server and
 the names by which they can be requested. When a new remote object is
 created, the object adds itself and its name to the registry with the
 Naming.bind() or Naming.rebind() method. Clients can then
 ask for that object by name or get a list of all the remote objects
 that are available. Note that there's no rule that says the name the
 object has in the registry has to have any necessary relation to the
 class name. For instance, we could have called this object "Fred".
 Indeed, there might be multiple instances of the same class all bound
 in a registry, each with a different name. After registering itself,
 the server prints a message on System.out signaling that it is ready to
 begin accepting remote invocations. If something goes wrong, the
 catch block prints a simple error
 message.
Example 18-4. The FibonacciServer class
import java.net.*;
import java.rmi.*;

public class FibonacciServer {

 public static void main(String[] args) {

 try {
 FibonacciImpl f = new FibonacciImpl();
 Naming.rebind("fibonacci", f);
 System.out.println("Fibonacci Server ready.");
 }
 catch (RemoteException rex) {
 System.out.println("Exception in FibonacciImpl.main: " + rex);
 }
 catch (MalformedURLException ex) {
 System.out.println("MalformedURLException " + ex);
 }

 }

}

Although the main() method
 finishes fairly quickly here, the server will continue to run because
 a nondaemon thread is spawned when the FibonacciImpl object is bound to the
 registry. This completes the server code you need to write.

Compiling the Stubs

 RMI uses stub classes to mediate between local objects
 and the remote objects running on the server. Each remote object on
 the server is represented by a stub class on the client. The stub
 contains the information in the Remote interface (in this example, that a
 Fibonacci object has two getFibonacci() methods). Java 1.5 can
 sometimes generate these stubs automatically as they're needed, but in
 Java 1.4 and earlier, you must manually compile the stubs for each
 remote class. Even in Java 1.5, you still have to manually compile
 stubs for remote objects that are not subclasses of UnicastRemoteObject and are instead exported
 by calling UnicastRemoteObject.exportObject(
).
Fortunately, you don't have to write stub classes yourself: they
 can be generated automatically from the remote class's byte code using
 the rmic utility included with the JDK. To
 generate the stubs for the FibonacciImpl remote object, run
 rmic on the remote classes you want to generate
 stubs for. For example:
% rmic FibonacciImpl
% ls Fibonacci*
Fibonacci.class FibonacciImpl_Stub.class FibonacciServer.java
FibonacciImpl.class Fibonacci.java
FibonacciImpl.java FibonacciServer.class
rmic reads the .class
 file of a class that implements Remote and produces
 .class files for the stubs needed for the remote
 object. The command-line argument to rmic is the
 fully package-qualified class name (e.g., com.macfaq.rmi.examples.Chat, not just
 Chat) of the remote object
 class.
rmic supports the same command-line options
 as the javac compiler: for example, -classpath and -d. For instance, if the class doesn't fall
 in the class path, you can specify the location with the -classpath command-line argument. The
 following command searches for
 FibonacciImpl.class in the directory
 test/classes:
% rmic -classpath test/classes FibonacciImpl

Starting the Server

Now you're ready to start the server. There are actually
 two servers you need to run, the remote object itself (FibonacciServer in this example) and the
 registry that allows local clients to download a reference to the
 remote object. Since the server expects to talk to the registry, you
 must start the registry first. Make sure all the stub and server
 classes are in the server's class path and type:
% rmiregistry &
On Windows, you start it from a DOS prompt like this:
C:> start rmiregistry
In both examples, the registry runs in the background. The
 registry tries to listen to port 1,099 by default. If it fails,
 especially with a message like "java.net. SocketException: Address
 already in use", then some other program is using port 1099, possibly
 (though not necessarily) another registry service. You can run the
 registry on a different port by appending a port number like
 this:
% rmiregistry 2048 &
If you use a different port, you'll need to include that port in
 URLs that refer to this registry service.
Finally, you're ready to start the server. Run the server
 program just as you'd run any Java class with a main() method:
% java FibonacciServer
Fibonacci Server ready.
Now the server and registry are ready to accept remote method
 calls. Next we'll write a client that connects to these servers to
 make such remote method calls.

The Client Side

Before a regular Java object can call a method, it needs
 a reference to the object whose method it's going to call. Before a
 client object can call a remote method, it needs a remote reference to
 the object whose method it's going to call. A program retrieves this
 remote reference from a registry on the server where the remote object
 runs. It queries the registry by calling the registry's lookup() method. The exact naming scheme
 depends on the registry; the java.rmi.Naming class provides a URL-based
 scheme for locating objects. As you can see in the following code,
 these URLs have been designed so that they are similar to
 http URLs. The protocol is
 rmi. The URL's file field specifies the remote
 object's name. The fields for the hostname and the port number are
 unchanged:
Object o1 = Naming.lookup("rmi://login.ibiblio.org/fibonacci");
Object o2 = Naming.lookup("rmi://login.ibiblio.org:2048/fibonacci");
Like objects stored in Hashtables, Vectors, and other data structures that
 store objects of different classes, the object that is retrieved from
 a registry loses its type information. Therefore, before using the
 object, you must cast it to the remote interface that the remote
 object implements (not to the actual class, which is hidden from
 clients):
Fibonacci calculator = (Fibonacci) Naming.lookup("fibonacci");
Once a reference to the object has been retrieved and its type
 restored, the client can use that reference to invoke the object's
 remote methods pretty much as it would use a normal reference variable
 to invoke methods in a local object. The only difference is that
 you'll need to catch RemoteException for each remote invocation.
 For example:
try {
 BigInteger f56 = calculator.getFibonacci(56);
 System.out.println("The 56th Fibonacci number is " + f56);
 BigInteger f156 = calculator.getFibonacci(new BigInteger(156));
 System.out.println("The 156th Fibonacci number is " + f156);
}
catch (RemoteException ex) {
 System.err.println(ex)
}
Example 18-5 is a
 simple client for the Fibonacci
 interface of the last section.
Example 18-5. The FibonacciClient
import java.rmi.*;
import java.net.*;
import java.math.BigInteger;

public class FibonacciClient {

 public static void main(String args[]) {

 if (args.length == 0 || !args[0].startsWith("rmi:")) {
 System.err.println(
 "Usage: java FibonacciClient rmi://host.domain:port/fibonacci number");
 return;
 }

 try {
 Object o = Naming.lookup(args[0]);
 Fibonacci calculator = (Fibonacci) o;
 for (int i = 1; i < args.length; i++) {
 try {
 BigInteger index = new BigInteger(args[i]);
 BigInteger f = calculator.getFibonacci(index);
 System.out.println("The " + args[i] + "th Fibonacci number is "
 + f);
 }
 catch (NumberFormatException e) {
 System.err.println(args[i] + "is not an integer.");
 }
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a valid RMI URL");
 }
 catch (RemoteException ex) {
 System.err.println("Remote object threw exception " + ex);
 }
 catch (NotBoundException ex) {
 System.err.println(
 "Could not find the requested remote object on the server");
 }
 }
}

Compile the class as usual. Notice that because the object that
 Naming.lookup() returns is cast to
 a Fibonacci, either the
 Fibonacci.java or
 Fibonacci.class file needs to be available on the
 local host. A general requirement for compiling a client is to have
 either the byte or source code for the remote interface you're
 connecting to. To some extent, you can relax this a little bit by
 using the reflection API, but you'll still need to know at least
 something about the remote interface's API. Most of the time, this
 isn't an issue, since the server and client are written by the same
 programmer or team. The point of RMI is to allow a VM to invoke
 methods on remote objects, not to compile against remote
 objects.

Running the Client

Go back to the client system. Make sure that the client
 system has FibonacciClient.class,
 Fibonacci.class, and
 FibonacciImpl_Stub.class in its class path. (If
 both the client and the server are running Java 1.5, you don't need
 the stub class.) On the client system, type:
C:\>java FibonacciClient rmi://host.com/fibonacci 0 1 2 3 4 5 55 155
You should see:
The 0th Fibonacci number is 1
The 1th Fibonacci number is 1
The 2th Fibonacci number is 2
The 3th Fibonacci number is 3
The 4th Fibonacci number is 5
The 5th Fibonacci number is 8
The 55th Fibonacci number is 225851433717
The 155th Fibonacci number is 178890334785183168257455287891792
The client converts the command-line arguments to BigInteger objects. It sends those objects
 over the wire to the remote server. The server receives each of those
 objects, calculates the Fibonacci number for that index, and sends a
 BigInteger object back over the
 Internet to the client. Here, I'm using a PC for the client and a
 remote Unix box for the server. You can actually run both server and
 client on the same machine, although that's not as
 interesting.

Loading Classes at Runtime

All the client really has to know about the remote object
 is its remote interface. Everything else it needs—for instance, the stub
 classes—can be loaded from a web server (though not an RMI server) at
 runtime using a class loader. Indeed, this ability to load classes from
 the network is one of the unique features of Java. This is especially
 useful in applets. The web server can send the browser an applet that
 communicates back with the server; for instance, to allow the client to
 read and write files on the server. However, as with any time that
 classes are loaded from a potentially untrusted host, they must be
 checked by a SecurityManager.
Unfortunately, while remote objects are actually quite easy to
 work with when you can install the necessary classes in the local client
 class path, doing so when you have to dynamically load the stubs and
 other classes is fiendishly difficult. The class path, the security
 architecture, and the reliance on poorly documented environment
 variables are all bugbears that torment Java programmers. Getting a
 local client object to download remote objects from a server requires
 manipulating all of these in precise detail. Making even a small mistake
 prevents programs from running, and only the most generic of exceptions
 is thrown to tell the poor programmers what they did wrong. Exactly how
 difficult it is to make the programs work depends on the context in
 which the remote objects are running. In general, applet clients that
 use RMI are somewhat easier to manage than standalone application
 clients. Standalone applications are feasible if the client can be
 relied on to have access to the same .class files
 as the server has. Standalone applications that need to load classes
 from the server border on impossible.
Example 18-6 is an
 applet client for the Fibonacci
 remote object. It has the same basic structure as the FibonacciClient in Example 18-5. However, it uses a
 TextArea to display the message from
 the server instead of using System.out.
Example 18-6. An applet client for the Fibonacci object
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.rmi.*;
import java.math.BigInteger;

public class FibonacciApplet extends Applet {

 private TextArea resultArea
 = new TextArea("", 20, 72, TextArea.SCROLLBARS_BOTH);
 private TextField inputArea = new TextField(24);
 private Button calculate = new Button("Calculate");
 private String server;

 public void init() {

 this.setLayout(new BorderLayout());

 Panel north = new Panel();
 north.add(new Label("Type a non-negative integer"));
 north.add(inputArea);
 north.add(calculate);
 this.add(resultArea, BorderLayout.CENTER);
 this.add(north, BorderLayout.NORTH);
 Calculator c = new Calculator();
 inputArea.addActionListener(c);
 calculate.addActionListener(c);
 resultArea.setEditable(false);

 server = "rmi://" + this.getCodeBase().getHost() + "/fibonacci";

 }

 class Calculator implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 try {
 String input = inputArea.getText();
 if (input != null) {
 BigInteger index = new BigInteger(input);
 Fibonacci f = (Fibonacci) Naming.lookup(server);
 BigInteger result = f.getFibonacci(index);
 resultArea.setText(result.toString());
 }
 }
 catch (Exception ex) {
 resultArea.setText(ex.getMessage());
 }
 }
 }
}

You'll notice that the rmi URL is built from
 the applet's own codebase. This helps avoid nasty security problems that
 arise when an applet tries to open a network connection to a host other
 than the one it came from. RMI-based applets are certainly not exempt
 from the usual restrictions on network connections.
Example 18-7 is a
 simple HTML file that can be used to load the applet from the web
 browser.
Example 18-7. FibonacciApplet.html
<html>
<head>
<title>RMI Applet</title>
</head>
<body>
<h1>RMI Applet</h1>

<p>
<applet align="center" code="FibonacciApplet" width="300" height="100">
</applet>
<hr />
</p>
</body>
</html>

Place FibonacciImpl_Stub.class,
 Fibonacci.class,
 FibonacciApplet.html, and
 FibonacciServer.class in the same directory on your
 web server. Add this directory to the server's class path and start
 rmiregistry on the server. Then start FibonacciServer on the server. For
 example:
% rmiregistry &
% java FibonacciServer &
Make sure that both of these are running on the actual web server
 machine. Many web server farms use different machines for site
 maintenance and web serving, even though both mount the same
 filesystems. To get past the applet security restriction, both
 rmiregistry and FibonacciServer have to be running on the
 machine that serves the FibonacciApplet.class file
 to web clients.
Now load FibonacciApplet.html into a web
 browser from the client. Figure
 18-2 shows the result.
[image: The Fibonacci applet]

Figure 18-2. The Fibonacci applet

For applications, it's much easier if you can load all the classes
 you need before running the program. You can load classes from a web
 server running on the same server the remote object is running on, if
 necessary. To do this, set the java.rmi.server.codebase Java system property
 on the server (where the remote object runs) to the URL where the
 .class files are stored on the network. For
 example, to specify that the classes can be found at http://www.cafeaulait.org/rmi2/, you would type:
% java -Djava.rmi.server.codebase=http://www.cafeaulait.org/rmi2/
FibonacciServer & Fibonacci Server ready.
If the classes are in packages, the java.rmi.server.codebase property points to
 the directory containing the top-level com or
 org directory rather than the directory containing
 the .class files themselves. Both servers and
 clients will load the .class files from this
 location if the files are not found in the local class path
 first.
Loading classes from the remote server makes the coupling between
 the server and the client a little less tight. However, any client
 program you write will normally have to know quite a bit about the
 system it's talking to in order to do something useful. This usually
 involves having at least the remote interface available on the client at
 compile time and runtime. Even if you use reflection to avoid that,
 you'll still need to know the signatures and something about the
 behavior of the methods you plan to invoke. RMI just doesn't lend itself
 to truly loose coupling like you might see in a SOAP or, better yet,
 RESTful server. The RMI design metaphor is more running one program on
 several machines than it is having several programs on different
 machines that communicate with each other. Therefore, it's easiest if
 both sides of the connection have all the code available to them when
 the program starts up.

The java.rmi Package

 The java.rmi package
 contains the classes that are seen by clients (objects that invoke
 remote methods). Both clients and servers should import java.rmi. While servers need a lot more
 infrastructure than is present in this package, java.rmi is all clients need. This package
 contains one interface, three classes, and a handful of
 exceptions.
The Remote Interface

 The Remote interface
 tags objects as remote objects. It doesn't declare any methods; remote
 objects usually implement a subclass of Remote that does declare some methods. The
 methods that are declared in the interface are the methods that can be
 invoked remotely.
Example 18-8 is a
 database interface that declares a single method, SQLQuery() , which accepts a String and returns a String array. A class that implements this
 interface would include the code to send an SQL query to a database
 and return the result as a String
 array.
Example 18-8. A database interface
import java.rmi.*;

public interface SQL extends Remote {

 public String[] SQLQuery(String query) throws RemoteException;

}

An SQLImpl class that
 implemented the SQL interface would
 probably have more methods, some of which might be public. However,
 only the SQLQuery() method can be
 invoked by a client. Because the Remote interface is not a class, a single
 object can implement multiple Remote subinterfaces. In this case, any
 method declared in any Remote
 interface can be invoked by a client.

The Naming Class

 The java.rmi.Naming
 class talks to a registry running on the server in order to map URLs
 like rmi://login.ibiblio.org/myRemoteObject to
 particular remote objects on particular hosts. You can think of a
 registry as a DNS for remote objects. Each entry in the registry has a
 name and an object reference. Clients give the name (via a URL) and
 get back a reference to the remote object.
As you've seen, an rmi URL looks exactly
 like an http URL except that the scheme is
 rmi instead of http. Furthermore, the path part of the URL
 is an arbitrary name that the server has bound to a particular remote
 object, not a filename.
The biggest deficiency of Naming is that for security reasons
 (avoiding man-in-the-middle attacks), it has to run on the same server
 as the remote objects. It cannot register multiple objects on several
 different servers. If this is too restrictive, a Java Naming and
 Directory Interface (JNDI) context can add an additional layer of
 indirection so that multiple RMI registries can be presented through a
 single directory. Clients need only know the address of the main JNDI
 directory. They do not need to know the addresses of all the
 individual RMI registries the JNDI context is proxying for.
The Naming class has five
 public methods: list(), to list
 all the names bound in the registry; lookup(
), to find a specific remote object given its URL; bind(), to bind a name to a specific remote
 object; rebind(), to bind a name
 to a different remote object; and unbind(
), to remove a name from the registry. Let's look at these
 methods in turn.
public static String[] list(String url) throws
 RemoteException, MalformedURLException

The list() method returns an array of strings, one for each URL
 that is currently bound. The url
 argument is the URL of the Naming
 registry to query. Only the protocol, host, and port are used. The
 path part of the URL is ignored. list(
) throws a MalformedURLException if url is not a valid
 rmi URL. A RemoteException is thrown if anything else
 goes wrong, such as the registry's not being reachable or refusing
 to supply the requested information.
Example 18-9 is a
 simple program that lists all the names currently bound in a
 particular registry. It's sometimes useful when debugging RMI
 problems. It allows you to determine whether the names you're using
 are the names the server expects.
Example 18-9. RegistryLister
import java.rmi.*;

public class RegistryLister {

 public static void main(String[] args) {

 int port = 1099;

 if (args.length == 0) {
 System.err.println("Usage: java RegistryLister host port");
 return;
 }

 String host = args[0];

 if (args.length > 1) {
 try {
 port = Integer.parseInt(args[1]);
 if (port <1 || port > 65535) port = 1099;
 }
 catch (NumberFormatException ex) {}

 }

 String url = "rmi://" + host + ":" + port + "/";
 try {
 String[] remoteObjects = Naming.list(url);
 for (int i = 0; i < remoteObjects.length; i++) {
 System.out.println(remoteObjects[i]);
 }
 }
 catch (RemoteException ex) {
 System.err.println(ex);
 }
 catch (java.net.MalformedURLException ex) {
 System.err.println(ex);
 }
 }
}

Here's a result from a run against the RMI server I was using
 to test the examples in this chapter:
% java RegistryLister login.ibiblio.org
rmi://login.ibiblio.org:1099/fibonacci
rmi://login.ibiblio.org:1099/hello
You can see that the format for the strings is full
 rmi URLs rather than just names. It turns out
 this is a bug; in Java 1.4.1 and later, the bug has been fixed. In
 these versions, the scheme part of the URI is no longer included. In
 other words, the output looks like this:
//login.ibiblio.org:1099/fibonacci
//login.ibiblio.org:1099/hello

public static Remote lookup(String url) throws
 RemoteException, NotBoundException, AccessException,
 MalformedURLException

A client uses the lookup()
 method to retrieve the remote object associated with
 the file portion of the name; so, given the URL
 rmi://login.ibiblio.org:2001/myRemoteObject, it
 would return the object bound to myRemoteObject from
 login.ibiblio.org on port 2,001.
This method throws a NotBoundException if the remote server
 does not recognize the name. It throws a RemoteException if the remote registry
 can't be reached; for instance, because the network is down or
 because no registry service is running on the specified port. An
 AccessException is thrown if the
 server refuses to look up the name for the particular host. Finally,
 if the URL is not a proper rmi URL, it throws a
 MalformedURLException.

public static void bind(String url, Remote object) throws
 RemoteException, AlreadyBoundException, MalformedURLException,
 AccessException

A server uses the bind()
 method to link a name like myRemoteObject to a remote object. If the
 binding is successful, clients will be able to retrieve the remote
 object stub from the registry using a URL like
 rmi://login.ibiblio.org:2001/myRemoteObject.
Many things can go wrong with the binding process. bind() throws a MalformedURLException if url is not a valid
 rmi URL. It throws a RemoteException if the registry cannot be
 reached. It throws an AccessException, a subclass of RemoteException, if the client is not
 allowed to bind objects in this registry. If the URL is already
 bound to a local object, it throws an AlreadyBoundException.

public static void unbind(String url) throws RemoteException,
 NotBoundException, AlreadyBoundException, MalformedURLException,
 AccessException // Java 1.2

The unbind() method removes the object with the given URL from the
 registry. It's the opposite of the bind(
) method. What bind()
 has bound, unbind() releases.
 unbind() throws a NotBoundException if url was not bound to an object in the
 first place. Otherwise, this method can throw the same exceptions
 for the same reasons as bind().

public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException

The rebind() method is just like the bind() method, except that it binds the
 URL to the object, even if the URL is already bound. If the URL is
 already bound to an object, the old binding is lost. Thus, this
 method does not throw an AlreadyBoundException. It can still throw
 RemoteException, AccessException, or MalformedURLException, which have the same
 meanings as they do when thrown by bind().

The RMISecurityManager Class

 A client loads stubs from a potentially untrustworthy
 server; in this sense, the relationship between a client and a stub is
 somewhat like the relationship between a browser and an applet.
 Although a stub is only supposed to marshal arguments and unmarshal
 return values and send them across the network, from the standpoint of
 the virtual machine, a stub is just another class with methods that
 can do just about anything. Stubs produced by
 rmic shouldn't misbehave; but there's no reason
 someone couldn't handcraft a stub that would do all sorts of nasty
 things, such as reading files or erasing data. The Java virtual
 machine does not allow stub classes to be loaded across the network
 unless there's some SecurityManager
 object in place. (Like other classes, stub classes can always be
 loaded from the local class path.) For applets, the standard AppletSecurityManager fills this need.
 Applications can use the RMISecurityManager class to protect
 themselves from miscreant stubs:
public class RMISecurityManager extends SecurityManager
In Java 1.1, this class implements a policy that allows classes
 to be loaded from the server's codebase (which is not necessarily the
 same as the server itself) and allows the necessary network
 communications between the client, the server, and the codebase. In
 Java 1.2 and later, the RMISecurityManager doesn't allow even that,
 and this class is so restrictive, it's essentially useless. In the
 Java 1.5 documentation, Sun finally admitted the problem: "RMISecurityManager implements a policy that
 is no different than the policy implemented by SecurityManager. Therefore an RMI
 application should use the SecurityManager class or another
 application-specific SecurityManager implementation instead of
 this class."

Remote Exceptions

 The java.rmi package
 defines 16 exceptions, listed in Table 18-1. Most extend
 java.rmi.RemoteException. java.rmi.RemoteException extends java.io.IOException. AlreadyBoundException and NotBoundException extend java.lang.Exception. Thus, all are checked
 exceptions that must be enclosed in a try block or declared in a throws clause. There's also one runtime
 exception, RMISecurityException, a
 subclass of SecurityException.
Remote methods depend on many things that are not under your
 control: for example, the state of the network and other necessary
 services such as DNS. Therefore, any remote method can fail: there's
 no guarantee that the network won't be down when the method is called.
 Consequently, all remote methods must be declared to throw the generic
 RemoteException and all calls to remote methods should be wrapped in a
 try block. When you just want to
 get a program working, it's simplest to catch RemoteException:
try {
 // call remote methods...
}
catch (RemoteException ex) {
 System.err.println(ex);
}
More robust programs should try to catch more specific
 exceptions and respond accordingly.
Table 18-1. Remote exceptions
	Exception
	Meaning

	 AccessException
	A client tried to do something that only local
 objects are allowed to do.

	 AlreadyBoundException

	The URL is already bound to another
 object.

	 ConnectException
	The server refused the connection.

	 ConnectIOException
	An I/O error occurred while trying to make the
 connection between the local and the remote
 host.

	 MarshalException
	An I/O error occurred while attempting to marshal
 (serialize) arguments to a remote method. A corrupted I/O
 stream could cause this exception; making the remote method
 call again might be successful.

	 UnmarshalException
	An I/O error occurred while attempting to
 unmarshal (deserialize) the value returned by a remote method.
 A corrupted I/O stream could cause this exception; making the
 remote method call again might be successful.

	 NoSuchObjectException

	The object reference is invalid or obsolete. This
 might occur if the remote host becomes unreachable while the
 program is running, perhaps because of network congestion,
 system crash, or other malfunction.

	 NotBoundException
	The URL is not bound to an object. This might be
 thrown when you try to reference an object whose URL was
 rebound out from under it.

	 RemoteException
	The generic superclass for all exceptions having
 to do with remote methods.

	 ServerError

	Despite the name, this is indeed an exception,
 not an error. It indicates that the server threw an error
 while executing the remote method.

	 ServerException
	A RemoteException was thrown while the
 remote method was executing.

	 StubNotFoundException

	The stub for a class could not be found. The stub
 file may be in the wrong directory on the server, there could
 be a namespace collision between the class that the stub
 substitutes for and some other class, or the client could have
 requested the wrong URL.

	 UnexpectedException
	Something unforeseen happened. This is a catchall
 that occurs only in bizarre situations.

	 UnknownHostException
	The host cannot be found. This is very similar to
 java.net.UnknownHostException.

The RemoteException class
 contains a single public field called detail:
public Throwable detail
This field may contain the actual exception thrown on the server
 side, so it gives you further information about what went wrong. For
 example:
try {
 // call remote methods...
}
catch (RemoteException ex) {
 System.err.println(ex.detail);
 ex.detail.printStackTrace();
}
In Java 1.4 and later, use the standard getCause() method to return the nested
 exception instead:
try {
 // call remote methods...
}
catch (RemoteException ex) {
 System.err.println(ex.getCause());
 ex.getCause().printStackTrace();
}

The java.rmi.registry Package

 How does a client that needs a remote object locate that
 object on a distant server? More precisely, how does it get a remote
 reference to the object? Clients find out what remote objects are
 available by querying the server's registry. A
 registry advertises the availability of the server's remote objects.
 Clients query the registry to find out what remote objects are available
 and to get remote references to those objects. You've already seen one:
 the java.rmi.Naming class for
 interfacing with registries.
The Registry interface and the
 LocateRegistry class allow clients to
 retrieve remote objects on a server by name. A RegistryImpl is a subclass of RemoteObject, which links names to particular
 RemoteObject objects. Clients use the
 methods of the LocateRegistry class
 to retrieve the RegistryImpl for a
 specific host and port.
The Registry Interface

 The java.rmi.registry.Registry interface has
 five public methods: bind()
 , to bind a name to a specific remote object; list(), to list all the names bound in the
 registry; lookup(), to find a
 specific remote object given its URL; rebind(
), to bind a name to a different remote object; and unbind(), to remove a name from the
 registry. All of these behave exactly as previously described in the
 java.rmi.Naming class, which
 implements this interface. Other classes that implement this interface
 may use a different scheme for mapping names to particular objects,
 but the methods still have the same meaning and signatures.
Besides these five methods, the Registry interface also has one field,
 Registry.REGISTRY_PORT , the default port on which the registry listens. Its
 value is 1099.

The LocateRegistry Class

The java.rmi.registry.LocateRegistry class lets the client find the registry in the first
 place. This is achieved with five overloaded versions of the static LocateRegistry.getRegistry() method:
public static Registry getRegistry() throws RemoteException
public static Registry getRegistry(int port) throws RemoteException
public static Registry getRegistry(String host) throws RemoteException
public static Registry getRegistry(String host, int port)
 throws RemoteException
public static Registry getRegistry(String host, int port, // Java 1.2
 RMIClientSocketFactory factory) throws RemoteException
Each of these methods returns a Registry object that can be used to get
 remote objects by name. LocateRegistry.getRegistry() returns a stub
 for the Registry running on the
 local host on the default port, 1,099. LocateRegistry.getRegistry(int port) returns a stub for the Registry running on the local host on the
 specified port. LocateRegistry.getRegistry(String host) returns a stub for the Registry for the specified host on the
 default port, 1,099. LocateRegistry.getRegistry(String host, int
 port) returns a stub for the
 Registry on the specified host on
 the specified port. Finally, LocateRegistry.getRegistry(String host, int
 port, RMIClientSocketFactory factory) returns a stub to the registry
 running on the specified host and port, which will be contacted using
 sockets created by the provided java.rmi.server.RMIClientSocketFactory
 object. If the host String is null, getRegistry(
) uses the local host; if the port argument is negative, it uses the
 default port. Each of these methods can throw an arbitrary RemoteException.
For example, a remote object that wanted to make itself
 available to clients might do this:
Registry r = LocateRegistry.getRegistry();
r.bind("My Name", this);
A remote client that wished to invoke this remote object might
 then say:
Registry r = LocateRegistry.getRegistry("thehost.site.com");
RemoteObjectInterface tro = (RemoteObjectInterface) r.lookup("MyName");
tro.invokeRemoteMethod();
The final two methods in the LocateRegistry class are the overloaded
 LocateRegistry.createRegistry()
 methods. These create a registry and start it listening
 on the specified port. As usual, each can throw a RemoteException. Their signatures
 are:
public static Registry createRegistry(int port) throws RemoteException
public static Registry createRegistry(int port,
 RMIClientSocketFactory csf, RMIServerSocketFactory ssf) // Java 1.2
 throws RemoteException

The java.rmi.server Package

The java.rmi.server package is the most complex of all the RMI packages; it
 contains the scaffolding for building remote objects and thus is used by
 objects whose methods will be invoked by clients. The package defines 6
 exceptions, 9 interfaces, and 10-12 classes (depending on the Java
 version). Fortunately, you only need to be familiar with a few of these
 in order to write remote objects. The important classes are the RemoteObject class, which is the basis for all
 remote objects; the RemoteServer
 class, which extends RemoteObject;
 and the UnicastRemoteObject class,
 which extends RemoteServer. Any
 remote objects you write will likely either use or extend UnicastRemoteObject. Clients that call remote
 methods but are not themselves remote objects don't use these classes
 and therefore don't need to import java.rmi.server.
The RemoteObject Class

 Technically, a remote object is not an instance of the
 RemoteObject class but an instance
 of any class that implements a Remote interface. In practice, most remote
 objects will be instances of a subclass of java.rmi.server.RemoteObject:
public abstract class RemoteObject extends Object
 implements Remote, Serializable
You can think of this class as a special version of java.lang.Object for remote objects. It
 provides toString() , hashCode(),
 clone(), and equals() methods that make sense for remote
 objects. If you create a remote object that does not extend RemoteObject, you need to override these
 methods yourself.
The equals() method compares
 the remote object references of two RemoteObjects and returns true if they point
 to the same RemoteObject. As with
 the equals() method in the
 Object class, you may want to
 override this method to provide a more meaningful definition of
 equality.
The toString() method
 returns a String that describes the
 RemoteObject. Most of the time,
 toString() returns the hostname and
 port from which the remote object came as well as a reference number
 for the object. You can override this method in your own subclasses to
 provide more meaningful string representations.
The hashCode() method maps a
 presumably unique int to each
 unique object; this integer may be used as a key in a Hashtable. It returns the same value for all
 remote references that refer to the same remote object. Thus, if a
 client has several remote references to the same object on the server,
 or multiple clients have references to that object, they should all
 have the same hash code.
The final instance method in this class is getRef():
public RemoteRef getRef() // Java 1.2
This returns a remote reference to the class:
public abstract interface RemoteRef extends Externalizable
There's also one static method, RemoteObject.toStub():
public static Remote toStub(Remote ro) // Java 1.2
 throws NoSuchObjectException
RemoteObject.toStub()
 converts a given remote object into the equivalent stub object for use
 in the client virtual machine, which can help you dynamically generate
 stubs from within your server without using
 rmic.

The RemoteServer Class

The RemoteServer class extends RemoteObject; it is an abstract superclass
 for server implementations such as UnicastRemoteObject. It provides a few
 simple utility methods needed by most server objects:
public abstract class RemoteServer extends RemoteObject
UnicastRemoteObject is the
 most commonly used subclass of RemoteServer included in the core library.
 Two others, Activatable and
 ActivationGroup, are found in the
 java.rmi.activation package. You
 can add others (for example, a UDP or multicast remote server) by
 writing your own subclass of RemoteServer.
Constructors

RemoteServer has two
 constructors:
protected RemoteServer()
protected RemoteServer(RemoteRef r)
However, you won't instantiate this class yourself. Instead,
 you will instantiate a subclass like UnicastRemoteObject. That class's
 constructor calls one of these protected constructors from the first
 line of its constructor.

Getting information about the client

The RemoteServer class has
 one method to locate the client with which you're
 communicating:
public static String getClientHost() throws ServerNotActiveException
RemoteServer.getClientHost() returns a String
 that contains the hostname of the client that invoked the currently
 running method. This method throws a ServerNotActiveException if the current
 thread is not running a remote method.

Logging

For debugging purposes, it is sometimes useful to see the
 calls that are being made to a remote object and the object's
 responses. You get a log for a RemoteServer by passing an OutputStream object to the setLog() method:
public static void setLog(OutputStream out)
Passing null turns off
 logging. For example, to see all the calls on System.err (which sends the log to the
 Java console), you would write:
myRemoteServer.setLog(System.err);
Here's some log output I collected while debugging the
 Fibonacci programs in this chapter:
Sat Apr 29 12:20:36 EDT 2000:RMI:TCP Accept-1:[titan.oit.unc.edu:
sun.rmi.transport.DGCImpl[0:0:0, 2]: java.rmi.dgc.Lease
dirty(java.rmi.server.ObjID[], long, java.rmi.dgc.Lease)]
Fibonacci Server ready.
Sat Apr 29 12:21:27 EDT 2000:RMI:TCP Accept-2:[macfaq.dialup.cloud9.net:
sun.rmi.transport.DGCImpl[0:0:0, 2]: java.rmi.dgc.Lease
dirty(java.rmi.server.ObjID[], long, java.rmi.dgc.Lease)]
Sat Apr 29 12:22:36 EDT 2000:RMI:TCP Accept-3:[macfaq.dialup.cloud9.net:
sun.rmi. transport.DGCImpl[0:0:0, 2]: java.rmi.dgc.Lease
dirty(java.rmi.server.ObjID[], long, java.rmi.dgc.Lease)]
Sat Apr 29 12:22:39 EDT 2000:RMI:TCP Accept-3:[macfaq.dialup.cloud9.net:
FibonacciImpl[0]: java.math.BigInteger getFibonacci(java.math.BigInteger)]
Sat Apr 29 12:22:39 EDT 2000:RMI:TCP Accept-3:[macfaq.dialup.cloud9.net:
FibonacciImpl[0]: java.math.BigInteger getFibonacci(java.math.BigInteger)]
If you want to add extra information to the log along with
 what's provided by the RemoteServer class, you can retrieve the
 log's PrintStream with the
 getLog() method:
public static PrintStream getLog()
Once you have the print stream, you can write on it to add
 your own comments to the log. For example:
PrintStream p = RemoteServer.getLog();
p.println("There were " + n + " total calls to the remote object.");

The UnicastRemoteObject Class

The UnicastRemoteObject
 class is a concrete subclass of RemoteServer. To create a remote object, you
 can extend UnicastRemoteObject and
 declare that your subclass implements some subinterface of java.rmi.Remote. The methods of the
 interface provide functionality specific to the class, while the
 methods of UnicastRemoteObject
 handle general remote object tasks like marshalling and unmarshalling
 arguments and return values. All of this happens behind the scenes. As
 an application programmer, you don't need to worry about it.
A UnicastRemoteObject runs on
 a single host, uses TCP sockets to communicate, and has remote
 references that do not remain valid across server restarts. While this
 is a good general-purpose framework for remote objects, it is worth
 noting that you can implement other kinds of remote objects. For
 example, you may want a remote object that uses UDP, or one that
 remains valid if the server is restarted, or even one that distributes
 the load across multiple servers. To create remote objects with these
 properties, extend RemoteServer
 directly and implement the abstract methods of that class. However, if
 you don't need anything so esoteric, it's much easier to subclass
 UnicastRemoteObject.
The UnicastRemoteObject class
 has three protected constructors:
protected UnicastRemoteObject() throws RemoteException
protected UnicastRemoteObject(int port) // Java 1.2
 throws RemoteException
protected UnicastRemoteObject(int port, RMIClientSocketFactory csf,
 RMIServerSocketFactory ssf) throws RemoteException // Java 1.2
When you write a subclass of UnicastRemoteObject, you call one of these
 constructors, either explicitly or implicitly, in the first line of
 each constructor of your subclass. All three constructors can throw a
 RemoteException if the remote
 object cannot be created.
The noargs constructor creates a UnicastRemoteObject that listens on an
 anonymous port chosen at runtime. By the way, this is an example of an
 obscure situation I mentioned in Chapter
 9 and Chapter 10. The
 server is listening on an anonymous port. Normally, this situation is
 next to useless because it is impossible for clients to locate the
 server. In this case, clients locate servers by using a registry that
 keeps track of the available servers and the ports they are listening
 to.
The downside to listening on an anonymous port is that it's not
 uncommon for a firewall to block connections to that port. The next
 two constructors listen on specified ports so you can ask the network
 administrators to allow traffic for those ports through the
 firewall.
If the network administrators are uncooperative, you'll need to
 use HTTP tunneling or a proxy server or both. The third constructor
 also allows you to specify the socket factories used by this UnicastRemoteObject. In particular, you can
 supply a socket factory that returns sockets that know how to get
 through the firewall.
The UnicastRemoteObject class
 has several public methods:
public Object clone() throws CloneNotSupportedException
public static RemoteStub exportObject(Remote r) throws RemoteException
public static Remote exportObject(Remote r, int port)
 throws RemoteException // Java 1.2
public static Remote exportObject(Remote r, int port,
 RMIClientSocketFactory csf, RMIServerSocketFactory ssf)
 throws RemoteException // Java 1.2
public static boolean unexportObject(Remote r, boolean force)
 throws NoSuchObjectException // Java 1.2
The clone() method simply
 creates a clone of the remote object. You call the UnicastRemoteObject.exportObject() to use
 the infrastructure that UnicastRemoteObject provides for an object
 that can't subclass UnicastRemoteObject. Similarly, you pass an
 object UnicastRemoteObject.unexportObject(
) to stop a particular remote object from listening for
 invocations.

Exceptions

 The java.rmi.server
 package defines a few more exceptions. The exceptions and their
 meanings are listed in Table
 18-2. All but java.rmi.server.ServerNotActiveException
 extend, directly or indirectly, java.rmi.RemoteException. All are checked
 exceptions that must be caught or declared in a throws clause.
Table 18-2. java.rmi.server exceptions
	Exception
	Meaning

	 ExportException
	You're trying to export a remote object on a port
 that's already in use.

	 ServerNotActiveException

	An attempt was made to invoke a method in a
 remote object that wasn't running.

	 ServerCloneException
	An attempt to clone a remote object on the server
 failed.

	 SocketSecurityException

	This subclass of ExportException is thrown when the
 SecurityManager prevents a
 remote object from being exported on the requested
 port.

This chapter has been a fairly quick look at Remote Method
 Invocation. For a more detailed treatment, see Java
 RMI, by William Grosso (O'Reilly).

Chapter 19. The JavaMail API

 Email was the Internet's first killer app and still
 generates more Internet traffic than any protocol except HTTP. One of the
 most frequently asked questions about Java is how to send email from a
 Java applet or application. While it's certainly possible to write a Java
 program that uses sockets to communicate with mail servers, this requires
 detailed knowledge of some fairly complicated protocols, such as SMTP,
 POP, and IMAP. Just as the URL class
 makes interacting with HTTP servers a lot simpler than it would be with
 raw sockets, so too can a class library dedicated to handling email make
 writing email clients a lot simpler.
The JavaMail API is a standard extension to Java that provides a
 class library for email clients. It's a required component of the Java 2
 Platform, Enterprise Edition (J2EE). The JavaMail API can be implemented
 in 100% Pure Java™ using sockets and streams, and indeed Sun's reference
 implementation is so implemented. Programs use the JavaMail API to
 communicate with SMTP, POP, and IMAP servers to send and receive email. By
 taking advantage of this API, you can avoid focusing on the low-level
 protocol details and focus instead on what you want to say with the
 message. Additional providers can add support for other mail systems such
 as Hotmail or MH. You can even install providers that add support for
 NNTP, the protocol used to transport Usenet news.
There's no limit to the uses Java programs have for the JavaMail
 API. Most obviously, you can write standard email clients such as Eudora.
 Or it can be used for email-intensive applications such as mailing list
 managers, like listproc. But the JavaMail API is also useful as a part of
 larger applications that simply need to send or receive a little email.
 For instance, a server-monitoring application such as Whistle Blower can periodically load pages from a web server
 running on a different host and email the webmaster if the web server has
 crashed. An applet can use email to send data to any process or person on
 the Internet that has an email address, in essence using the web server's
 SMTP server as a simple proxy to bypass the usual security restrictions
 about whom an applet is allowed to talk to. In reverse, an applet can talk
 to an IMAP server on the applet host to receive data from many hosts
 around the Net. A newsreader could be implemented as a custom service
 provider that treats NNTP as just one more means of exchanging messages.
 And that's just the beginning of the sort of programs the JavaMail API
 makes it very straightforward to write.
What Is the JavaMail API?

The JavaMail API is a fairly high-level representation of the
 basic components of any email system. The components are represented by
 abstract classes in the javax.mail
 package. For instance, the abstract class javax.mail.Message represents an email
 message. It declares abstract methods to get and set various kinds of
 envelope information for the message, such as the sender and addressee,
 the date sent, and the subject of the message. The abstract class
 javax.mail.Folder represents a
 message container. It declares abstract methods to get messages from a
 folder, move messages between folders, and delete messages from a
 folder.
These classes are all abstract because they don't make many
 assumptions about how the email is stored or transferred between
 machines. For instance, they do not assume that messages are sent using
 SMTP or that they're structured as specified in RFC 822. Concrete
 subclasses of these classes specialize the abstract classes to
 particular protocols and mail formats. If you want to work with standard
 Internet email, you might use javax.mail.MimeMessage instead of javax.mail.Message, javax.mail.InternetAddress instead of javax.mail.Address, and com.sun.mail.imap.IMAPStore instead of
 javax.mail.Store. If you were writing
 code for a Lotus Notes-based system, you'd use different concrete
 implementation classes but the same abstract base classes.
The JavaMail API roughly follows the abstract factory design
 pattern. This pattern allows you to write your code based on the
 abstract superclasses without worrying too much about the lower-level
 details. The protocols and formats used and the associated concrete
 implementation classes are determined mostly by one line of code early
 in your program that names the protocol. Changing the protocol name goes
 90% of the way to porting your program from one protocol (say, POP) to
 another (say, IMAP).
 Service providers implement particular protocols. A
 service provider is a group of concrete subclasses of the abstract
 JavaMail API classes that specialize the general API to a particular
 protocol and mail format. These subclasses are probably (though not
 necessarily) organized into one package. Some of these (IMAP, SMTP) are
 provided by Sun with its reference implementation in the undocumented
 com.sun.mail package. Others (NNTP,
 MH) are available from third parties. And some (POP) are available from
 both Sun and third parties. The purpose of the abstract JavaMail API is
 to shield you from low-level details like this. You don't write code to
 access an IMAP server or a POP server. You write your programs to speak
 to the JavaMail API. Then, the JavaMail API uses the service provider to
 speak to the server using its native protocol. This is middleware for
 email. All you need to do to add a new protocol is install the service
 provider's JAR file. Simple, carefully designed programs that use only
 the core features of the JavaMail API may be able to use the new
 provider without even being recompiled. Of course, programs that make
 use of special features of individual protocols may need to be
 rewritten.
Since mail arrives from the network at unpredictable times, the
 JavaMail API relies on an event-based callback mechanism
 to handle incoming mail. This is exactly the same pattern (even using
 some of the same classes) found in the AWT and JavaBeans. The javax.mail.event package defines about half a
 dozen different kinds of mail events, as well as the associated listener
 interfaces and adapter classes for these events.
While many people still fondly recall the early days of ASCII
 email and even ASCII pictures, modern email messages contain a
 bewildering array of multilingual text and multimedia data encoded in
 formats such as Base64, quoted-printable, BinHex, and uuencode. To
 handle this, the JavaMail API uses the JavaBeans Activation Framework (JAF) to describe and
 display this content.
This chapter covers Version 1.3.1 of the JavaMail API, which is
 compatible with Java 1.1.8 and higher. The JavaMail API is a standard
 extension to Java, not part of the core JDK or JRE class library, even
 in Java 1.5. (It is a standard part of J2EE.) Consequently, you'll need
 to download it separately from Sun and install it on your system. It's
 freely available from http://java.sun.com/products/javamail. It comes as a Zip
 archive containing documentation, sample code, and the all-important
 mail.jar file. This file contains the actual
 .class files that implement the JavaMail API. To
 compile or run the examples in this chapter, you'll need to add this
 file to your class path, either by adding its path to the CLASSPATH
 environment variable or by placing mail.jar in your
 jre/lib/ext directory.
The JavaBeans Activation Framework is also a standard extension to
 Java, not part of the core API. You can download it from http://java.sun.com/products/javabeans/jaf/. This
 download contains the activation.jar archive, which
 you'll also need to place in your class path.
Finally, you may want to add some additional providers. Sun's
 implementation includes POP3, SMTP, and IMAP providers. However, third
 parties have written providers for other protocols such as Hotmail,
 NNTP, Exchange, and more. Table
 19-1 lists some of these.
Table 19-1. Mail providers
	Product (company)
	URL
	Protocols
	License

	JavaMail (Sun)
	 http://java.sun.com/products/javamail/

	SMTP, IMAP, POP3
	Free

	JavaMail/Exchange Service Provider (JESP):
 (Intrinsyc Software)
	 http://support.intrinsyc.com/jesp/

	Microsoft Exchange
	Payware

	ICE MH JavaMail Provider (ICE Engineering,
 Inc.)
	 http://www.trustice.com/java/icemh

	MH
	Public domain

	POPpers (Y. Miyadate)
	 http://www2s.biglobe.ne.jp/~dat/java/project/poppers/index_en.html

	POP3
	GPL

	JDAVMail (Luc Claes)
	 http://jdavmail.sourceforge.net
	Hotmail
	LGPL

	JHTTPMail (Laurent Michalkovic)
	 http://jhttpmail.sourceforge.net/
	Hotmail
	LGPL

	GNU JavaMail
	 http://www.gnu.org/software/classpathx/javamail/

	POP3, NNTP, SMTP, IMAP, mbox,
 maildir
	GPL with library exception

Sending Email

Sending messages is the most basic email need of a Java
 program. While email clients like Eudora and mailing list managers like
 listproc are the only common programs that receive messages, all sorts
 of programs send messages. For instance, web browsers can submit HTML
 forms via email. Security scanning tools like Satan can run in the
 background and email their results to the administrator when they're
 done. When the Unix cron program detects a misconfigured
 crontab file, it emails the error to the owner.
 Books & Writers runs a popular service that tracks the sales rank of
 authors' books on Amazon.com and notifies them periodically via email. A
 massively parallel computation like the SETI@home project can submit
 individual results via email. Some multiplayer games like chess can be
 played across the network by emailing the moves back and forth (though
 this scheme wouldn't work for faster-moving games like Quake or even for
 speed chess). And these are just a few of the different kinds of
 programs that send email. In today's wired world, by far the simplest
 way to notify users of an event when they're not sitting in front of the
 computer that the program is running on is to send them email.
The JavaMail API provides everything programs need to send
 email. To send a message, a program follows these eight simple
 steps:
	Set the mail.host property
 to point to the local mail server.

	Start a mail session with the Session.getInstance() method.

	Create a new Message
 object, probably by instantiating one of its concrete
 subclasses.

	Set the message's From: address.

	Set the message's To: address.

	Set the message's Subject:.

	Set the content of the message.

	Send the message with the Transport.send() method.

The order of these steps is not especially rigid. For instance,
 steps 4 through 7 can be performed in any order. Individually, each of
 the steps is quite simple.
The first step is to set up the properties for the mail session.
 The only property you have to set in order to send mail is mail.host. This is configured as a java.util.Properties object rather than an
 environment variable. For example, this code fragment sets the mail.host property to
 mail.cloud9.net:
Properties props = new Properties();
props.put("mail.host", "mail.cloud9.net");
Your programs will of course have to set this property to the name
 of your own mail server. These properties are used to retrieve a
 Session object from the Session.getInstance() factory method, like
 this:
Session mailConnection = Session.getInstance(props, null);
The Session object represents
 an ongoing communication between a program and one mail server. The
 second argument to the getInstance()
 method, null here, is a javax.mail.Authenticator that will ask the
 user for a password if the server requests one. We'll discuss this more
 later in the section on password authentication. Most of the time, you
 do not need to provide a username and password to send email when using
 the local SMTP server, only to receive it.
The Session object is used to
 construct a new Message
 object:
Message msg = new MimeMessage(mailConnection);
I specify the MimeMessage class
 in particular since I know I'm sending Internet email. However, this is
 the one place where I do explicitly choose a format for the email
 message. In some cases, this may not be necessary if I can copy the
 incoming message format instead.
Now that I have a Message
 object, I need to set up its fields and contents. The From: address and
 To: address will each be javax.mail.internet.InternetAddress objects.
 You can provide either an email address alone or an email address and a
 real name:
Address bill = new InternetAddress("god@microsoft.com", "Bill Gates");
Address elliotte = new InternetAddress("elharo@metalab.unc.edu");
The setFrom() method allows us to say who's sending the message by
 setting the From: header. There's no protection against forgery. It's
 quite easy for me to masquerade as Bill Gates at a (presumably)
 fictitious email address:
msg.setFrom(bill);
The setRecipient() method is slightly more complex. You not only have to
 specify the address that the message will be sent to, but how that
 address is used; that is, as a To: field, a Cc: field, or a Bcc: field.
 These are indicated by three mnemonic constants of the Message.RecipientType class:
Message.RecipientType.TO
Message.RecipientType.CC
Message.RecipientType.BCC
For example:
msg.setRecipient(Message.RecipientType.TO, elliotte);
The subject is set as a simple string of text. For example:
msg.setSubject("You must comply.");
The body is also set as a single string of text. However, along
 with that text, you need to provide the MIME type of the text. The most
 common type is text/plain. For
 example:
msg.setContent("Resistance is futile. You will be assimilated!",
 "text/plain");
Finally, the static Transport.send(
) method connects to the mail server specified by the mail.host property and sends the message on
 its way:
Transport.send(msg);
Example 19-1 puts all
 these steps together into a standalone program that sends the following
 message:
Date: Mon, 29 Nov 1999 15:55:42 -0500 (EST)
From: Bill Gates <god@microsoft.com>
To: elharo@metalab.unc.edu
Subject: You must comply.

Resistance is futile. You will be assimilated!
I've shown this message in standard RFC 822 format used for
 Internet email. However, that isn't necessary. The main point is that
 you need to know the addressee (elharo@metalab.unc.edu),
 the sender (god@microsoft.com), and the subject and body
 of the message.
Example 19-1. Sending a very simple mail message
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class Assimilator {

 public static void main(String[] args) {

 try {
 Properties props = new Properties();
 props.put("mail.host", "mail.cloud9.net");

 Session mailConnection = Session.getInstance(props, null);
 Message msg = new MimeMessage(mailConnection);

 Address bill = new InternetAddress("god@microsoft.com",
 "Bill Gates");
 Address elliotte = new InternetAddress("elharo@metalab.unc.edu");

 msg.setContent("Resistance is futile. You will be assimilated!",
 "text/plain");
 msg.setFrom(bill);
 msg.setRecipient(Message.RecipientType.TO, elliotte);
 msg.setSubject("You must comply.");

 Transport.send(msg);

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 }
}

Sending Email from an Application

Example 19-1
 is a simple application that sends a fixed message to a
 known address with a specified subject. Once you see how to do this,
 it's straightforward to replace the strings that give the message
 address, subject, and body with data read from the command line, a
 GUI, a database, or some other source. For instance, Example 19-2 is a very simple GUI
 for sending email. Figure
 19-1 shows the program running. The mail code is all tied up in
 the actionPerformed() method and
 looks very similar to the main()
 method of Example 19-1. The
 big difference is that now the host, subject, From: address, To:
 address, and text of the message are all read from the GUI components
 at runtime rather than being hardcoded as string literals in the
 source code. The rest of code is related to setting up the GUI and has
 little to do with the JavaMail API.
Example 19-2. A graphical SMTP client
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class SMTPClient extends JFrame {

 private JButton sendButton = new JButton("Send Message");
 private JLabel fromLabel = new JLabel("From: ");
 private JLabel toLabel = new JLabel("To: ");
 private JLabel hostLabel = new JLabel("SMTP Server: ");
 private JLabel subjectLabel = new JLabel("Subject: ");
 private JTextField fromField = new JTextField(40);
 private JTextField toField = new JTextField(40);
 private JTextField hostField = new JTextField(40);
 private JTextField subjectField = new JTextField(40);
 private JTextArea message = new JTextArea(40, 72);
 private JScrollPane jsp = new JScrollPane(message);

 public SMTPClient() {

 super("SMTP Client");
 Container contentPane = this.getContentPane();
 contentPane.setLayout(new BorderLayout());

 JPanel labels = new JPanel();
 labels.setLayout(new GridLayout(4, 1));
 labels.add(hostLabel);

 JPanel fields = new JPanel();
 fields.setLayout(new GridLayout(4, 1));
 String host = System.getProperty("mail.host", "");
 hostField.setText(host);
 fields.add(hostField);

 labels.add(toLabel);
 fields.add(toField);

 String from = System.getProperty("mail.from", "");
 fromField.setText(from);
 labels.add(fromLabel);
 fields.add(fromField);

 labels.add(subjectLabel);
 fields.add(subjectField);

 Box north = Box.createHorizontalBox();
 north.add(labels);
 north.add(fields);

 contentPane.add(north, BorderLayout.NORTH);

 message.setFont(new Font("Monospaced", Font.PLAIN, 12));
 contentPane.add(jsp, BorderLayout.CENTER);

 JPanel south = new JPanel();
 south.setLayout(new FlowLayout(FlowLayout.CENTER));
 south.add(sendButton);
 sendButton.addActionListener(new SendAction());
 contentPane.add(south, BorderLayout.SOUTH);

 this.pack();

 }

 class SendAction implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 try {
 Properties props = new Properties();
 props.put("mail.host", hostField.getText());

 Session mailConnection = Session.getInstance(props, null);
 final Message msg = new MimeMessage(mailConnection);

 Address to = new InternetAddress(toField.getText());
 Address from = new InternetAddress(fromField.getText());

 msg.setContent(message.getText(), "text/plain");
 msg.setFrom(from);
 msg.setRecipient(Message.RecipientType.TO, to);
 msg.setSubject(subjectField.getText());

 // This can take a non-trivial amount of time so
 // spawn a thread to handle it.
 Runnable r = new Runnable() {
 public void run() {
 try {
 Transport.send(msg);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 };
 Thread t = new Thread(r);
 t.start();

 message.setText("");
 }
 catch (Exception ex) {
 // I should really bring up a more specific error dialog here.
 ex.printStackTrace();
 }

 }

 }

 public static void main(String[] args) {

 SMTPClient client = new SMTPClient();
 // Next line requires Java 1.3 or later. I want to set up the
 // exit behavior here rather than in the constructor since
 // other programs that use this class may not want to exit
 // the application when the SMTPClient window closes.
 client.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 client.show();

 }
}

This is far from an ideal program. The GUI could be more cleanly
 separated from the mailing code. And it would be better to bring up an
 error dialog if something went wrong rather than just printing a stack
 trace of the exception on System.err. However, since none of that
 would teach us anything about the JavaMail API, I leave it all as an
 exercise for the interested reader.
[image: A simple GUI mail program]

Figure 19-1. A simple GUI mail program

Sending Email from an Applet

In terms of GUIs and the JavaMail API, there's no
 difference between sending email from an applet and an application.
 However, the browser's security manager can get in your way. Like
 everything else in this book, the JavaMail API can't get around the
 normal restrictions on network connections from applets and other
 remotely loaded code. An applet that wants to send email can still
 talk only to the host the applet itself came from.
Fortunately, however, many hosts that run web servers also run
 SMTP servers. If this is the case, it's quite straightforward for an
 applet to send email. The JavaMail API and the Java Activation
 Framework on which it depends aren't included with most browsers, but
 since they're implemented in pure Java in the javax package, browsers can download the
 necessary classes from the server. For example, this APPLET element references not only the
 applet's own code but also the mail.jar and activation.jar files for the JavaMail API
 and the Java Activation Framework, respectively:
<APPLET CODE=SMTPApplet ARCHIVE="activation.jar,mail.jar"
 WIDTH=600 HEIGHT=400>
 <PARAM NAME="to" VALUE="hamp@sideview.mtsterling.ky.us">
 <PARAM NAME="subject" VALUE="Hay Orders">
 <PARAM NAME="from" VALUE="noone">
</APPLET>
Example 19-3 is a
 simple applet that sends email. The address to send email to and the
 subject are read from PARAM tags.
 The address to send email from is also read from a PARAM tag, but the user has the option to
 change it. The text to send is typed into a text area by the user.
 Finally, the server is determined by looking at the applet's
 codebase.
Example 19-3. An applet that sends email
import java.applet.*;
import javax.mail.*;
import javax.mail.internet.*;
import java.util.Properties;
import java.awt.event.*;
import java.awt.*;

public class SMTPApplet extends Applet {

 private Button sendButton = new Button("Send Message");
 private Label fromLabel = new Label("From: ");
 private Label subjectLabel = new Label("Subject: ");
 private TextField fromField = new TextField(40);
 private TextField subjectField = new TextField(40);
 private TextArea message = new TextArea(30, 60);

 private String toAddress = "";

 public SMTPApplet() {

 this.setLayout(new BorderLayout());

 Panel north = new Panel();
 north.setLayout(new GridLayout(3, 1));

 Panel n1 = new Panel();
 n1.add(fromLabel);
 n1.add(fromField);
 north.add(n1);

 Panel n2 = new Panel();
 n2.add(subjectLabel);
 n2.add(subjectField);
 north.add(n2);

 this.add(north, BorderLayout.NORTH);

 message.setFont(new Font("Monospaced", Font.PLAIN, 12));
 this.add(message, BorderLayout.CENTER);

 Panel south = new Panel();
 south.setLayout(new FlowLayout(FlowLayout.CENTER));
 south.add(sendButton);
 sendButton.addActionListener(new SendAction());
 this.add(south, BorderLayout.SOUTH);

 }

 public void init() {

 String subject = this.getParameter("subject");
 if (subject == null) subject = "";
 subjectField.setText(subject);

 toAddress = this.getParameter("to");
 if (toAddress == null) toAddress = "";

 String fromAddress = this.getParameter("from");
 if (fromAddress == null) fromAddress = "";
 fromField.setText(fromAddress);

 }

 class SendAction implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 try {
 Properties props = new Properties();
 props.put("mail.host", getCodeBase().getHost());

 Session mailConnection = Session.getInstance(props, null);
 final Message msg = new MimeMessage(mailConnection);

 Address to = new InternetAddress(toAddress);
 Address from = new InternetAddress(fromField.getText());

 msg.setContent(message.getText(), "text/plain");
 msg.setFrom(from);
 msg.setRecipient(Message.RecipientType.TO, to);
 msg.setSubject(subjectField.getText());

 // This can take a non-trivial amount of time so
 // spawn a thread to handle it.
 Runnable r = new Runnable() {
 public void run() {
 try {
 Transport.send(msg);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 };
 Thread t = new Thread(r);
 t.start();

 message.setText("");
 }
 catch (Exception ex) {
 // We should really bring up a more specific error dialog here.
 ex.printStackTrace();
 }
 }
 }
}

Figure 19-2 shows
 this applet running in Internet Explorer 4.0.1 on the Macintosh. I've
 been careful to only use methods and classes available in Java 1.1 so
 this applet runs across the most web browsers possible. I also avoided
 using Swing so that there'd be one less large JAR file to download. As
 it is, the mail.jar and
 activation.jar files that this applet requires
 take up almost 300K, more than I'm comfortable with, but manageable on
 a fast connection.
[image: The SMTP applet]

Figure 19-2. The SMTP applet

Proper behavior of this applet depends on several external
 factors:
	The browser must support at least Java 1.1 with a security
 model no stricter than the default.

	The mail.jar and
 activation.jar files must be available in the
 applet's codebase.

	The web server that serves the applet must also be an SMTP
 server willing to relay mail from the client system to the
 receiver system. These days, most open SMTP relays have been shut
 down to avoid abuse by spammers, so this can be a sticking point.
 If it is, you'll get an exception like this:
javax.mail.SendFailedException: 550 <hamp@sideview.mtsterling.ky.us>...
Relaying denied
However, you should at least be able to send email to
 addresses in the web server's domain. You may be able to set up
 one of these addresses to automatically forward the messages to
 their eventual recipient.

Receiving Mail

Receiving mail is considerably more complex than sending
 it. For instance, where a simple HELO command is sufficient to
 access most SMTP servers (a fact that is the source of much forged email
 and spam), retrieving email generally requires providing both a username
 and a password. SMTP uses only 14 different commands, and a simple email
 client can be implemented with just five of them. POP3, however, has 12
 commands, almost all of which a client must be able to handle; IMAP4 has
 24 different commands.
The JavaMail API is designed around the idea that you're
 retrieving messages from an IMAP or perhaps an NNTP server. That is, it
 assumes the server can return headers separate from the messages they
 belong to, search through mailboxes, provide the storage for the
 messages rather than the client, and so forth. The JavaMail API provides
 less of what you need for client-oriented mail access protocols, such as
 POP3, that assume the client stores and manages the mail archive, but it
 still gives you the tools to download the mail from the server. You just
 have to implement your own storage system on the client.
We'll begin with the simpler POP protocol, then move on to IMAP. From the perspective
 of JavaMail, IMAP can be viewed largely as POP plus some commands for
 manipulating folders. For simple programs that operate only on the INBOX
 folder, POP and IMAP clients are more or less the same.
There are about 12 steps to reading a remote mailbox (the
 number of steps can vary a little, since some steps are optional or can
 be combined with or replaced by others):
	Set up the properties you'll use for the connection.

	Construct the Authenticator
 you'll use for the connection.

	Get a Session object with
 Session.getDefaultInstance(
).

	Use the session's getStore(
) method to return a Store.

	Connect to the store.

	Get the INBOX folder from the store with the getFolder() method.

	Open the INBOX folder.

	Open the folder you want inside the INBOX folder. Repeat as
 many times as necessary to reach the folder you're seeking.

	Get the messages from the folder as an array of Message objects.

	Iterate through the array of messages, processing each one in
 turn using the methods of the Message class. For instance, you might
 print out each message or simply display the sender, subject, and
 other vital information in a GUI for the user to select from, as in
 Figure 19-3.

	Close the folder.

	Close the store.

[image: A GUI for selecting mail messages]

Figure 19-3. A GUI for selecting mail messages

Each of these steps is individually quite simple. The first is to
 set up the properties for the mail session. Properties you might want to
 set include mail.host, mail.store.protocol, mail.user, mail.pop3.user, and mail.pop3.host. However, you don't absolutely
 need to set any of these. If the Session will only be used to retrieve mail, an
 empty Properties object is enough.
 For example:
Properties props = new Properties();
Next, you'll want to create an instance of the javax.mail.Authenticator class (more properly,
 an instance of a concrete subclass of the abstract Authenticator class) that can ask the user for
 a password. For now, we'll simply hardcode those values and pass
 null instead of an actual Authenticator. We'll fix this later when we
 discuss authentication:
Authenticator a = null;
Next, use these Properties and
 Authenticator objects to get a
 Session instance, like this:
Session session = Session.getDefaultInstance(props, a);
Ask the session for a store for the provider. Here, we want a
 provider for POP3:
Store store = session.getStore("POP3");
Finally, you're ready to actually connect to the store using the
 connect() method. You'll need to
 provide the host to connect to and the username and password to
 use:
store.connect("mail.cloud9.net", "elharo", "my_password");
You can pass null for the
 password to indicate that the previously specified Authenticator should be queried for the
 password.
Now that the store is connected, you're ready to open a folder in
 the store. This step is really more oriented to IMAP than POP, since POP
 servers don't keep track of different folders. They simply provide all
 of a user's incoming mail as one undifferentiated amalgam. For purposes
 of the JavaMail API, POP3 providers use the folder name INBOX:
Folder inbox = store.getFolder("INBOX");
The folder is closed when you get it. You can perform some
 operations on a closed folder including deleting or renaming it, but you
 can't get the messages out of a closed folder. First you have to open
 it. You can open a folder for read access by passing the mnemonic
 constant Folder.READ_ONLY to the
 open() method for read access, or
 Folder.READ_WRITE for read/write
 access:
inbox.open(Folder.READ_ONLY);
Now you're ready to download the messages with the getMessages() method, which returns an array
 containing all the messages in the folder:
Message[] messages = inbox.getMessages();
(If you were using IMAP instead of POP, this step would not actually download
 the messages. Each one would stay on the server until you accessed it
 specifically. You'd just get a pointer to the actual message.)
The Message class provides many
 methods for working with individual messages. It has methods to get the
 various header fields of the message, get the content of the message,
 reply to the message, and more. We'll discuss these soon, when we talk
 about the Message and MimeMessage classes. For now, we'll do just
 about the simplest thing imaginable—print each message on System.out using the message's writeTo() method:
for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 messages[i].writeTo(System.out);
}
Once you're done with the messages, close the folder and then
 close the message store with the aptly named close() methods:
inbox.close(false);
store.close();
The false argument to the
 folder's close() method indicates
 that we do not want the server to actually expunge any deleted messages
 in the folder. We simply want to break our connection to this
 folder.
Example 19-4 puts this
 all together with a simple program that downloads and prints out the
 contents of a specified POP mailbox. Messages are simply dumped on
 System.out in the default encoding.
 The servers, usernames, and so forth are all hardcoded. However, Example 19-4 quickly demonstrates
 most of the key points of receiving mail with the JavaMail API. A more
 advanced program would include an appropriate GUI.
Example 19-4. POP3Client
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class POP3Client {

 public static void main(String[] args) {

 Properties props = new Properties();

 String host = "utopia.poly.edu";
 String username = "eharold";
 String password = "mypassword";
 String provider = "pop3";

 try {

 // Connect to the POP3 server
 Session session = Session.getDefaultInstance(props, null);
 Store store = session.getStore(provider);
 store.connect(host, username, password);

 // Open the folder
 Folder inbox = store.getFolder("INBOX");
 if (inbox == null) {
 System.out.println("No INBOX");
 System.exit(1);
 }
 inbox.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = inbox.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 messages[i].writeTo(System.out);
 }

 // Close the connection
 // but don't remove the messages from the server
 inbox.close(false);
 store.close();

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Here's some sample output I got when I pointed it at an account I
 don't use much:
D:\JAVA\JNP3\examples\19>java POP3Client
------------ Message 1 ------------
Received: (from eharold@localhost)
 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728
 for eharold; Tue, 30 Nov 1999 16:14:29 -0500 (EST)
Date: Tue, 30 Nov 1999 16:14:29 -0500 (EST)
From: Elliotte Harold <eharold@utopia.poly.edu>
Message-Id: <199911302114.QAA05728@utopia.poly.edu>
To: eharold@utopia.poly.edu
Subject: test
Content-Type: text
X-UIDL: 87e3f1ba71738c8f772b15e3933241f0
Status: RO

hello you

------------ Message 2 ------------
Received: from russian.cloud9.net (russian.cloud9.net [
.4])
 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id OAA28428
 for <eharold@utopia.poly.edu>; Wed, 1 Dec 1999 14:05:06 -0500 (
Received: from [168.100.203.234] (macfaq.dialup.cloud9.net [168.100.203
 by russian.cloud9.net (Postfix) with ESMTP id 24B93764F
 for <eharold@utopia.poly.edu>; Wed, 1 Dec 1999 14:02:50 -0500
Mime-Version: 1.0
X-Sender: macfaq@mail.cloud9.net
Message-Id: <v04210100b46b1f97969d@[168.100.203.234]>
Date: Wed, 1 Dec 1999 13:55:40 -0500
To: eharold@utopia.poly.edu
From: Elliotte Rusty Harold <elharo@macfaq.com>
Subject: New system
Content-Type: text/plain; charset="us-ascii" ; format="flowed"
X-UIDL: 01fd5cbcf1768fc6c28f9c8f934534b5

Just thought you'd be happy to know that now that I've got my desk
moved over from my old apartment, I've finally ordered the Windows NT
system I've been promising for months.
--
David
About the only change you'd need to make to port this program to
 IMAP would be setting the provider variable to imap instead of pop3.

Password Authentication

 Hardcoding passwords in source code, as Example 19-4 does, is a very bad
 idea to say the least. If a password is required, you should ask the
 user for it at runtime. Furthermore, when the user types the password,
 it should not be displayed on the screen. Ideally, it should not even be
 transmitted in clear text across the network, although in fact many
 current clients and servers do exactly that.
When you open a connection to a message store, the JavaMail API
 allows you to provide a javax.mail.Authenticator object that it can
 use to get the username and password. Authenticator is an abstract class:
public abstract class Authenticator extends Object
When the provider needs to know a username or password, it calls
 back to the getPasswordAuthentication() method in a user-defined subclass of Authenticator. This returns a PasswordAuthentication object containing this
 information:
protected PasswordAuthentication getPasswordAuthentication()
Tip
These two classes are almost exactly the same as the java.net.Authenticator and java.net.PasswordAuthentication classes
 discussed in Chapter 7. However,
 those classes are available only in Java 1.2 and later. To make the
 JavaMail API work in Java 1.1, Sun had to duplicate their
 functionality in the javax.mail
 package. Sun could have included java.net.Authenticator and java.net.PasswordAuthentication in
 mail.jar, but that would have meant that the
 JavaMail API could not be certified as 100% Pure Java. However,
 everything you learned about java.net.Authenticator and java.net.PasswordAuthentication in Chapter 7 is true of javax.mail.Authenticator and javax.mail.PasswordAuthentication in this
 chapter. The only thing you have to watch out for is that if you
 import both java.net.* and javax.mail.* in a class, your source code
 will have to use fully qualified names like java.net.Authenticator instead of short
 names like Authenticator.

To add runtime password authentication to your programs, subclass
 Authenticator and override getPasswordAuthentication() with a method
 that knows how to securely ask the user for a password. One useful tool
 for this process is the JPasswordField
 component from Swing. Example
 19-5 demonstrates a Swing-based Authenticator subclass that brings up a dialog
 to ask the user for their username and password.
Example 19-5. A GUI authenticator
import javax.mail.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class MailAuthenticator extends Authenticator {

 private JDialog passwordDialog = new JDialog(new JFrame(), true);
 private JLabel mainLabel = new JLabel(
 "Please enter your user name and password: ");
 private JLabel userLabel = new JLabel("User name: ");
 private JLabel passwordLabel = new JLabel("Password: ");
 private JTextField usernameField = new JTextField(20);
 private JPasswordField passwordField = new JPasswordField(20);
 private JButton okButton = new JButton("OK");

 public MailAuthenticator() {
 this("");
 }

 public MailAuthenticator(String username) {

 Container pane = passwordDialog.getContentPane();
 pane.setLayout(new GridLayout(4, 1));
 pane.add(mainLabel);
 JPanel p2 = new JPanel();
 p2.add(userLabel);
 p2.add(usernameField);
 usernameField.setText(username);
 pane.add(p2);
 JPanel p3 = new JPanel();
 p3.add(passwordLabel);
 p3.add(passwordField);
 pane.add(p3);
 JPanel p4 = new JPanel();
 p4.add(okButton);
 pane.add(p4);
 passwordDialog.pack();

 ActionListener al = new HideDialog();
 okButton.addActionListener(al);
 usernameField.addActionListener(al);
 passwordField.addActionListener(al);

 }

 class HideDialog implements ActionListener {

 public void actionPerformed(ActionEvent e) {
 passwordDialog.hide();
 }

 }

 public PasswordAuthentication getPasswordAuthentication() {

 passwordDialog.show();

 // getPassword() returns an array of chars for security reasons.
 // We need to convert that to a String for
 // the PasswordAuthentication() constructor.
 String password = new String(passwordField.getPassword());
 String username = usernameField.getText();
 // Erase the password in case this is used again.
 // The provider should cache the password if necessary.
 passwordField.setText("");
 return new PasswordAuthentication(username, password);

 }
}

Most of this code is just for handling the GUI. Figure 19-4 shows the rather
 simple dialog box this produces.
[image: An authentication dialog]

Figure 19-4. An authentication dialog

Interestingly, JPasswordField
 takes more pains to be secure than PasswordAuthentication does. JPasswordField stores passwords as an array of
 chars so that when you're done with the password, you can overwrite it
 with nulls. This means the password exists in memory for less time and
 the virtual memory system is less likely to swap the program out to disk
 and leave the password there in clear text. However, PasswordAuthentication stores passwords as
 strings, which are immutable and therefore may be unintentionally stored
 on the disk.
Modifying the POP client to support this style of authentication
 is straightforward, as Example
 19-6 demonstrates. We replace the hardcoded username and password
 with nulls and pass an instance of MailAuthenticator as the second argument to
 connect(). The only other change is
 that we call System.exit() at the
 end of the main() method, since the
 program will no longer exit when the main(
) method returns once the AWT thread has been started.
Example 19-6. A POP client that asks the user for the password as
 necessary
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class SecurePOP3Client {

 public static void main(String[] args) {

 Properties props = new Properties();

 String host = "utopia.poly.edu";
 String provider = "pop3";

 try {

 // Connect to the POP3 server
 Session session = Session.getDefaultInstance(props,
 new MailAuthenticator());
 Store store = session.getStore(provider);
 store.connect(host, null, null);

 // Open the folder
 Folder inbox = store.getFolder("INBOX");
 if (inbox == null) {
 System.out.println("No INBOX");
 System.exit(1);
 }
 inbox.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = inbox.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 messages[i].writeTo(System.out);
 }

 // Close the connection
 // but don't remove the messages from the server
 inbox.close(false);
 store.close();

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 // since we brought up a GUI returning from main() won't exit
 System.exit(0);

 }
}

Addresses

 The javax.mail.Address
 class is very simple. It's an abstract class that exists mainly to be
 subclassed by other, protocol-specific address classes:
public abstract class Address extends Object
There are two of these subclasses in the standard JavaMail API:
 InternetAddress for SMTP email and
 NewsAddress for Usenet
 newsgroups:
public class InternetAddress extends Address
public class NewsAddress extends Address
Providers of other mail protocols would also subclass Address with classes that represented their
 style of address.
The Address Class

 The Address class
 itself is extremely simple. It has only three methods, all abstract,
 two of which are simple utility methods that override the
 corresponding methods in java.lang.Object:
public abstract String getType()
public abstract String toString()
public abstract boolean equals(Object o)
 Since all three of these methods are abstract, there
 aren't any guarantees about the methods' semantics, since all must be
 overridden in subclasses. However, this does require that subclasses
 provide their own implementations of equals(
) and toString() rather
 than relying on the rather generic implementations available from
 java.lang.Object. In general, the
 getType() method returns a string
 such as "rfc822" or "news" that indicates the kind of Address object this is.

The InternetAddress Class

 An InternetAddress
 object represents an RFC 822-style email address. This is the standard
 Internet-style email address that is rapidly supplanting all other
 proprietary formats. It looks like
 elharo@metalab.unc.edu or
 ask_tim@oreilly.com. However, it can contain a name as
 well—for instance, ask_tim@oreilly.com (Tim
 O'Reilly).
The state of an InternetAddress object is maintained by
 three protected fields:
protected String address
protected String personal
protected String encodedPersonal
The address field is the
 actual email address—for example,
 ask_tim@oreilly.com. The personal field is the name—for example,
 Tim O'Reilly. Although Java strings are pure
 Unicode that can express names like Erwin Schrödinger or

[image: image with no caption]

, the strings used in mail headers must be pure
 ASCII in order to pass through most existing mail software.
 Consequently, Java's Unicode strings need to be converted to pure
 ASCII using a sort of hexadecimal escape. The details of this
 conversion are described in RFC 2047, MIME (Multipurpose
 Internet Mail Extensions) Part Three: Message Header Extensions for
 Non-ASCII Text. The encoded string is placed in the
 encodedPersonal field. All of these
 fields will be initially set in the constructor. There are four
 overloaded constructors for InternetAddress objects:
public InternetAddress()
public InternetAddress(String address) throws AddressException
public InternetAddress(String address, String personal)
 throws UnsupportedEncodingException
public InternetAddress(String address, String personal, String charset)
 throws UnsupportedEncodingException
They are used exactly as you'd expect. For example:
Address tim = new InternetAddress("ask_tim@oreilly.com", "Tim O'Reilly");
Although two of these methods are declared to throw UnsupportedEncodingException, this should
 happen only in the last method and then only if the name of the
 character set is not recognized by the VM. (For example, Java 1.1 does
 not recognize "ASCII", although in that case, you don't really need to
 specify a character set.)
There are nine instance methods in this class—three setter
 methods, three getter methods, and three utility methods:
public void setAddress(String address)
public void setPersonal(String name, String charset)
 throws UnsupportedEncodingException
public void setPersonal(String name)
 throws UnsupportedEncodingException
public String getAddress()
public String getPersonal()
public String getType()
public String toString()
public boolean equals(Object o)
public int hashCode()
The setAddress() method sets
 the address field of the object to
 the specified value. The setPersonal(
) method sets the personal and encodedPersonal fields to the specified
 value (after encoding it, as necessary). The getAddress() and getPersonal() methods return the values of
 the address and personal or decoded encodedPersonal fields, respectively.
 Finally, the getType() method
 returns the string "rfc822".
The toString() method
 returns an email address suitable for use in a To: or From: field of
 an RFC 822 email message. The equals(
) and hashCode() methods
 have their usual semantics.
There are also five static utility methods, four of which
 convert addresses to and from strings:
public static String toString(Address[] addresses)
 throws ClassCastException
public static String toString(Address[] addresses, int used)
 throws ClassCastException
public static InternetAddress[] parse(String addressList)
 throws AddressException
public static InternetAddress[] parse(String s, boolean strict)
 throws AddressException
The InternetAddress.toString(
) methods convert an array of Address objects into a comma-separated list
 of addresses encoded in pure ASCII, possibly folded onto multiple
 lines. The optional used argument
 gives the number of characters that will precede this string in the
 header field, such as To: or Cc:, into which this string will be
 inserted. This information lets toString(
) decide where it needs to break the lines. A ClassCastException is thrown if any of the
 Address objects in the array are
 not more specifically InternetAddress objects.
The two parse() methods
 perform this operation in reverse, converting a comma-separated
 String of addresses into an array
 of InternetAddress objects. Setting
 the optional strict argument to
 false changes the behavior so that
 strings that use whitespace instead of commas (or whitespace and
 commas) to separate email addresses are also understood. All four of
 these methods are useful for message header fields that contain
 multiple addresses; for example, a Cc: that's directed to six
 people.
Finally, the getLocalAddress(
) method checks several system properties (mail.from, mail.user, mail.host, and user.name) as well as InetAddress.getLocalName() to determine the
 email address of the current user:
public static InternetAddress getLocalAddress(Session session)
For example, this code fragment tries to use the user's own
 email address rather than one hardcoded into the program as a
 string:
msg.setFrom(InternetAddress.getLocalAddress());
However, there's no guarantee that any of these properties will
 necessarily give the user's true address.

The NewsAddress Class

 Perhaps a little surprisingly, with an appropriate
 service provider, the JavaMail API can also access Usenet news. The API is mostly the same as for reading a
 POP or IMAP mailbox. However, instead of using an InternetAddress, you use a NewsAddress:
public class NewsAddress extends Address
A NewsAddress object
 represents a Usenet newsgroup name, such as
 comp.lang.java.machine. It may include the
 hostname for the news server as well. The state of a NewsAddress object is maintained by two
 protected fields:
protected String newsgroup
protected String host
The newsgroup field contains
 the name of the newsgroup—for example,
 netscape.devs-java. The host field is either null or contains the
 hostname of the news server—for example,
 secnews.netscape.com. Both of these fields are
 set in the constructor. There are three overloaded constructors for
 NewsAddress objects:
public NewsAddress()
public NewsAddress(String newsgroup)
public NewsAddress(String newsgroup, String host)
They are used exactly as you'd expect. For example:
Address netscape_java = new NewsAddress("netscape.devs-java.",
 "secnews.netscape.com");
There are eight instance methods in this class—three getter
 methods, two setter methods, and three utility methods:
public String getType()
public String getHost()
public String getNewsgroup()
public void setNewsgroup(String newsgroup)
public void setHost(String host)
public String toString()
public boolean equals(Object o)
public int hashCode()
The setNewsgroup() and
 setHost() methods set the newsgroup and host fields of the object to the specified
 values. The getNewsgroup() and
 getHost() methods return the
 values of the newsgroup and
 host fields. Finally, the getType() method returns the string
 "news".
The toString() method
 returns the newsgroup name in a form suitable for the Newsgroups:
 header field of a Usenet posting. The equals(
) and hashCode() methods
 have their usual semantics.
There are also two static utility methods for converting
 addresses to and from strings:
public static String toString(Address[] addresses)
 throws ClassCastException
public static NewsAddress[] parse(String newsgroups)
 throws AddressException
The toString() method
 converts an array of Address
 objects into a comma-separated list of newsgroup names. A ClassCastException is thrown if any of the
 Address objects in the array are
 not more specifically NewsAddress
 objects. The parse() method
 reverses this operation, converting a comma-separated String of newsgroup names, such as
 "comp.lang.java.programmer,comp.lang.java.gui,comp.lang.java.help",
 into an array of NewsAddress
 objects. It throws an AddressException if the newsgroups argument
 is not a comma-separated list of newsgroup names.
Sun's implementation of the JavaMail API does not include a
 service provider for news, however; so although you can create news
 addresses, before you can actually read and post news, you'll need to
 install a service provider that does support it. Table 19-1 lists some possible
 sources of news providers. Once you've got one, reading news is as
 straightforward as talking to an IMAP server.

The URLName Class

javax.mail.URLName represents the name of a URL; that is, it treats a URL as
 a string, but does not attempt to connect to or resolve any of the parts
 of the string. URL names are mainly used as convenient ways to identify
 folders and stores with nonstandard URLs, such as
 pop3://elharo:mypassword@mail.metalab.unc.edu:110/
 INBOX, that don't have a matching protocol handler:
public class URLName Object
The methods of URLName are very
 similar to those of java.net.URL
 discussed in Chapter 7, except that
 all those involving actual connections have been deleted. What's left is
 a bunch of methods for breaking a URL string into its component parts or
 building a URL from pieces.
The Constructors

 There are three overloaded URLName constructors. One takes the
 individual pieces of a URL as arguments, another takes a java.net.URL object, and a third takes a
 String containing a URL:
public URLName(String protocol, String host, int port, String file,
 String userName, String password)
public URLName(URL url)
public URLName(String url)
Constructing a URLName
 doesn't require a protocol handler for the scheme be available. All
 the operations on the URLName take
 place with simple substring manipulation, allowing the URLName class to support nonstandard URLs
 like pop3://eharold:password@utopia.poly.edu/INBOX or
 imap://elharo@metalab.unc.edu/Speaking/SD2005West.
 These URLName objects can be used
 to refer to particular folders on the server.

Parsing Methods

 These seven getter methods are the main purpose for this
 class. They return individual pieces of the URL:
public int getPort()
public String getProtocol()
public String getFile()
public String getRef()
public String getHost()
public String getUsername()
public String getPassword()
These methods can all be easily understood by analogy with the
 similarly named methods in java.net.URL. Except for getPort(), these methods all return
 null if the piece is missing.
 getPort() returns -1 if the port is
 not explicitly included in the URL.
There's also a getURL()
 method that converts a URLName to a
 java.net.URL. Since doing so
 requires that Java have a protocol handler for the URL's scheme, this
 method can throw a MalformedURLException:
public URL getURL() throws MalformedURLException
Finally, there are the usual three utility methods with the
 usual semantics:
public boolean equals(Object o)
public int hashCode()
public String toString()
The toString() method simply
 returns the string form of the URL. The equals() method is underspecified but in
 practice any two URLName objects
 that are character by character identical will compare equal. However,
 JavaMail does not consider case to be significant in domain names.
 http://www.example.com and http://WWW.EXAMPLE.COM are equal.
 Surprisingly, it does consider case to be significant in URL schemes.
 That is, http://www.example.com is
 not equal to HTTP://www.example.com. Finally, JavaMail
 recognizes / as the default path;
 for example, http://www.example.com
 is equal to http://www.example.com/. The hashCode() method is implemented
 accordingly.
We can use the URLName class
 to provide an interface for an email client that is completely
 protocol-independent. All information about protocol, host, and other
 details is provided by a URL read from the command line. Example 19-7 demonstrates.
Example 19-7. A protocol-independent mail client
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class MailClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java MailClient protocol://username:password@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 null);

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 messages[i].writeTo(System.out);
 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

URLName does make the code a
 little more compact since it moves some information from the source
 code to the command line. Besides eliminating the obvious variables
 and string literals for username, host, and so forth, we've managed to
 eliminate any direct reference to the Store class. A typical run starts like
 this:
% java MailClient pop3://eharold:mypassword@utopia.poly.edu/INBOX
------------ Message 1 ------------
Received: (from eharold@localhost)
 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728
 for eharold; Tue, 30 Nov 1999 16:14:29 -0500 (EST)
Date: Tue, 30 Nov 1999 16:14:29 -0500 (EST)
From: Elliotte Harold <eharold@utopia.poly.edu>
Message-Id: <199911302114.QAA05728@utopia.poly.edu>
To: eharold@utopia.poly.edu
Subject: test
Content-Type: text
X-UIDL: 87e3f1ba71738c8f772b15e3933241f0
Status: RO

hello you
For demonstration purposes, this program includes the password
 in the URL. In general, however, that's a huge security risk. It would
 be much better to use a runtime Authenticator, as Example 19-6 did. Of course,
 ultimately it's very questionable whether this is really a superior
 interface to Example 19-6
 and its ilk.

The Message Class

 The javax.mail.Message
 class is the abstract superclass for all individual emails, news
 postings, and similar messages:
public abstract class Message extends Object implements Part
There's one concrete Message
 subclass in the standard JavaMail API, javax.mail.internet.MimeMessage. This is used
 for both email and Usenet news messages. Service providers are free to
 add classes for their own message formats. For instance, IBM might
 provide a NotesMessage class for
 Lotus Notes.
The Message class mainly
 declares abstract getter and setter methods that define the common
 properties of most messages. These properties include the addressees of
 the message, the recipients of the message, the subject and content of
 the message, and various other attributes. You can think of these as
 properties of the envelope that contains the message.
Furthermore, the Message
 class implements the Part interface. The Part interface mostly handles the body of an
 email message. It declares methods for getting and setting the content
 type of the message body, getting and setting the actual message body
 content, getting and setting arbitrary headers from the message, and
 getting input streams that are fed by the message body. The main body
 part of a message can contain other parts. This is used to handle
 attachments, message bodies that are available in multiple formats, and
 other multipart emails. Since the Message class is abstract and needs to be
 subclassed by concrete classes such as MimeMessage, most of these methods are not
 actually redeclared in Message but
 can be invoked by any actual instance of Message. We'll begin by discussing the methods
 actually declared in Message, then
 move on to those declared in Part.
Creating Messages

 The Message class has
 three constructors:
protected Message()
protected Message(Folder folder, int messageNumber)
protected Message(Session session)
Since all the constructors are protected, they are primarily for
 the use of subclasses such as MimeMessage. If you're sending a message,
 you'll use one of the constructors in the subclass instead. If you're
 reading messages, the Folder or
 Session you're reading from will
 create the Message objects and pass
 them to you.
Replying to messages

If you already have a Message object, one way to create a new
 Message object is to reply to the
 existing one using the reply()
 method:
public abstract Message reply(boolean replyToAll)
 throws MessagingException
This method creates a new Message object with the same subject
 prefixed with "Re:", and addressed to the sender of the original
 message. If replyToAll is
 true, the message is addressed to
 all known recipients of the original message. The content of the
 message is empty. If you want to quote the original message, you'll
 have to do that yourself.

Getting messages from folders

You've already seen that when you're reading email,
 the JavaMail API creates Message
 objects to represent the messages it finds on the server. The
 primary means of doing this are the getMessage() and getMessages()
 methods in the Folder
 class:
public abstract Message getMessage(int messageNumber)
 throws MessagingException
public Message[] getMessages(int start, int end)
 throws MessagingException
public Message[] getMessages(int[] messageNumbers)
 throws MessagingException
public Message[] getMessages() throws MessagingException
The first three methods require the caller to specify which
 messages it wants. The last simply returns all messages in the
 folder. What's actually returned are stubs holding the places of the
 actual messages. The text and headers of the message won't
 necessarily be retrieved until some method of the Message class is invoked that requires
 this information.

Basic Header Info

 A typical RFC 822 message contains a header that looks
 something like this:
From levi@blazing.sunspot.noao.edu Fri Aug 5 10:57:08 1994
Date: Fri, 27 Aug 2004 10:57:04 +0700
From: levi@blazing.sunspot.noao.edu (Denise Levi)
To: volleyball@sunspot.noao.edu
Subject: Apologies
Content-Length: 517
Status: RO
X-Lines: 13
The exact fields in the header can vary, but most messages
 contain at least a From: field, a To: field, a Date: field, and a
 Subject: field. Other common fields include Cc: (carbon copies) and
 Bcc: (blind carbon copies). In general, these will be accessible
 through getter and setter methods.
The From address

 These four methods get and set the From: field of a
 message:
public abstract Address[] getFrom() throws MessagingException
public abstract void setFrom() throws MessagingException,
 IllegalWriteException, IllegalStateException
public abstract void setFrom(Address address)
 throws MessagingException, IllegalWriteException, IllegalStateException
public abstract void addFrom(Address[] addresses)
 throws MessagingException, IllegalWriteException, IllegalStateException
The getFrom() method returns an array of Address objects, one for each address
 listed in the From: header. (In practice, it's rare for a message to
 be from more than one address. It's quite
 common for a message to be addressed to more
 than one address.) It returns null if the From: header isn't present in
 the message. It throws a MessagingException if the From: header is
 malformed in some way.
The noargs setFrom()
 and addFrom()
 methods set and modify the From: headers of outgoing
 email messages. The noargs setFrom(
) method sets the header to the current value of the
 mail.user property or, as a
 fallback, the user.name property.
 The setFrom() method with
 arguments sets the value of the From: header to the listed
 addresses. The addFrom() method
 adds the listed addresses to any addresses that already exist in the
 header. All three of these methods can throw a MessagingException if one of the addresses
 they use isn't in the right format. They can also throw an IllegalWriteException if the From: field
 of the given Message object
 cannot be changed or an IllegalStateException if the entire
 Message object is
 read-only.

The Reply-to address

 Some messages contain a Reply-to: header indicating
 that any replies should be sent to a different address than the one
 that sent the message. There are two methods to set and get these
 addresses:
public Address[] getReplyTo() throws MessagingException
public void setReplyTo(Address[] addresses) throws MessagingException,
 MethodNotSupportedException, IllegalWriteException,
 IllegalStateException
The semantics of these methods are the same as for the
 equivalent getFrom() and
 setFrom() methods—in fact, the
 default implementation of getReplyTo(
) simply returns getFrom(
)—with the single caveat that an implementation that
 doesn't support separate Reply-to: addresses may throw a MethodNotSupportedException when setReplyTo() is invoked.

The recipient addresses

 Whereas the sender of the message is generally found
 only in the From: header, the recipients of the message are often
 split across the To:, Cc:, and Bcc: fields. Rather than providing
 separate methods for each of these fields, the various getRecipients() and setRecipients(
) methods rely on a Message.RecipientType argument to
 determine which field's value is desired. RecipientType is a public inner class in
 javax.mail.Message whose private
 constructor limits it to exactly these three static objects:
Message.RecipientType.TO
Message.RecipientType.CC
Message.RecipientType.BCC
There are two methods to find the addressees of the Message:
public abstract Address[] getRecipients(Message.RecipientType type)
 throws MessagingException
public Address[] getAllRecipients() throws MessagingException
The getRecipients() method
 returns an array of Address
 objects, one for each address listed in the specified header. It
 returns null if the specified
 header isn't present in the message. It throws a MessagingException if the specified header
 is malformed in some way. The getAllRecipients() method does the same
 thing, except that it combines the contents of the To:, Cc:, and
 Bcc: headers.
There are two methods to set the recipients of the message
 while replacing any previous recipients and two methods to add
 recipients to the message:
public abstract void setRecipients(Message.RecipientType type,
 Address[] addresses) throws MessagingException, IllegalWriteException,
 IllegalStateException
public void setRecipient(Message.RecipientType type, Address address)
 throws MessagingException, IllegalWriteException
public abstract void addRecipients(Message.RecipientType type,
 Address[] addresses) throws MessagingException,
 IllegalWriteException, IllegalStateException
public void addRecipient(Message.RecipientType type, Address address)
 throws MessagingException, IllegalWriteException
All four of these methods can throw a MessagingException, typically because one
 of the addresses isn't in the right format. They can also throw an
 IllegalWriteException if the
 specified field of the given Message object cannot be changed or an
 IllegalStateException if the
 entire Message object is
 read-only.

The subject of the message

 Since the subject is simply a single string of text,
 it's easy to set and get with these two methods:
public abstract String getSubject() throws MessagingException
public abstract void setSubject(String subject) throws
 MessagingException, IllegalWriteException, IllegalStateException
As with earlier setter methods, null is returned if the subject field
 isn't present in the message. An IllegalWriteException is thrown if the
 program isn't allowed to set the value of the Subject: field and an
 IllegalStateException is thrown
 if the program isn't allowed to change the message at all.

The date of the message

 Messages also have sent and received dates. Three
 methods allow programs to access these fields:
public abstract Date getSentDate() throws MessagingException
public abstract void setSentDate(Date date) throws MessagingException,
 IllegalWriteException, IllegalStateException
public abstract Date getReceivedDate() throws MessagingException
 The underlying implementation is responsible for
 converting the textual date format found in a message header like
 "Fri, 20 Aug 2004 10:57:04 +0700" to a java.util.Date object. As usual, a
 MessagingException indicates some
 problem with the format of the underlying message, an IllegalWriteException indicates that the
 field cannot be changed, and an IllegalStateException indicates that the
 entire message cannot be changed.
Example 19-8 is a
 simple example program that follows the basic pattern of the last
 several mail-reading programs. However, this one no longer uses
 writeTo(). Instead, it uses the
 methods in this section to print just the headers. Furthermore, it
 prints them in a particular order regardless of their order in the
 actual message on the server. Finally, it ignores the less important
 headers such as X-UIDL: and Status:. The static InternetAddress.toString() method
 converts the arrays that most of these methods return into simple,
 comma-separated strings.
Example 19-8. A program to read mail headers
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class HeaderClient {

 public static void main(String[] args) {
 if (args.length == 0) {
 System.err.println(
 "Usage: java HeaderClient protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 // Here's the big change...
 String from = InternetAddress.toString(messages[i].getFrom());
 if (from != null) System.out.println("From: " + from);
 String replyTo = InternetAddress.toString(
 messages[i].getReplyTo());
 if (replyTo != null) System.out.println("Reply-to: "
 + replyTo);
 String to = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.TO));
 if (to != null) System.out.println("To: " + to);
 String cc = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.CC));
 if (cc != null) System.out.println("Cc: " + cc);
 String bcc = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.BCC));
 if (bcc != null) System.out.println("Bcc: " + to);
 String subject = messages[i].getSubject();
 if (subject != null) System.out.println("Subject: " + subject);
 Date sent = messages[i].getSentDate();
 if (sent != null) System.out.println("Sent: " + sent);
 Date received = messages[i].getReceivedDate();
 if (received != null) System.out.println("Received: " + received);

 System.out.println();
 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }
}

Here's some typical output. Several of the requested strings
 were null because the fields
 simply weren't present in the messages in the INBOX; for instance,
 Cc: and Bcc:. HeaderClient checks
 for the fields and simply omits them if they're not present.
% java HeaderClient pop3://eharold@utopia.poly.edu/INBOX
------------ Message 1 ------------
From: Elliotte Harold <eharold@utopia.poly.edu>
Reply-to: Elliotte Harold <eharold@utopia.poly.edu>
To: eharold@utopia.poly.edu
Subject: test
Sent: Tue Nov 30 13:14:29 PST 1999

------------ Message 2 ------------
From: Elliotte Rusty Harold <elharo@macfaq.com>
Reply-to: Elliotte Rusty Harold <elharo@macfaq.com>
To: eharold@utopia.poly.edu
Subject: New system
Sent: Wed Dec 01 10:55:40 PST 1999

------------ Message 3 ------------
From: Dr. Mickel <Greatsmiles@mail.com>
Reply-to: Dr. Mickel <Greatsmiles@mail.com>
To: eharold@utopia.poly.edu
Subject: Breath RX Products now available Online!
Sent: Thu Dec 02 03:45:52 PST 1999
Notice that none of these messages have received dates. That's
 because the receive time is not part of the message envelope itself.
 It has to be provided by the server, and POP servers don't provide
 it. An IMAP server would be much more likely to include a received
 date, as will be shown in Example 19-9.

Saving changes

When you invoke one of the previous set or add methods, some
 implementations store the changes immediately. Others, however, may
 not. The saveChanges() method commits the changes made to a Message object:
public abstract void saveChanges() throws MessagingException,
 IllegalWriteException, IllegalStateException
This is not quite a flush. The actual changes may not be
 committed to disk until the folder containing the message is closed.
 However, this method does ensure that the changes are stored in the
 folder and will be saved when the folder is saved.

Flags

 Mail programs can save extra information about the
 messages that are not part of the messages themselves. For instance,
 Pine lets me know whether I've replied to or read a message, and so
 on. As Figure 19-5 shows,
 this information is indicated by symbols and letters in the lefthand
 column. D means a message has been deleted; A means it's been
 answered; N is a new message that hasn't been read yet; and so forth.
 In the JavaMail API, these are all represented as
 flags. A flag is an instance of the javax.mail.Flags class:
public class Flags extends Object implements Cloneable
Seven flags are predefined as instances of the public
 static inner class Flags.Flag.
 These are:
Flags.Flag.ANSWERED
Flags.Flag.DELETED
Flags.Flag.DRAFT
Flags.Flag.FLAGGED
Flags.Flag.RECENT
Flags.Flag.SEEN
Flags.Flag.USER
In addition, some implementations may allow arbitrary
 user-defined flags. If so, the USER flag is set.
[image: Pine shows flags as letters in the lefthand column]

Figure 19-5. Pine shows flags as letters in the lefthand column

The getFlags() method returns the flags of a particular
 message:
public abstract Flags getFlags() throws MessagingException
The isSet() method tests whether a specified flag is set for the
 given message:
public boolean isSet(Flags.Flag flag) throws MessagingException
Finally, the setFlags()
 and setFlag()
 methods set or unset (depending on the second argument) the flag
 indicated by the first argument:
public abstract void setFlags(Flags flag, boolean set)
 throws MessagingException, IllegalWriteException,
 IllegalStateException
public void setFlag(Flags.Flag flag, boolean set) throws
 MessagingException, IllegalWriteException, IllegalStateException
You delete messages by setting their Flags.Flag.DELETED flag to true. For example, to delete message:
message.setFlag(Flags.Flag.DELETED, true);
This only marks the message as deleted. It does not actually
 expunge it from the file on the server. Until the message is expunged,
 it can still be undeleted by setting Flags.Flag.DELETED back to false.
Example 19-9 is a
 slight modification of Example
 19-8, HeaderClient, which
 prints the flags as well. As a general rule, POP servers won't report
 flags. Only a protocol that stores messages and forwards them, such as
 IMAP or mbox, will report flags.
Example 19-9. A program to read mailbox flags
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class FlagsClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java FlagsClient protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 // Get the headers
 String from = InternetAddress.toString(messages[i].getFrom());
 if (from != null) System.out.println("From: " + from);
 String replyTo = InternetAddress.toString(
 messages[i].getReplyTo());
 if (replyTo != null) System.out.println("Reply-to: "
 + replyTo);
 String to = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.TO));
 if (to != null) System.out.println("To: " + to);
 String cc = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.CC));
 if (cc != null) System.out.println("Cc: " + cc);
 String bcc = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.BCC));
 if (bcc != null) System.out.println("Bcc: " + to);
 String subject = messages[i].getSubject();
 if (subject != null) System.out.println("Subject: " + subject);
 Date sent = messages[i].getSentDate();
 if (sent != null) System.out.println("Sent: " + sent);
 Date received = messages[i].getReceivedDate();
 if (received != null) System.out.println("Received: " + received);

 // Now test the flags:
 if (messages[i].isSet(Flags.Flag.DELETED)) {
 System.out.println("Deleted");
 }
 if (messages[i].isSet(Flags.Flag.ANSWERED)) {
 System.out.println("Answered");
 }
 if (messages[i].isSet(Flags.Flag.DRAFT)) {
 System.out.println("Draft");
 }
 if (messages[i].isSet(Flags.Flag.FLAGGED)) {
 System.out.println("Marked");
 }
 if (messages[i].isSet(Flags.Flag.RECENT)) {
 System.out.println("Recent");
 }
 if (messages[i].isSet(Flags.Flag.SEEN)) {
 System.out.println("Read");
 }
 if (messages[i].isSet(Flags.Flag.USER)) {
 // We don't know what the user flags might be in advance
 // so they're returned as an array of strings
 String[] userFlags = messages[i].getFlags().getUserFlags();
 for (int j = 0; j < userFlags.length; j++) {
 System.out.println("User flag: " + userFlags[j]);
 }
 }

 System.out.println();
 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }
}

Here's a sample run. The first message has been read and
 deleted. The second message has no set flags; it hasn't been read,
 deleted, or answered. The third message has been read and answered but
 not deleted. Notice that I'm using an IMAP server instead of a POP
 server:
% java FlagsClient imap://elharo@mail.metalab.unc.edu/INBOX
------------ Message 1 ------------
From: Mike Hall <mikehall@spacestar.com>
Reply-to: Mike Hall <mikehall@spacestar.com>
To: mrj-dev@public.lists.apple.com
Subject: Re: dialog box, parents & X-platform
Sent: Mon Dec 13 05:24:38 PST 1999
Received: Mon Dec 13 06:33:00 PST 1999
Deleted
Read

------------ Message 2 ------------
From: Kapil Madan <kapil.madan@MIT-MISYS.COM>
Reply-to: XML-INTEREST@JAVA.SUN.COM
To: XML-INTEREST@JAVA.SUN.COM
Subject: Re: first mail to the list!
Sent: Mon Dec 13 06:19:46 PST 1999
Received: Mon Dec 13 06:40:00 PST 1999

------------ Message 3 ------------
From: Jim Jackl-Mochel <jmochel@foliage.com>
Reply-to: Jim Jackl-Mochel <jmochel@foliage.com>
To: elharo@metalab.unc.edu
Subject: CPreProcessorStream
Sent: Mon Dec 13 07:14:00 PST 1999
Received: Mon Dec 13 07:08:00 PST 1999
Answered
Read

Folders

 Messages received from the network (as opposed to sent
 to the network) generally belong to some Folder. The getFolder() method returns a reference to the Folder object that contains this Message:
public Folder getFolder()
It returns null if the
 message isn't contained in a folder.
Within a folder, messages are organized from first (message 1)
 to last. The getMessageNumber()
 method returns the relative position of this Message in its Folder:
public int getMessageNumber()
Messages that aren't in any folder have number 0. Message
 numbers may change while a program is running if other messages are
 added to or deleted from a folder.
There's also a protected setMessageNumber() method, but it's only for service providers, not for
 user code:
protected void setMessageNumber(int number)
We'll talk more about folders and what they can do at the end of
 this chapter. One of the things you can do with a folder is expunge
 messages from it. This physically deletes the message if it's already
 been marked as deleted. (A merely deleted message can be "undeleted",
 whereas an expunged message cannot be.) If a message is expunged,
 there may still be a Message object
 pointing to the message, but almost all methods on the message will
 throw a MessagingException. Thus,
 it may be important to check whether a message has been expunged
 before working with it. The isExpunged(
) method does that:
public boolean isExpunged()
There's also a protected setExpunged() method, but it's only for
 service providers, not for user code:
protected void setExpunged(boolean expunged)

Searching

The final method left in the Message class is match(). The match() method determines whether a Message satisfies particular search
 criteria. We'll discuss this more in a bit when we talk about
 searching folders:
public boolean match(SearchTerm term) throws MessagingException

The Part Interface

 Both Message and
 BodyPart implement the Part interface. Every Message is a Part. However, some parts may contain other
 parts. The Part interface declares
 three kinds of methods:
	Methods for getting and setting the attributes of the
 part

	Methods for getting and setting the headers of the part

	Methods for getting and setting the contents of the
 part

The attributes of the part are things such as the size of the
 message or the date it was received, details that aren't explicitly
 specified in the message's header. The headers, by contrast, are
 name-value pairs included at the front of the part. Finally, the content
 of the part is the actual data that the message is trying to
 transmit.
Attributes

 The JavaMail API defines five attributes for
 parts:
	Size
	The approximate number of bytes in the part

	Line count
	The number of lines in the part

	Disposition
	Whether the part is an attachment or should be displayed
 inline

	Description
	A brief text summary of the part

	Filename
	The name of the file that the attachment came from

Not all parts have all attributes. For instance, a part that
 does not represent an attached file is unlikely to have a filename
 attribute. Each attribute is mapped to a getter method:
public int getSize() throws MessagingException
public int getLineCount() throws MessagingException
public String getDisposition() throws MessagingException
public String getDescription() throws MessagingException
public String getFileName() throws MessagingException, ParseException
Generally, the getter method returns null or -1 if a part
 doesn't possess the requested attribute. It throws a MessagingException if there's some problem
 retrieving the message; for instance, if the connection goes down
 while the message is being retrieved.
The getSize() method returns the approximate number of bytes in the
 part. Depending on the server and protocol, this may or may not
 account for changes in the size caused by operations such as Base64
 encoding the data.
The getLineCount() method returns the approximate number of lines in the
 content of the part or -1 if the number of lines isn't known. Again,
 the number returned may or may not account for changes in the size of
 the part caused by the part's encoding.
The getDisposition()
 method returns a string indicating whether the content
 should be presented inline or as an attachment. The value returned
 should either be null (the
 disposition is not known) or one of the two named constants Part.INLINE or Part.ATTACHMENT:
public static final String ATTACHMENT = "attachment";
public static final String INLINE = "inline";
If the disposition is Part.ATTACHMENT, getFileName() should return the name of the
 file to save the attachment in. Otherwise, getFileName() probably returns null. However, some email clients, including
 Netscape 4.5 for Windows, do not properly set the Content-disposition
 header for attachments. Consequently, when receiving messages with
 attachments that were sent by Navigator, you'll often get a null disposition but a non-null filename. In
 practice, it seems more reliable to assume that any body part with a
 non-null filename is an attachment regardless of the
 Content-disposition header, and any body part with no filename and no
 Content-disposition header should be displayed inline if possible. If
 it's not possible—for instance, if you can't handle the MIME type—you
 can either ask the user for a filename or pick some reasonable
 default, such as attachment1.tif.
Normally, the filename includes only the actual name of the file
 but not any of the directories the file was in. It's up to the
 application receiving the message to decide where to put the incoming
 file. For instance, Eudora generally stores attachments in the
 Attachments folder inside the Eudora folder. However, the user has an
 option to pick a different location. Since it's not uncommon to
 receive multiple attachments with the same name over time, check to
 see whether a file with the attached file's name already exists before
 writing out the attachment. If a similarly named file does exist,
 you'll have to rename the attachment in some reasonable fashion—for
 instance, by appending a 1 or a 2 to it: e.g.,
 vcard1.vcf, vcard2.vcf, and
 so on.
The description, disposition, and filename attributes also have
 setter methods. However, the size and line count attributes are
 determined by the content of the part rather than a setter
 method:
public void setDisposition(String disposition) throws
 MessagingException, IllegalWriteException, IllegalStateException
public void setFileName(String filename) throws MessagingException,
 IllegalWriteException, IllegalStateException
public void setDescription(String description) throws
 MessagingException, IllegalWriteException, IllegalStateException
The setter methods all throw a MessagingException if there's some problem
 while changing the message. They can also throw an IllegalWriteException if the relevant
 attribute of the part cannot be modified or an IllegalStateException if the part belongs to
 a read-only folder.
The setDisposition()
 method determines whether the part is to be viewed
 inline or as an attachment. Although it's declared to take a String as an argument, this String should be one of the two named
 constants, Part.INLINE or Part.ATTACHMENT. Parts that are attachments
 generally have a filename included in their metainformation. This name
 can be set with the setFileName()
 method. Finally, the setDescriptionMethod() can take any String
 at all to add a description to the part.
Example 19-10 is a
 simple program that connects to a mail server and reads the attributes
 of the messages in the mailbox. Since each message is itself a part
 (even if it contains other parts), we can invoke these methods on the
 entire message.
Example 19-10. A program to read mail attributes
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class AttributeClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java AttributeClient protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 String from = InternetAddress.toString(messages[i].getFrom());
 if (from != null) System.out.println("From: " + from);
 String to = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.TO));
 if (to != null) System.out.println("To: " + to);
 String subject = messages[i].getSubject();
 if (subject != null) System.out.println("Subject: " + subject);
 Date sent = messages[i].getSentDate();
 if (sent != null) System.out.println("Sent: " + sent);

 System.out.println();
 // Here's the attributes...
 System.out.println("This message is approximately "
 + messages[i].getSize() + " bytes long.");
 System.out.println("This message has approximately "
 + messages[i].getLineCount() + " lines.");
 String disposition = messages[i].getDisposition();
 if (disposition == null) ; // do nothing
 else if (disposition.equals(Part.INLINE)) {
 System.out.println("This part should be displayed inline");
 }
 else if (disposition.equals(Part.ATTACHMENT)) {
 System.out.println("This part is an attachment");
 String fileName = messages[i].getFileName();
 if (fileName != null) {
 System.out.println("The file name of this attachment is "
 + fileName);
 }
 }
 String description = messages[i].getDescription();
 if (description != null) {
 System.out.println("The description of this message is "
 + description);
 }

 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }
}

Here's some typical output. I used an IMAP server because most
 of these methods don't work nearly as well with POP servers. IMAP
 servers can give you the attributes of a message without making you
 download the entire message, but POP servers aren't that
 sophisticated:
% java AttributeClient imap://elharo@mail.sunsite.unc.edu/INBOX
------------ Message 1 ------------
From: "Richman, Jeremy" <jrichman@hq.ileaf.com>
To: 'xsl-list' <XSL-List@mulberrytech.com>
Subject: Re: New twist: eliminating nodes with duplicate content
Sent: Mon Dec 06 08:37:51 PST 1999

This message is approximately 3391 bytes long.
This message has approximately 87 lines.
------------ Message 2 ------------
From: schererm@us.ibm.com
To: Unicode List <unicode@unicode.org>
Subject: Re: Number ordering
Sent: Mon Dec 06 11:00:28 PST 1999

This message is approximately 1554 bytes long.
This message has approximately 18 lines.
------------ Message 3 ------------
From: John Posner <jjp@connix.com>
To: 'Nakita Watson' <nakita@oreilly.com>
Subject: RE: Another conference Call
Sent: Mon Dec 06 11:16:38 PST 1999
This message is approximately 1398 bytes long.
This message has approximately 19 lines.

Headers

 Classes that implement the Part interface—for example, Message—generally declare methods to return
 specific headers such as To: or From:. The Part interface, by contrast, declares
 methods to get and set arbitrary headers regardless of name.
The getHeader() method gets the values of all the headers with a name
 that matches the name argument.
 Some headers such as Received: can have multiple values and can be
 included in a message multiple times, so this method returns those
 values as an array of strings. It returns null if no header with that name is present
 in this Part:
public String[] getHeader(String name) throws MessagingException
The setHeader() method adds a new header to an outgoing message:
public void setHeader(String name, String value) throws
 MessagingException, IllegalWriteException, IllegalStateException
If there's already a header with this name, that header is
 deleted and the new one inserted in its place—unless the folder in
 which the message resides is read-only, in which case an IllegalStateException is thrown.
By contrast, the addHeader()
 method adds a header with the specified name but does
 not replace any that exist:
public void addHeader(String name, String value) throws
 MessagingException, IllegalWriteException, IllegalStateException
The removeHeader() method deletes all instances of the named header from
 this Part:
public void removeHeader(String name) throws MessagingException,
 IllegalWriteException, IllegalStateException
The getAllHeaders()
 method returns a java.util.Enumeration object containing all
 the headers in this message:
public Enumeration getAllHeaders() throws MessagingException
The Enumeration contains one
 javax.mail.Header object for each
 header in the message:
public class Header extends Object
The Header class is very
 simple, with just a constructor to set the name and value of the
 header, and getName() and getValue() methods to return them:
public Header(String name, String value)
public String getName()
public String getValue()
Finally, the getMatchingHeaders() method returns an Enumeration containing all the headers in
 this message with names that are one of the strings in the argument
 names array. The getNonMatchingHeaders() method returns an Enumeration containing all the headers in
 this message with names that are not one of the
 strings in the argument names
 array. Again, the Enumeration
 contains Header objects:
public Enumeration getMatchingHeaders(String[] names)
 throws MessagingException
public Enumeration getNonMatchingHeaders(String[] names)
 throws MessagingException
You may recall that Example
 19-8, HeaderClient, printed
 only a few prespecified headers, such as To: and From:. With the
 methods of the Part interface (that
 Message implements), it's easy to
 expand this to cover all headers in the message, whether known in
 advance or not. Example
 19-11 demonstrates. This ability is important because Internet
 email can contain arbitrary headers; it's not limited to just a few
 headers mentioned in the relevant RFCs. For instance, some graphical
 mail clients for X Windows use a completely nonstandard X-Face:
 header, whose value is a 48-pixel by 48-pixel, black-and-white,
 uuencoded bitmap of the sender's countenance. Other clients use custom
 headers for purposes both more serious and sillier.
Example 19-11. A program to read mail headers
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class AllHeaderClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java AllHeaderClient protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 // Here's the difference...
 Enumeration headers = messages[i].getAllHeaders();
 while (headers.hasMoreElements()) {
 Header h = (Header) headers.nextElement();
 System.out.println(h.getName() + ": " + h.getValue());
 }
 System.out.println();
 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }
}

Here's a typical run:
% java AllHeaderClient pop3://eharold@utopia.poly.edu/INBOX
------------ Message 1 ------------
Received: (from eharold@localhost)
 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728
 for eharold; Tue, 30 Nov 1999 16:14:29 -0500 (EST)
Date: Tue, 30 Nov 1999 16:14:29 -0500 (EST)
From: Elliotte Harold <eharold@utopia.poly.edu>
Message-Id: <199911302114.QAA05728@utopia.poly.edu>
To: eharold@utopia.poly.edu
Subject: test
Content-Type: text
X-UIDL: 87e3f1ba71738c8f772b15e3933241f0
Status: RO

------------ Message 2 ------------
Received: from russian.cloud9.net (russian.cloud9.net [168.100.1.4])
 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id OAA28428
 for <eharold@utopia.poly.edu>; Wed, 1 Dec 1999 14:05:06 -0500 (EST)
Received: from [168.100.203.234] (macfaq.dialup.cloud9.net [168.100.203.234])
 by russian.cloud9.net (Postfix) with ESMTP id 24B93764F8
 for <eharold@utopia.poly.edu>; Wed, 1 Dec 1999 14:02:50 -0500 (EST)
Mime-Version: 1.0
X-Sender: macfaq@mail.cloud9.net
Message-Id: <v04210100b46b1f97969d@[168.100.203.234]>
Date: Wed, 1 Dec 1999 13:55:40 -0500
To: eharold@utopia.poly.edu
From: Elliotte Rusty Harold <elharo@macfaq.com>
Subject: New system
Content-Type: text/plain; charset="us-ascii" ; format="flowed"
X-UIDL: 01fd5cbcf1768fc6c28f9c8f934534b5
Status: RO

------------ Message 3 ------------
Received: from russian.cloud9.net (russian.cloud9.net [168.100.1.4])
 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id HAA17345
 for <eharold@utopia.poly.edu>; Thu, 2 Dec 1999 07:55:04 -0500 (EST)
Received: from [168.100.203.234] (macfaq.dialup.cloud9.net [168.100.203.234])
 by russian.cloud9.net (Postfix) with ESMTP id C036A7630E
 for <eharold@utopia.poly.edu>; Thu, 2 Dec 1999 07:54:58 -0500 (EST)
Mime-Version: 1.0
X-Sender: elharo@luna.oit.unc.edu
Message-Id: <v04210100b46c0c686ecc@[168.100.203.234]>
Date: Thu, 2 Dec 1999 06:45:52 -0500
To: eharold@utopia.poly.edu
From: "Dr. Mickel" <Greatsmiles@mail.com>(by way of Elliotte Rusty Harold)
Subject: Breath RX Products now available Online!
Sender: elharo@metalab.unc.edu
Content-Type: text/plain; charset="us-ascii" ; format="flowed"
X-UIDL: 40fa8af2aca1a8c11994f4c56b792720
Status: RO

Content

 Every part has content that can be represented as a
 sequence of bytes. For instance, in a part that's a simple email
 message, the content is the body of the message. However, in multipart
 messages, this content may itself contain other parts. The content of
 each of these parts can be represented as a sequence of bytes.
 Furthermore, this sequence of bytes may represent some more specific
 content type, such as a uuencoded GIF image or a Base64-encoded WAV
 audio clip.
Reading the contents of the part

The Part interface declares
 two methods for determining a part's MIME content type. The getContentType() method returns the MIME content type of the part as a
 string; for example: text/plain;
 charset="us-ascii"; format= "flowed". It returns null if the content type can't be
 determined:
public String getContentType() throws MessagingException
The isMimeType()
 method returns true if this part has the specified MIME
 type and subtype. Additional parameters, such as charset, are
 ignored:
public boolean isMimeType(String mimeType) throws MessagingException
The Part interface also
 declares several methods that return the content as a variety of
 different Java objects, including InputStream, String, DataHandler, and more. The getInputStream() method returns an InputStream from which the part's content
 can be read:
public InputStream getInputStream() throws IOException,
 MessagingException
If the part's content has been encoded in some way—for
 example, Base64-encoded—then the InputStream reads the decoded content. The
 JavaMail API supports all common encodings except the BinHex format
 used for Macintosh files. If it encounters a BinHex-encoded
 attachment, it strips the MIME headers but otherwise leaves the
 BinHex data untouched. BinHex documents are tough to deal with on
 most platforms because of the unusual two-fork nature of a Mac file.
 Unless you're a real Mac expert, you're probably better off using a
 third-party utility such as StuffIt Expander (http://www.stuffit.com/) to decode the file.
Another possibility is to request a DataHandler for the content with the
 getDataHandler() method. The DataHandler class comes from the Java
 Activation Framework. It declares methods to help decide what to do
 with the content—for instance, by finding the right Java bean or
 helper application to display the content:
public javax.activation.DataHandler getDataHandler()
 throws MessagingException
A third possibility is to request the content as an
 unspecified Java object using the getContent() method:
public Object getContent() throws IOException, MessagingException
This is reminiscent of the getContent() method of java.net.URL. However, rather than relying
 on the poorly designed content handler mechanism, this getContent() method uses the Java
 Activation Framework, so the behavior is a little more clearly
 specified. Most of the time, if the content type is text/plain, a String will be returned. If the content
 type is multipart, then regardless of the subtype, a javax.mail.Multipart object is returned.
 If the content type is some other type that is recognized by the
 underlying DataHandler, an
 appropriate Java object is returned. Finally, if the type is
 unrecognized, an InputStream is
 returned.
You can change which objects are returned for which content
 types by providing your own DataHandler, installed with the setDataHandler()
 method:
public void setDataHandler(javax.activation.DataHandler handler)
 throws MessagingException, IllegalWriteException, IllegalStateException
Although this method is declared to throw the usual group of
 exceptions, it's perhaps a little less likely to actually do so,
 since setting the DataHandler
 only affects the Message object
 rather than the actual message stored on the server.

Writing the contents of the part

When sending a message, you naturally must set the message's
 contents. Since email messages are text, the most straightforward
 way is just to provide the text of the part with setText() :
public void setText(String text) throws MessagingException,
 IllegalWriteException, IllegalStateException
The setText() method sets
 the MIME type to text/plain.
 Other objects can be made into content as well, provided the part
 has a DataHandler that
 understands how to convert them to encoded text. This is done with
 the setContent() method:
public void setContent(Object o, String type) throws
 MessagingException, IllegalWriteException, IllegalStateException
Another way to write the contents of a part is by using an
 OutputStream. The writeTo() method writes the content of the Part onto an OutputStream. If necessary, it will encode
 the content using Base64, quoted-printable, or some other format as
 specified by the DataHandler:
public void writeTo(OutputStream out) throws IOException,
 MessagingException
In fact, this not only writes the content of this Part, it also writes the attributes and
 headers of the part. Example
 19-4 used this to provide a simple way of getting an entire
 email message in one fell swoop. It's most convenient, though, when
 you want to send an entire message to an SMTP server in one method
 call.
Finally, multiple parts can be added to a part by wrapping
 them in a Multipart object and
 passing that to setContent(
):
public void setContent(Multipart mp) throws MessagingException,
 IllegalWriteException, IllegalStateException
In this case, the entire message typically has a content type
 such as multipart/mixed, multipart/signed, or multipart/alternative. The individual
 parts of the message are all enclosed in one envelope but each part
 of the message has its own content type, content encoding, and data.
 The multiple parts may be used to present different forms of the
 same document (e.g., HTML and plain-text mail), a document and
 metainformation about the document (e.g., a message and the MD5
 digest of the message), or several different documents (e.g., a
 message and several attached files). The next section expands on
 this process.

Multipart Messages and File Attachments

The way all the different text and binary file types are
 encoded into raw text that can be passed through 7-bit email gateways is
 fairly ingenious and rather detailed. Fortunately, the JavaMail API
 shields you from those details, interesting as they are. To send a
 multipart message using the JavaMail API, all you have to do is add the
 parts to a MimeMultipart object, then
 pass that object to the Message's
 setContent() method. To receive a
 multipart message, you simply process each of the parts
 individually.
Most of the methods for building and deconstructing
 multipart messages are in the abstract javax.mail.Multipart class:
public abstract class Multipart extends Object
However, since this class is abstract, you'll generally start with
 a javax.mail.internet.MimeMultipart
 object instead:
public class MimeMultipart extends Multipart
Each part you add to a Multipart is an instance of the abstract
 javax.mail.BodyPart class that
 implements the Part interface of the
 last section:
public abstract class BodyPart extends Object implements Part
In Internet email, the concrete subclass of BodyPart you'll use is javax.mail.internet.MimeBodyPart:
public class MimeBodyPart extends BodyPart implements MimePart
Most of the methods you need in the MimeBodyPart and BodyPart classes are the ones you're already
 familiar with from the Part
 interface, methods such as setContent(
) and setDataHandler().
 There are also three methods to read the contents of a Multipart object:
public String getContentType()
public int getCount() throws MessagingException
public BodyPart getBodyPart(int index)
 throws IndexOutOfBoundsException, MessagingException
The getContentType() method returns the MIME media type of the entire Multipart, which is typically something like
 multipart/mixed or multipart/alternative. This is not the same as
 the MIME types of the individual parts, which are something like
 text/plain or image/gif.
The getCount() method returns the number of parts in this Multipart. The getBodyPart() method returns a particular
 part. Parts are numbered starting at 0, like the components of an array.
 Example 19-12 is very
 similar to Example 19-11,
 AllHeaderClient. However, Example 19-12 adds the necessary
 code to handle the body of the message. If the message is a single-part
 message, it's simply printed on System.out. However, if the message has
 multiple parts, each part is handled separately. If the part has a
 multipart content type itself, processMultipart() is called recursively. If the part has no filename, does
 not have the disposition Part.ATTACHMENT, and has MIME type text/plain, it's assumed to be an inline
 message and is printed on System.out.
 Otherwise, it's assumed to be an attachment and is saved into an
 appropriate file. If necessary, the static File.createTempFile() method generates a
 reasonable name for the file.
Example 19-12. A mail client that handles multipart messages with attached
 files
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class AllPartsClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java AllPartsClient protocol://username@host:port/foldername");
 return;
 }
 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");

 // Print message headers
 Enumeration headers = messages[i].getAllHeaders();
 while (headers.hasMoreElements()) {
 Header h = (Header) headers.nextElement();
 System.out.println(h.getName() + ": " + h.getValue());
 }
 System.out.println();

 // Enumerate parts
 Object body = messages[i].getContent();
 if (body instanceof Multipart) {
 processMultipart((Multipart) body);
 }
 else { // ordinary message
 processPart(messages[i]);
 }

 System.out.println();

 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }

 public static void processMultipart(Multipart mp)
 throws MessagingException {

 for (int i = 0; i < mp.getCount(); i++) {
 processPart(mp.getBodyPart(i));
 }

 }

 public static void processPart(Part p) {

 try {
 String fileName = p.getFileName();
 String disposition = p.getDisposition();
 String contentType = p.getContentType();
 if (contentType.toLowerCase().startsWith("multipart/")) {
 processMultipart((Multipart) p.getContent());
 }
 else if (fileName == null
 && (Part.ATTACHMENT.equalsIgnoreCase(disposition)
 || !contentType.equalsIgnoreCase("text/plain"))) {
 // pick a random file name. This requires Java 1.2 or later.
 fileName = File.createTempFile("attachment", ".txt").getName();
 }
 if (fileName == null) { // likely inline
 p.writeTo(System.out);
 }
 else {
 File f = new File(fileName);
 // find a file that does not yet exist
 for (int i = 1; f.exists(); i++) {
 String newName = fileName + " " + i;
 f = new File(newName);
 }
 OutputStream out = new BufferedOutputStream(new FileOutputStream(f));

 // We can't just use p.writeTo() here because it doesn't
 // decode the attachment. Instead we copy the input stream
 // onto the output stream which does automatically decode
 // Base-64, quoted printable, and a variety of other formats.
 InputStream in = new BufferedInputStream(p.getInputStream());
 int b;
 while ((b = in.read()) != -1) out.write(b);
 out.flush();
 out.close();
 in.close();
 }
 }
 catch (Exception ex) {
 System.err.println(e);
 ex.printStackTrace();
 }
 }
}

You can also get a part from a multipart message by passing an
 OutputStream to the part's writeTo()
 method:
public abstract void writeTo(OutputStream out)
 throws IOException, MessagingException
However, this differs from the approach taken in Example 19-12 in that it does not
 decode the part before writing it. It leaves whatever Base64, BinHex, or
 quoted-printable encoding the sender applied to the attachment alone.
 Instead, it simply writes the raw data.
Attaching files (or other documents) to messages you send is more
 complicated. To attach a file to a message, you first have to wrap the
 data in a BodyPart object and add it
 to the Multipart using one of the two
 addBodyPart() methods:
public void addBodyPart(BodyPart part)
 throws IllegalWriteException, MessagingException
public void addBodyPart(BodyPart part, int index)
 throws IllegalWriteException, MessagingException
The first variant simply appends the part to the end of the
 message. The second variant adds the given part at the specified
 position. If the position is greater than the number of parts in the
 message, the part is simply added to the end. If it's added somewhere in
 the middle, this may cause the positions of other parts to change. If
 the message can't be changed, an IllegalWriteException is thrown.
The tricky part is creating the BodyPart object. You first need to guess a
 reasonable MIME content type for the file (text/plain and application/octet-stream are the most common
 types). Next, read the file and convert it into some class of Java
 object. Then install a javax.activation.DataHandler class that knows
 how to convert your data class according to your chosen MIME type. Once
 you've done all this, you can create a new MimeBodyPart object and use the various
 methods of the Part interface to set
 attributes such as the filename and the content disposition.
There are also two removeBodyPart() methods that delete a specified part from the message,
 although these aren't as commonly used:
public boolean removeBodyPart(BodyPart part)
 throws IllegalWriteException, MessagingException
public void removeBodyPart(int index)
 throws IndexOutOfBoundsException, MessagingException
If the message can't be changed, an IllegalWriteException is thrown. If the
 specified index doesn't identify a part, an IndexOutOfBoundsException is thrown. If the
 specified part isn't present in the message, a MessagingException is thrown.

MIME Messages

 MIME was designed mainly for Internet email and
 specifically organized to be backward-compatible with existing protocols
 and software. Therefore, a typical Internet email message is in fact a
 MIME message. The only concrete subclass of Message in the JavaMail API is javax.mail.internet.MimeMessage :
public class MimeMessage extends Message implements MimePart
This class declares almost 70 public and protected methods.
 However, with the natural exception of the constructors, almost all of
 these either override methods from the Message superclass or implement methods
 declared by the Part interface. The
 only new methods are a baker's dozen declared in the MimePart interface, a subinterface of Part:
 public interface MimePart extends Part
Most of these methods are very similar to methods in Part or Message. However, they have features that are
 unlikely to be found in non-MIME messages. For instance, a MIME part may
 have an MD5 digest, which would be encoded as an extra header inside the
 part. Thus, the MimePart interface
 declares and the MimeMessage class
 implements two methods to set and get this digest:
public String getContentMD5() throws MessagingException
public void setContentMD5(String md5) throws MessagingException,
 IllegalWriteException, IllegalStateException
The addHeaderLine() method adds a string of text to the header of the
 message. It's up to you to make sure that this string will actually make
 sense in the header:
public void addHeaderLine(String line) throws
 MessagingException, IllegalWriteException, IllegalStateException
The getHeader() method returns the value of every header in the message
 with the given name. If there are multiple headers with this name, the
 string separates the values of the different headers with the specified
 delimiter string:
public String getHeader(String name, String delimiter)
 throws MessagingException
The getAllHeaderLines()
 method returns a java.util.Enumeration containing every header
 in the message. The Enumeration
 contains String objects, one per
 header. Each String contains the full
 name and value; for example, "Subject: Re: Java 5 support". It is not
 divided into a separate name and value:
public Enumeration getAllHeaderLines() throws MessagingException
The getMatchingHeaderLines()
 method returns all header lines with names given in the
 names argument array. The getNonMatchingHeaderLines() method does the reverse; it returns the header lines with
 a name not mentioned in the names
 argument:
public Enumeration getMatchingHeaderLines(String[] names)
 throws MessagingException
public Enumeration getNonMatchingHeaderLines(String[] names)
 throws MessagingException
The getEncoding() method returns the encoding of this MIME part as a
 String as given by the
 Content-transfer-encoding: header. The typical encoding for a plain-text
 email is seven-bit or perhaps eight-bit or quoted-printable. The typical
 encoding for a file attachment is Base64:
public String getEncoding() throws MessagingException
The getContentID() method returns a string that uniquely identifies this
 part as given by the part's Content-ID: field. A typical ID might look
 like <Pine.LNX.4.
 10.9912290930220.8058@akbar.nevex.com>. It returns null if the part doesn't have a content
 ID:
public String getContentID() throws MessagingException
 IllegalWriteException, IllegalStateException
The getContentLanguage()
 method returns the value of the Content-language: header.
 This is a comma-separated list of two (or more) letter abbreviations for
 languages, as defined by RFC 1766. For example, English is "en" and
 French is "fr". It returns null if
 the part doesn't have a Content-language: header.
public String[] getContentLanguage() throws MessagingException
There's also a setContentLanguage() method that you might use when sending a message:
public void setContentLanguage(String[] languages) throws
 MessagingException, IllegalWriteException, IllegalStateException
Finally, the two setText()
 methods set the content of the part with the MIME type
 text/plain. The second setText() method also lets you specify the
 character set—for example, us-ascii or ISO 8859-1:
public void setText(String text) throws MessagingException
public void setText(String text, String charset)
 throws MessagingException

Folders

 So far, we've worked mostly with the INBOX folder. This is the default folder in which most
 mail resides until the user filters or saves it into some other folder.
 On some systems, it may actually reside in a file called INBOX. On other
 systems, it may be called something different. Nonetheless, you can
 always access it from the JavaMail API using the name INBOX.
Most mail programs allow you to organize your messages into
 different folders. These folders are hierarchical; that is, one
 folder may contain another folder. In particular, in the IMAP protocol,
 servers store the messages in different folders from which clients
 retrieve and manipulate the messages as necessary. POP servers, by
 contrast, generally send all the messages to the user when the user
 connects and rely on the client to store and manage them. The primary
 advantage of the IMAP approach over POP is that it allows users to
 easily access their entire email archives from multiple client
 machines.
The JavaMail API represents IMAP-like folders as instances of the
 abstract Folder class:
public abstract class Folder extends Object
This class declares methods for requesting named folders from
 servers, deleting messages from folders, searching for particular
 messages in folders, listing the messages in a folder, and so forth.
 Most of these methods are declared abstract. When you ask a session, a
 store, or a folder to give you one of the folders it contains, it will
 give you an instance of a concrete subclass appropriate for the protocol
 in use: IMAP, POP, mbox, or whatever. The reference implementation of
 the JavaMail API knows how to do these operations only for IMAP servers.
 However, some third-party implementations provide these operations in
 local mailbox folders stored on the client's filesystem as well.
Opening Folders

 You cannot create folders directly. The only constructor
 is protected:
protected Folder(Store store)
Instead, you get a Folder
 from a Session, a Store, or another Folder like this:
Folder outbox = container.getFolder("sent-mail");
There are actually three getFolder() methods, one each in the Session, Store, and Folder classes. They all have the same
 signature and behave similarly:
public abstract Folder getFolder(String name) throws MessagingException
These methods share an annoying idiosyncrasy with the File class. Getting a Folder object doesn't imply that the named
 Folder actually exists on the
 server. To tell whether the folder is really present, you have to test
 for it with the exists()
 method:
public boolean exists() throws MessagingException
When you first get a folder, it's closed. Before you can read
 the messages it contains, you have to open the folder using the
 open() method:
public abstract void open(int mode)
 throws FolderNotFoundException, MessagingException
The mode argument should be
 one of the two named constants Folder.READ_ONLY or Folder.READ_WRITE. Some but not all
 implementations allow you to open multiple read-only connections to
 one real folder using multiple Folder objects. However, all implementations
 allow at most one Folder object to
 have write access to a folder at one time.
Some operations discussed in this section, such as searching or
 retrieving messages from a folder, can only be performed on an open
 folder. Others, such as deleting or changing the name of a folder, can
 only be done to a closed folder. The isOpen() method returns true
 if the folder is open, false if
 it's closed:
public abstract boolean isOpen()
Generally, trying to do something with a closed folder that
 requires the folder to be open or vice versa will throw a java.lang.IllegalStateException. This is a
 runtime exception, so it doesn't need to be explicitly caught or
 declared.
When you're done with a folder, close it using the close() method:
public abstract void close(boolean expunge)
 throws FolderNotFoundException, MessagingException
If the expunge argument is
 true, any deleted messages in the
 folder are deleted from the actual file on the server. Otherwise,
 they're simply marked as deleted, but the message can still be
 undeleted.

Basic Folder Info

 The Folder class has eight methods that return basic information
 about a folder:
public abstract String getName()
public abstract String getFullName()
public URLName getURLName() throws MessagingException
public abstract Folder getParent() throws MessagingException
public abstract int getType() throws MessagingException
public int getMode() throws IllegalStateException
public Store getStore()
public abstract char getSeparator()
 throws FolderNotFoundException, MessagingException
The getName() method returns the name of the folder, such as "Reader
 Mail", whereas the getFullName()
 method returns the complete hierarchical name from the root, such as
 "books/JNP3E/Reader Mail". The getURLName(
) method includes the server; for instance,
 "imap://elharo@mail.metalab.unc.edu/books/JNP3E/Reader Mail". In this
 example, the slash character is the separator between nested folders.
 The separator can vary from implementation to implementation, but the
 getSeparator() method always tells you what it is.
The getParent() method returns the name of the folder that contains
 this folder; e.g., "JNP3E" for the previous Reader Mail
 example.
The getType() method returns an int indicating whether the folder can
 contain messages and/or other folders. If it can contain messages but
 not folders, getType() returns the
 named constant Folder.HOLDS_MESSAGES. If it can contain
 folders but not messages, getType(
) returns the named constant Folder.HOLDS_FOLDERS. If it can contain both
 folders and messages, getType()
 returns the bitwise union Folder.HOLDS_FOLDERS & Folder.HOLDS
 _MESSAGES.
The getMode() method tells you whether a folder allows writing. It
 returns one of the two named constants (Folder.READ_ONLY or Folder.READ_WRITE) or -1 if the mode is
 unknown. Finally, the getStore()
 method returns the Store object from which this folder was
 retrieved.

Managing Folders

 The create()
 method creates a new folder in this folder's Store:
public abstract boolean create(int type) throws MessagingException
The type of the folder should be one of the named constants
 Folder.HOLDS_MESSAGES or Folder.HOLDS_FOLDERS, depending on whether
 it will hold other folders or messages. It returns true if the creation succeeded, false if it didn't.
The delete() method deletes this folder, but only if the folder is
 closed. Otherwise, it throws an IllegalStateException:
public abstract boolean delete(boolean recurse) throws
 IllegalStateException, FolderNotFoundException, MessagingException
If there are messages in this folder, they are deleted along
 with the folder. If the folder contains subfolders, the subfolders are
 deleted if the recurse argument is
 true. If the recurse argument is not true, the folder will only be deleted if it
 does not contain any subfolders. If it does contain subfolders, the
 delete fails. If the folder does contain subfolders and also contains
 messages, it's implementation-dependent whether the messages will be
 deleted even though the folder itself isn't. If the delete succeeds,
 the method returns true; otherwise,
 it returns false.
The renameTo() method changes the name of this folder. A folder must
 be closed to be renamed. Otherwise, an IllegalStateException is thrown. This method
 returns true if the folder is
 successfully renamed, false if it
 isn't:
public abstract boolean renameTo(Folder f) throws
 IllegalStateException, FolderNotFoundException, MessagingException

Managing Messages in Folders

 On occasion, you may find a need to put a message in a
 folder. There's only one method to do this, appendMessages() :
public abstract void appendMessages(Message[] messages)
 throws FolderNotFoundException, MessagingException
As the name implies, the messages in the array are placed at the
 end of this folder.
The copyMessages() method copies messages into this folder from a
 specified folder given as an argument:
public void copyMessages(Message[] messages, Folder destination) throws
 IllegalStateException, FolderNotFoundException, MessagingException
The copied messages are appended to the destination folder. They
 are not removed from the source folder. To move a message, you have to
 copy it from the source to the destination, delete it from the source
 folder, and finally expunge the source folder.
To delete a message from a folder, set its Flags.Flag.DELETED flag to true. To physically remove deleted messages
 from a folder, you have to call its expunge(
) method:
public abstract Message[] expunge() throws MessagingException,
 IllegalStateException, FolderNotFoundException
After a message has been expunged, there may still be Message objects that refer to it. In this
 case, almost any method call on such an object, except isExpunged() and getMessageNumber(), will throw an
 exception.

Subscriptions

 Some implementations (though not the default IMAP
 implementation) allow you to subscribe to particular folders. This
 would be most appropriate for an NNTP provider, where a typical server
 offers thousands of newsgroups, but the typical user will want to
 retrieve messages from a few dozen of these, at most. Each newsgroup
 would be represented as a Folder
 object. A subscription to the newsgroup's Folder indicates that the user wants to
 retrieve messages from that newsgroup:
public boolean isSubscribed()
public void setSubscribed(boolean subscribe)
 throws FolderNotFoundException, MethodNotSupportedException,
 MessagingException
If a provider doesn't support subscription, setSubscribed() throws a MethodNotSupportedException and isSubscribed() returns false.

Listing the Contents of a Folder

 Folders are hierarchical. That is, a folder can contain
 other folders. There are four methods to list the folders that a
 folder contains:
public Folder[] list()
 throws FolderNotFoundException, MessagingException
public Folder[] listSubscribed()
 throws FolderNotFoundException, MessagingException
public abstract Folder[] list(String pattern)
 throws FolderNotFoundException, MessagingException
public Folder[] listSubscribed(String pattern)
 throws FolderNotFoundException, MessagingException
The first method returns an array listing the folders that this
 folder contains. The second method returns an array listing all the
 subscribed folders that this folder contains.
The third and fourth methods repeat these first two, except they
 allow you to specify a pattern. Only folders whose full names match
 the pattern will be in the returned array. The pattern is a string
 giving the name of the folders that match. However, the string can
 contain the % character, which is a wildcard that matches any sequence
 of characters not including the hierarchy separator, and *, which
 matches any sequence of characters including the hierarchy
 separator.

Checking for Mail

 The getMessageCount()
 method returns the number of messages in this
 folder:
public abstract int getMessageCount()
 throws FolderNotFoundException, MessagingException
This method can be invoked on an open or closed folder. However,
 in the case of a closed folder, this method may (or may not) return -1
 to indicate that the exact number of messages isn't easily
 available.
The hasNewMessages()
 method returns true
 if new messages have been added to the folder since it was last opened
 (not since the last time you checked!):
public abstract boolean hasNewMessages()
 throws FolderNotFoundException, MessagingException
The getNewMessageCount()
 method uses a slightly different approach for
 determining how many new messages there are. It checks the number of
 messages in the folder whose RECENT flag is set:
public int getNewMessageCount()
 throws FolderNotFoundException, MessagingException
Unlike hasNewMessages(),
 getNewMessageCount() can be
 invoked on either an open or a closed folder. However, in the case of
 a closed folder, getNewMessageCount(
) may return -1 to indicate that the real answer would be
 too expensive to obtain.
The getUnreadMessageCount()
 method is similar but returns the number of messages in
 the folder that do not have a SEEN flag set:
public int getUnreadMessageCount()
 throws FolderNotFoundException, MessagingException
Like getNewMessageCount(),
 getUnreadMessageCount() can be
 invoked on either an open or a closed folder. However, in the case of
 a closed folder, it may return -1 to indicate that the real answer
 would be too expensive to obtain.

Getting Messages from Folders

 The Folder class
 provides four methods for retrieving messages from open
 folders:
public abstract Message getMessage(int messageNumber) throws
 IndexOutOfBoundsException, FolderNotFoundException,
 IllegalStateException, MessagingException
public Message[] getMessages() throws FolderNotFoundException,
 IllegalStateException, MessagingException
public Message[] getMessages(int start, int end) throws
 IndexOutOfBoundsException, FolderNotFoundException,
 IllegalStateException, MessagingException
public Message[] getMessages(int[] messageNumbers) throws
 IndexOutOfBoundsException, FolderNotFoundException,
 IllegalStateException, MessagingException
The getMessage() method returns the n
 th message in the folder. The first message
 in the folder is number 1 (not 0). Message numbers may change when
 messages are expunged from the folder. An IndexOutOfBoundsException is thrown if you
 ask for message n and there are n -
 1 or fewer messages in the folder.
The first getMessages()
 method returns an array of Message objects representing all the
 messages in this folder. The second getMessages() method returns an array of
 Message objects from the folder,
 beginning with start and finishing
 with end, inclusive. The third
 getMessages() method returns an
 array containing only those messages specifically identified by number
 in the messageNumbers array.
All four of these methods only create the Message objects and fill in the minimal
 number of fields in those objects. The actual text and other content
 of the message will only be fetched from the server when the Message's methods that use those things are
 invoked. This means, for example, that you can't get all the messages
 from the server, then hang up your PPP connection and work with them
 offline. There is, however, a fetch(
) method, which fills in certain parts of the Message objects with actual data from the
 server:
public void fetch(Message[] messages, FetchProfile fp)
 throws IllegalStateException, MessagingException
The messages argument is an
 array containing the Message
 objects to be prefetched. The FetchProfile argument specifies which
 headers in the messages to prefetch. However, this is still just a
 suggestion. Implementations are free to ignore this request and fetch
 the message content only when it's actually needed.
You can request prefetching of individual headers such as
 Subject: by name. You can also request prefetching of three predefined
 blocks of information: the envelope (essentially the subject and
 addressees of the message), the flags of the message, or the content
 info of the messages. The three groups you can ask for are given as
 constant FetchProfile.Item objects.
 They are FetchProfile.Item.ENVELOPE, FetchProfile.Item.FLAGS, and FetchProfile.Item.CONTENT_INFO.
The FetchProfile class has a simple noargs constructor as well as
 methods for constructing a new profile, adding particular items and
 headers to the profile, and testing whether a particular item is part
 of a particular profile:
public FetchProfile()
public void add(FetchProfile.Item item)
public void add(String headerName)
public boolean contains(FetchProfile.Item item)
public boolean contains(String headerName)
public FetchProfile.Item[] getItems()
public String[] getHeaderNames()
For example, suppose you wanted to download just the subjects,
 the To: addresses, and the content information of a block of messages.
 Fetch them like this:
Message[] messages = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.CONTENT_INFO);
fp.add("Subject");
fp.add("To");

Searching Folders

 If the server supports searching (as many IMAP servers
 do and most POP servers don't), it's easy to search a folder for the
 messages meeting certain criteria. The criteria are encoded in
 SearchTerm objects:
public abstract class SearchTerm extends Object
The SearchTerm class is abstract, but the JavaMail API provides many
 subclasses for performing common searches:
public abstract class AddressTerm extends SearchTerm
public abstract class FlagTerm extends SearchTerm
public abstract class StringTerm extends SearchTerm
public final class FromTerm extends AddressTerm
public final class FromStringTerm extends AddressStringTerm
public final class ReceipientTerm extends AddressTerm
public final class AddressStringTerm extends StringTerm
public final class BodyTerm extends StringTerm
public final class HeaderTerm extends StringTerm
public final class MessageIDTerm extends StringTerm
public final class SubjectTerm extends StringTerm
public abstract class DateTerm extends ComparisonTerm
public final class ReceivedDateTerm extends DateTerm
public final class SentDateTerm extends DateTerm
It also provides several classes for combining searches:
public final class AndTerm extends SearchTerm
public abstract class ComparisonTerm extends SearchTerm
public final class NotTerm extends SearchTerm
public final class OrTerm extends SearchTerm
And of course, you can write your own subclasses that implement
 your own search logic. To implement a search, write a subclass and
 override the subclass's match()
 method to describe your search:
public abstract boolean match(Message message)
This method returns true if
 the message argument satisfies the
 search and false if it
 doesn't.
Set up a SearchTerm matching
 your desired parameters and pass it to one of these two search() methods in the Folder class:
public Message[] search(SearchTerm term) throws SearchException,
 FolderNotFoundException, IllegalStateException, MessagingException
public Message[] search(SearchTerm term, Message[] messages)
 throws SearchException, FolderNotFoundException,
 IllegalStateException, MessagingException
A SearchException indicates
 that the search term is more complicated than the implementation can
 handle. For example, this search term seeks out all messages from
 billg@microsoft.com:
Address billg = new InternetAddress("billg@microsoft.com");
SearchTerm term = new FromTerm(billg);
This search term looks for all messages from
 billg@microsoft.com after 2003:
Address billg = new InternetAddress("billg@microsoft.com");
SearchTerm term1 = new FromTerm(billg);
Date millennium = Calendar.getInstance().set(2004, 0, 1).getTime();
SearchTerm term2 = new SentDateTerm(ComparisonTerm.GE, millennium);
SearchTerm term = new AndTerm(term1, term2);
Example 19-13 is a
 simple variation of the MailClient
 program in Example 19-7. It
 allows the user to list email addresses on the command line after the
 initial URL, like this:
% java SearchClient imap://elharo@mail.metalab.unc.edu/INBOX
 willis@nvx.com billg@microsoft.com
Only messages from the specified users will be returned.
 However, if no email addresses are given, all messages will be
 returned.
Example 19-13. A mail client that searches by From: address
import javax.mail.*;
import javax.mail.search.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class SearchClient {
 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java SearchClient protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 SearchTerm term = null;
 if (args.length > 1) {
 SearchTerm[] terms = new SearchTerm[args.length-1];
 for (int i = 1; i < args.length; i++) {
 Address a = new InternetAddress(args[i]);
 terms[i-1] = new FromTerm(new InternetAddress(args[i]));
 }
 if (terms.length > 1) term = new OrTerm(terms);
 else term = terms[0];
 }

 // Get the messages from the server
 Message[] messages;
 if (term == null) {
 messages = folder.getMessages();
 }
 else {
 messages = folder.search(term);
 }
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");

 // Print message headers
 Enumeration headers = messages[i].getAllHeaders();
 while (headers.hasMoreElements()) {
 Header h = (Header) headers.nextElement();
 System.out.println(h.getName() + ": " + h.getValue());
 }
 System.out.println();

 // Enumerate parts
 Object body = messages[i].getContent();
 if (body instanceof Multipart) {
 processMultipart((Multipart) body);
 }
 else { // ordinary message
 processPart(messages[i]);
 }

 System.out.println();

 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }

 public static void processMultipart(Multipart mp)
 throws MessagingException {

 for (int i = 0; i < mp.getCount(); i++) {
 processPart(mp.getBodyPart(i));
 }

 }

 public static void processPart(Part p) {

 try {
 // I'd prefer to test the Content-Disposition header here.
 // However, too many common email clients don't use it.
 String fileName = p.getFileName();
 if (fileName == null) { // likely inline
 p.writeTo(System.out);
 }
 else if (fileName != null) {
 File f = new File(fileName);
 // find a version that does not yet exist
 for (int i = 1; f.exists(); i++) {
 String newName = fileName + " " + i;
 f = new File(newName);
 }
 FileOutputStream out = new FileOutputStream(f);

 // We can't just use p.writeTo() here because it doesn't
 // decode the attachment. Instead we copy the input stream
 // onto the output stream which does automatically decode
 // Base-64, quoted printable, and a variety of other formats.
 InputStream in = new BufferedInputStream(p.getInputStream());
 int b;
 while ((b = in.read()) != -1) out.write(b);
 out.flush();
 out.close();
 in.close();
 }
 }
 catch (Exception ex) {
 System.err.println(e);
 ex.printStackTrace();
 }
 }
}

Flags

 It's sometimes useful to be able to change the flags for
 an entire group of messages at once. The Folder class has two methods for doing
 this:
public void setFlags(Message[] messages, Flags flag, boolean value)
 throws IllegalStateException, MessagingException
public void setFlags(int start, int end, Flags flag, boolean value)
 throws IllegalStateException, MessagingException
public void setFlags(int[] messageNumbers, Flags flag, boolean value)
 throws IndexOutOfBoundsException, IllegalStateException,
 MessagingException
Ultimately, these are just conveniences. There's nothing you can
 do with these methods that you can't do by setting the flags on each
 message individually with the setFlags(
) method of the Message class. In fact, the default
 implementation simply invokes that method on each message in the
 specified block of messages.
The Folder class also has a
 getPermanentFlags() method to return the flags that this folder will supply
 for all messages. This includes all the flags except the user-defined
 flags, which are applied only to particular messages that the user has
 flagged. For instance, not all folder implementations track whether
 messages have been answered:
public abstract Flags getPermanentFlags()

Event Handling

 Many email programs can be configured to periodically
 check for incoming email in the background. One way to structure an
 email program is as a series of responses to unpredictable events.
 This is much like programming for a graphical user interface, and
 indeed the JavaMail API uses the same basic patterns to handle mail
 events that the AWT and Swing use to handle GUI events.
The JavaMail API defines six different kinds of mail events, all
 in the javax.mail.event package.
 They are all subclasses of MailEvent:
public abstract class MailEvent extends EventObject
The six concrete kinds of mail events, the first four of which
 involve folders, are:
	ConnectionEvent
	A Folder (or Store or Transport) has been opened, closed, or
 disconnected.

	FolderEvent
	A Folder has been
 created, deleted, or renamed.

	MessageChangedEvent
	The message's envelope or flags have changed.

	MessageCountEvent
	A message was added to or deleted from a Folder.

	StoreEvent
	A notification or alert from a Store.

	TransportEvent
	A notification from a Transport that a message was
 delivered, partially delivered, or failed to be
 delivered.

There are six listener interfaces corresponding to the six kinds
 of events:
public interface ConnectionListener extends EventListener
public interface FolderListener extends EventListener
public interface MessageChangedListener extends EventListener
public interface MessageCountListener extends EventListener
public interface StoreListener extends EventListener
public interface TransportListener extends EventListener
Each of these interfaces declares one or more methods that must
 be provided by implementing classes. For example, the ConnectionListener class declares these
 three methods:
public void opened(ConnectionEvent e)
public void disconnected(ConnectionEvent e)
public void closed(ConnectionEvent e)
The FolderListener interface
 declares these three methods:
public void folderCreated(FolderEvent e)
public void folderDeleted(FolderEvent e)
public void folderRenamed(FolderEvent e)
Four of these events can be fired by folders. Consequently,
 there are 14 add
 XXX Listener(), remove XXX
 Listener(), and notify XXX
 Listener() methods in the Folder class:
public void addConnectionListener(ConnectionListener l)
public void removeConnectionListener(ConnectionListener l)
protected void notifyConnectionListeners(int type)
public void addFolderListener(FolderListener l)
public void removeFolderListener(FolderListener l)
protected void notifyFolderListeners(int type)
protected void notifyFolderRenamedListeners(Folder folder)
public void addMessageCountListener(MessageCountListener l)
public void removeMessageCountListener(MessageCountListener l)
protected void notifyMessageAddedListeners(Message[] messages)
protected void notifyMessageRemovedListeners(boolean removed,
 Message[] messages)
public void addMessageChangedListener(MessageChangedListener l)
public void removeMessageChangedListener(MessageChangedListener l)
protected void notifyMessageChangedListeners(int type, Message message)
The add
 XXX Listener() methods add an implementation of
 the particular interface to the list of listeners. The remove XXX
 Listener() methods remove an
 implementation from that list. The notify XXX
 Listener() methods are not used
 directly; instead, they're used by instances of Folder and its subclasses to notify
 registered listeners of particular events. All of this works exactly
 as it does in the AWT and Swing, just with different events.

Utility Methods

 Finally, for completeness's sake, I'll note that the
 Folder class overrides two methods
 from java.lang.Object, finalize() and toString():
protected void finalize() throws Throwable
public String toString()
Neither of these is especially important to the client
 programmer.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	32-bit unsigned integer types, conversion for Java
 use, public InputStream getInputStream() throws
 IOException
	== (equals), HTML.Tag
	| (vertical bar), What Is a Protocol Handler?, What Is a Content Handler?

A
	absolute methods, Filling and Draining
	absolute URIs, The Parts of the URI
	accept() method, public Socket accept() throws IOException, public Socket accept() throws IOException, SO_TIMEOUT, An Example Server, ServerSocketChannel, Accepting connections
		ServerSocket class, public Socket accept() throws IOException, public Socket accept() throws IOException, SO_TIMEOUT
	ServerSocketChannel class, An Example Server, ServerSocketChannel, Accepting connections

	Activatable class, The Server Side
	addBodyPart() methods (Multipart class), Multipart Messages and File Attachments
	addFrom() method (Message class), The From address
	addHeader() method (Part interface), Headers
	addHeaderLine() method (MimePart interface), MIME Messages
	addRequestProperty() method (URLConnection
 class), Configuring the Client Request HTTP Header
	address types, Address Types
	addresses, Networks, Addresses, The NewsAddress Class, The Address Class
		Address class, The Address Class

	agents, Searching the Web
	all-routers.mcast.net, Routers and Routing
	allocate methods (Buffer classes), Creating Buffers
	allocate() method (ByteBuffer class), Allocation
	allocateDirect() method (ByteBuffer class), Direct allocation
	anonymous ports, public ServerSocket(int port) throws BindException,
 IOException
	appendMessages() method (Folder class), Managing Messages in Folders
	Apple Macintosh support of Java, Java Versions
	Applet .class files, storage of, JarURLConnection
	applets and security, Security, Security
	application layer, The Application Layer
	ARIN (American Registry for Internet Numbers), Networks
	asymmetric encryption, Secure Communications
	attachment() method (SelectionKey class), The SelectionKey Class
	Attribute class' predefined attributes, Attributes
	attributes, Attributes, Attributes
	AttributeSet interface, Attributes
	authentication, Accessing Password-Protected Sites, The Authenticator Class, Secure Communications, Password Authentication, Password Authentication, Password Authentication
		asymmetric encryption, using for, Secure Communications
	HTTP authentication, URL class, Accessing Password-Protected Sites
	JavaMail API and JPasswordField from Swing, Password Authentication, Password Authentication
	JavaMail API and passwords, Password Authentication
	schemes, The Authenticator Class

	Authenticator class, The Authenticator Class, The Authenticator Class, The Authenticator Class, The Authenticator Class
		inherited methods, The Authenticator Class
	requestPasswordAuthentication() method, The Authenticator Class
	setDefault() method, The Authenticator Class

	Authenticator class (javax.mail.Authenticator), Password Authentication
	Authenticator subclass (Swing), Password Authentication
	authority, public String getAuthority() // Java 1.3
	available() method (InputStream class), Input Streams

B
	Bcc: header information, The recipient addresses
	bind() methods, public static void bind(String url, Remote object) throws
 RemoteException, AlreadyBoundException, MalformedURLException,
 AccessException, The Registry Interface
		Naming class, public static void bind(String url, Remote object) throws
 RemoteException, AlreadyBoundException, MalformedURLException,
 AccessException
	Registry interface, The Registry Interface

	BindException (SocketException class), Socket Exceptions
	blocking I/O, client example, An Example Client, An Example Client
	breaksFlow() method (HTML.Tag class), HTML.Tag
	broadcasting, What Is a Multicast Socket?
	browsers, advantages of Java versions, What Is a Protocol Handler?
	Buffer classes, Buffers, Buffers, Creating Buffers, Filling and Draining, Object Methods
		absolute methods, Filling and Draining
	methods, Buffers
	object methods, Object Methods
	subclasses, polymorphism of, Creating Buffers

	BufferedInputStream class, Buffered Streams
	BufferedOutputStream class, Buffered Streams
	BufferedReader and BufferedWriter classes, Buffered readers and writers, Buffered readers and writers
	buffers, Buffered Streams, Buffered Streams, Non-Blocking I/O, An Example Client, An Example Client, Buffers, Object Methods, Buffers, Buffers, Creating Buffers, Allocation, Direct allocation, Wrapping, Filling and Draining, Bulk Methods, Data Conversion, View Buffers, Compacting Buffers, Compacting Buffers, Duplicating Buffers, Slicing Buffers, Marking and Resetting
		allocation, Allocation
	buffered streams, Buffered Streams, Buffered Streams
	buffering and data transmission, Non-Blocking I/O
	bulk methods, Bulk Methods
	clearing, An Example Client
	compacting, Compacting Buffers
	creating, Creating Buffers
	data conversion, Data Conversion
	direct allocation, Direct allocation
	duplicating, Duplicating Buffers
	filling and draining, Filling and Draining
	flipping, An Example Client
	marking and resetting, Marking and Resetting
	network programs and, Buffers
	position, capacity, limit, and mark, Buffers
	slicing, Slicing Buffers
	testing code with small buffers, Compacting Buffers
	view buffers, View Buffers
	wrapping, Wrapping

	ByteBuffer class, An Example Server, Bulk Methods, View Buffers
		methods for creating view buffers, View Buffers
	put() and get() methods, Bulk Methods

C
	CacheRequest subclass, Caches
	CacheResponse subclass, Caches
	caching, Proxy Servers, Caches
	CallbackDigest class example, Callbacks
	CallbackDigestUserInterface class example, Callbacks, Callbacks
	callbacks, Callbacks, Callbacks
		vs polling, Callbacks

	cancel() method (SelectionKey class), The SelectionKey Class
	capacity() method (Buffer classes), Buffers
	case-sensitivity, Conventions Used in This Book
	Cc: header information, The recipient addresses
	certification authorities, Secure Communications
	channel classes, Channels
	channels, An Example Client, An Example Server, An Example Client, An Example Client, An Example Client, An Example Server, Buffers, Channels, The SelectionKey Class, Connecting, Reading, Writing, Closing, ServerSocketChannel, Accepting connections, The Channels Class, The Selector Class, The SelectionKey Class, Writing
		Channels class, The Channels Class
	Channels utility class, An Example Client
	closing, Closing
	connecting, Connecting
	creating, An Example Client
	input and output to, An Example Client
	reading, Reading
	SelectionKey class, The SelectionKey Class
	Selector class, The Selector Class
	server channels, registration, An Example Server
	ServerSocketChannel class, ServerSocketChannel, Accepting connections
	streams, compared to, Buffers
	TCP channels versus datagram channels, Writing
	writing, Writing

	Channels class, The Channels Class
	character encoding, Readers and Writers, public final InputStream openStream() throws
 IOException, The URLEncoder and URLDecoder Classes
		detection and declaration, problems with, public final InputStream openStream() throws
 IOException
	in URLs, The URLEncoder and URLDecoder Classes
	reading and writing streams and, Readers and Writers

	character generator protocol (RFC 864), An Example Client, An Example Client, An Example Client, An Example Client
		ByteBuffer objects, An Example Client
	non-blocking mode, An Example Client

	chargen program, An Example Client, An Example Client
	chargen protocol handler, A chargen Protocol Handler
	chargen server, An Example Server
	CIDR (Classless Inter-Domain Routing), Internet Address Classes
	cipher keys, Encrypting Streams
	cipher suites, Choosing the Cipher Suites, Choosing the Cipher Suites
	CipherInputStream and CipherOutputStream
 classes, Encrypting Streams, Encrypting Streams
	classes of service, Class of Service
	classes, reuse and permissions, Conventions Used in This Book
	clear() method (Buffer classes), Buffers
	client request HTTP header configuration, Configuring the Client Request HTTP Header
	client sockets, Sockets for Clients, Whois, Socket Basics, Getting Information About a Socket, public OutputStream getOutputStream() throws
 IOException, Getting Information About a Socket, Closing the Socket, Half-closed sockets // Java 1.3, public void close() throws IOException, Half-closed sockets // Java 1.3, Setting Socket Options, SO_REUSEADDR // Java 1.4, TCP_NODELAY, SO_LINGER, SO_TIMEOUT, SO_RCVBUF, SO_SNDBUF, SO_KEEPALIVE, OOBINLINE // Java 1.4, SO_REUSEADDR // Java 1.4, SO_REUSEADDR // Java 1.4, Socket Exceptions, Socket Exceptions, Socket Addresses, Examples, Whois, Finger, Whois, Whois, Whois, Creating Secure Client Sockets
		acquiring information about, Getting Information About a Socket, public OutputStream getOutputStream() throws
 IOException, Getting Information About a Socket
		SocketImpl field, Getting Information About a Socket

	closing, Closing the Socket, Half-closed sockets // Java 1.3, public void close() throws IOException
		ÒfinallyÓ block, public void close() throws IOException

	connections, opening and closing, Socket Basics
	examples, Examples, Whois, Finger, Whois, Whois
		Finger, Finger
	Whois, Whois, Whois

	exceptions, Socket Exceptions
	half-closed sockets, Half-closed sockets // Java 1.3
	local address release, management of, SO_REUSEADDR // Java 1.4
	secure sockets, creating, Creating Secure Client Sockets (see secure sockets, client sockets)
	setting options for, Setting Socket Options, SO_REUSEADDR // Java 1.4, TCP_NODELAY, SO_LINGER, SO_TIMEOUT, SO_RCVBUF, SO_SNDBUF, SO_KEEPALIVE, OOBINLINE // Java 1.4, SO_REUSEADDR // Java 1.4
		OOBINLINE, OOBINLINE // Java 1.4
	SO_KEEPALIVE, SO_KEEPALIVE
	SO_LINGER, SO_LINGER
	SO_RCVBUF, SO_RCVBUF
	SO_REUSEADDR, SO_REUSEADDR // Java 1.4
	SO_SNDBUF, SO_SNDBUF
	SO_TIMEOUT, SO_TIMEOUT
	TCP_NODELAY, TCP_NODELAY

	Socket class, Whois (see Socket class)
	SocketAddress class, Socket Addresses
	SocketException class, Socket Exceptions

	client/server model, The Client/Server Model, The Client/Server Model
	clients, Client Tester, Client Tester, Client Tester, Client Tester, Client Tester, Client Tester, An Example Client, An Example Client
		client tester, Client Tester, Client Tester, Client Tester, Client Tester, Client Tester
		ClientTester class, Client Tester
	InputThread class, Client Tester
	OutputThread class, Client Tester

	non-blocking I/O APIs, An Example Client, An Example Client
	sensitivity to server responses, Client Tester

	clone() method (RemoteObject class), The RemoteObject Class
	close() methods, public void close() throws IOException, Accepting and Closing Connections, public void close() throws IOException, Closing, ServerSocketChannel, public void close(), Closing, Opening Folders
		DatagramChannel class, Closing
	DatagramSocket class, public void close()
	Folder class, Opening Folders
	ServerSocket class, Accepting and Closing Connections, public void close() throws IOException
	ServerSocketChannel class, ServerSocketChannel
	Socket class, public void close() throws IOException
	SocketChannel class, Closing

	code examples, Conventions Used in This Book
		permissions, Conventions Used in This Book

	code testing, small buffers and, Compacting Buffers
	common log file format, Processing Web Server Log Files
	compact() method (Buffer classes), Compacting Buffers
	compareTo() methods, public int compareTo(Object o), Object Methods
		Buffer classes, Object Methods
	URI class, public int compareTo(Object o)

	compressing streams, Compressing Streams, Compressing Streams
		included classes, Compressing Streams

	connect() methods, Connecting, public void connect(InetAddress host, int port) // Java
 1.2, Connecting, Opening URLConnections
		DatagramChannel class, Connecting
	DatagramSocket class, public void connect(InetAddress host, int port) // Java
 1.2
	SocketChannel class, Connecting
	URLConnection class, Opening URLConnections

	ConnectException (SocketException class), Socket Exceptions
	connection trees, What Is a Multicast Socket?
	content handlers, Content Handlers, Content Handlers, What Is a Content Handler?, What Is a Content Handler?, What Is a Content Handler?, What Is a Content Handler?, What Is a Content Handler?, What Is a Content Handler?, What Is a Content Handler?, A Content Handler for Tab-Separated Values, A Content Handler for Tab-Separated Values, A Content Handler for Tab-Separated Values, A Content Handler for Tab-Separated Values, Using Content Handlers, Using Content Handlers, Choosing Return Types, Choosing Return Types, Choosing Return Types, Choosing Return Types, The createContentHandler() Method, Installing Content Handler Factories, Installing Content Handler Factories, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format
		classes specialized for MIME types, What Is a Content Handler?
	code examples, A Content Handler for Tab-Separated Values, Using Content Handlers, Choosing Return Types, Choosing Return Types, Choosing Return Types, Choosing Return Types, The createContentHandler() Method, Installing Content Handler Factories, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format
		content handler for text/tab-separated values, A Content Handler for Tab-Separated Values
	FITS ContentHandlerFactory, A Content Handler for the FITS Image Format
	FITS viewer, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format
	tab-separated values ContentTester class, Using Content Handlers
	TabFactory, The createContentHandler() Method
	TabLoader using a ContentHandlerFactory, Installing Content Handler Factories
	time-content handler, Choosing Return Types
	URLConnection for time protocol handler, Choosing Return Types
	URLStreamHandler for time protocol handler, Choosing Return Types
	URLTimeClient, Choosing Return Types
	x-fits content handler, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format

	content handler factories, installing, Installing Content Handler Factories
	explanation, What Is a Content Handler?, What Is a Content Handler?
	FITS files, description, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format
		keywords, A Content Handler for the FITS Image Format

	FITS image format, for, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format
	history, Content Handlers
	MIME types and, What Is a Content Handler?
	private utility methods, A Content Handler for Tab-Separated Values
	protocol handlers and, What Is a Content Handler?
	SAX2 API, What Is a Content Handler?
	sequence of events, What Is a Content Handler?
	tab-separated values, handler for, A Content Handler for Tab-Separated Values, A Content Handler for Tab-Separated Values
	using, Using Content Handlers

	content-types.properties file, Guessing MIME Content Types
	ContentHandler class, Content Handlers, The ContentHandler Class, Choosing Return Types, The ContentHandler Class, A Content Handler for Tab-Separated Values, Choosing Return Types, Choosing Return Types
		constructor, The ContentHandler Class
	matching objects to data, A Content Handler for Tab-Separated Values
	return types, choosing, Choosing Return Types, Choosing Return Types

	ContentHandlerFactory interface, ContentHandlerFactory, The ContentHandlerFactory Interface
	CookieHandler class, Cookies, Cookies, Cookies
	cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Cookies, Configuring the Client Request HTTP Header
		$Version attribute, Cookies
	Cookie class, Cookies, Cookies
		matches() method, Cookies

	CookieHandler class, Cookies
	expiration, Cookies
	HTTP headers and, Cookies
	Path attribute, Cookies
	requests with multiple cookies, Cookies
	RFC 2965, Cookies
	security aspects of, Cookies
	server domains and, Cookies
	server-side use of, Cookies
	Set-Cookie field, Cookies
	Set-Cookie2 HTTP header, Cookies
	Version attribute, Cookies

	copyMessages() method (Folder class), Managing Messages in Folders
	CORBA (Common Object Request Broker), Object Serialization
	create() method (Folder class), Managing Folders
	createContentHandler() method
 (ContentHandlerFactory), What Is a Content Handler?, The createContentHandler() Method
	createRegistry() methods (LocateRegistry
 class), The LocateRegistry Class
	createSocket() method (SSLSocketFactory class), Creating Secure Client Sockets
	createURLStreamHandler() (URLStreamFactory
 interface), The URLStreamHandlerFactory Interface
	Crypt Cabal's Cryptography FAQ, Secure Communications

D
	data cubes, A Content Handler for the FITS Image Format
	data streams, Data Streams, Data Streams
	data types, Data Conversion
	DatagramChannel class, DatagramChannel, Closing, Opening a socket, Connecting, Receiving, Sending, Reading, Writing, Closing
		closing channels, Closing
	connecting, Connecting
	opening a socket, Opening a socket
	read methods, Reading
	receiving, Receiving
	sending, Sending
	write() methods, Writing

	DatagramPacket class, The UDP Protocol, The DatagramPacket Class, public void setLength(int length), The Constructors, Constructors for receiving datagrams, Constructors for sending datagrams, The get Methods, The set Methods, public void setLength(int length)
		constructors, The Constructors, Constructors for receiving datagrams, Constructors for sending datagrams
		receiving datagrams, Constructors for receiving datagrams
	sending datagrams, Constructors for sending datagrams

	get methods, The get Methods
	set methods, The set Methods, public void setLength(int length)

	datagrams, The Internet Layer, Sockets for Clients, The UDP Protocol, The DatagramPacket Class, The DatagramPacket Class, Constructors for sending datagrams, Writing, What Is a Multicast Socket?
		datagram channels versus TCP channels, Writing
	DatagramPacket class and, The DatagramPacket Class
	packet size, The DatagramPacket Class
	size, choosing, Constructors for sending datagrams
	TTL (Time-To-Live) header value, What Is a Multicast Socket?

	DatagramSocket class, The UDP Protocol, The DatagramSocket Class, Traffic class, The Constructors, protected DatagramSocket(DatagramSocketImpl impl) throws
 SocketException // Java 1.4, Sending and Receiving Datagrams, public SocketAddress getLocalSocketAddress() // Java
 1.4, Managing Connections, Traffic class, Socket Options, Traffic class
		connections, managing, Managing Connections, Traffic class
	constructors, The Constructors, protected DatagramSocket(DatagramSocketImpl impl) throws
 SocketException // Java 1.4
	sending and receiving datagrams, Sending and Receiving Datagrams, public SocketAddress getLocalSocketAddress() // Java
 1.4
	socket options, Socket Options, Traffic class

	DataInputStream class, Data Streams, Data Streams
		readLine() method, problems with, Data Streams

	DataOutputStream class, Data Streams
	date: header information, The date of the message
	daytime protocol handler, A daytime Protocol Handler, A daytime Protocol Handler
	DaytimeClient, public InputStream getInputStream() throws
 IOException
	deadlock, Deadlock
	DeflaterOutputStream class, Compressing Streams
	delete() method (Folder class), Managing Folders
	DES/AES and RC4-based ciphers, comparison, Choosing the Cipher Suites
	digest streams, Digest Streams
	digest() method (DigestOuptputStream class), Digest Streams
	disconnect() method (DatagramChannel class), Connecting
	disconnect() method (DatagramSocket class), public void disconnect() // Java 1.2
	DNS (Domain Name System), IP Addresses and Domain Names, Looking Up Internet Addresses, The UDP Protocol
	domain name servers, Looking Up Internet Addresses
	dotted quad format, IP Addresses and Domain Names, Looking Up Internet Addresses
	draft standards, IETF RFCs
	duplicate() method (Buffer classes), Duplicating Buffers

E
	echo client, UDP implementation, A UDP Echo Client, A UDP Echo Client
	EchoClient, public OutputStream getOutputStream() throws
 IOException
	elements, HTML, SGML, and XML
	email applications, The JavaMail API, The JavaMail API, What Is the JavaMail API?, Sending Email, Sending Email from an Applet, Sending Email from an Application, Sending Email from an Applet, Sending Email from an Applet, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Attributes
		(see also JavaMail API)
	attachments, Attributes
	mail providers and protocols, What Is the JavaMail API?
	receiving, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail, Receiving Mail
		IMAP protocol, Receiving Mail, Receiving Mail
	POP protocol, Receiving Mail, Receiving Mail
	protocols, comparison, Receiving Mail
	remote mailboxes, reading, Receiving Mail

	sending, Sending Email, Sending Email from an Applet, Sending Email from an Application, Sending Email from an Applet, Sending Email from an Applet
		from applets, Sending Email from an Applet, Sending Email from an Applet
	from applications, Sending Email from an Application

	encode() method (URLEncoder class), URLEncoder, URLEncoder
		Java 1.3 versus Java 1.4 versions, URLEncoder

	encoding of characters in URLs, The URLEncoder and URLDecoder Classes
	encrypting streams, Encrypting Streams, Encrypting Streams
	encryption, Creating Secure Client Sockets
		system overhead required by, Creating Secure Client Sockets

	encryption software, Secure Sockets, Secure Sockets
		(see also JSSE)

	equals() methods, public boolean equals(Object o), public boolean equals(Object o), Object Methods, public boolean equals(Object o), public boolean equals(Object o), Object Methods, protected boolean equals(URL u1, URL u2) // Java 1.3, The RemoteObject Class, The Address Class
		Address class, The Address Class
	Buffer classes, Object Methods
	InetAddress class, public boolean equals(Object o), public boolean equals(Object o)
	NetworkInterface class, Object Methods
	RemoteObject class, The RemoteObject Class
	URI class, public boolean equals(Object o)
	URL class, public boolean equals(Object o)
	URLStreamHandler class, protected boolean equals(URL u1, URL u2) // Java 1.3

	exists() method (Folder class), Opening Folders
	exportObject() methods (UnicastRemoteObject
 class), The Server Side
	Extensible Markup Language, HTML, SGML, and XML (see XML)

F
	fetch() method (Folder class), Getting Messages from Folders
	FetchProfile class, Getting Messages from Folders
	fields, A Content Handler for Tab-Separated Values
	filter streams, Streams, Filter Streams, Chaining Filters Together, Filter Streams, Filter Streams, Chaining Filters Together
		chaining, Filter Streams, Chaining Filters Together
	methods, Filter Streams

	finger clients, Finger, Finger, Finger, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler
		filtering of non-printable characters, Finger
	FingerClient, Finger
	FingerURLConnection class, Writing a Protocol Handler, Writing a Protocol Handler
	writing a protocol handler for, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler
		HotJava, testing with, Writing a Protocol Handler

	finishConnect() method (SocketChannel class), Connecting
	FITS (Flexible Image Transport System) files, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format, A Content Handler for the FITS Image Format
		keywords, A Content Handler for the FITS Image Format

	Flags class, Flags
	flip() method (Buffer classes), Buffers
	flush() method, Output Streams
	flushing streams, Output Streams, Output Streams, Output Streams
		importance of, Output Streams

	Folder class, Folders, Basic Folder Info
		information returning methods, Basic Folder Info

	folders, Folders, Folders, Utility Methods, Folders, Opening Folders, Basic Folder Info, Managing Folders, Managing Messages in Folders, Subscriptions, Listing the Contents of a Folder, Checking for Mail, Getting Messages from Folders, Searching Folders, Flags, Event Handling, Utility Methods
		checking for mail, Checking for Mail
	contents, listing, Listing the Contents of a Folder
	event handling, Event Handling
	flags, Flags
	folder information, Basic Folder Info
	getting messages, Getting Messages from Folders
	IMAP versus POP protocol organization, Folders
	managing, Managing Folders
	managing messages, Managing Messages in Folders
	opening, Opening Folders
	searching, Searching Folders
	subscriptions, Subscriptions
	utility methods, Utility Methods

	fragments, URLs
	From: header information, The From address
	full-duplex connections, Socket Basics

G
	gathers, Writing
	generateCharacters() method, Output Streams, Output Streams
	GET methods, Server-Side Programs, Server-Side Programs, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET
		URL class, Server-Side Programs, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET
		CGI and, Server-Side Programs
	server-side input processing, Communicating with Server-Side Programs Through GET

	get() methods, Cookies, Bulk Methods
		ByteBuffer class, Bulk Methods
	CookieHandler class, Cookies

	getAddress() method, public byte[] getAddress(), public byte[] getAddress(), public InetAddress getAddress()
		DatagramPacket class, public InetAddress getAddress()
	InetAddress class, public byte[] getAddress()

	getAllByName() method, public static InetAddress[] getAllByName(String hostName)
 throws UnknownHostException
	getAllHeaderLines() method (MimePart interface), MIME Messages
	getAllHeaders() method (Part interface), Headers
	getAllowUserInteraction() method, protected boolean allowUserInteraction
	getAuthority() method (URL class), public String getAuthority() // Java 1.3
	getByAddress() method, public static InetAddress getByAddress(byte[] address)
 throws UnknownHostException // Java 1.4public static InetAddress
 getByAddress(String hostName, byte[] address) throws
 UnknownHostException // Java 1.4
	getByInetAddress() method (NetworkInterface
 class), public static NetworkInterface getByInetAddress(InetAddress
 address) throws SocketException
	getByName() method, public static InetAddress getByName(String hostName) throws
 UnknownHostException, public static InetAddress getByName(String hostName) throws
 UnknownHostException
	getByName() method (NetworkInterface class), public static NetworkInterface getByName(String name) throws
 SocketException
	getCertificates() method (JarURLConnection
 class), JarURLConnection
	getClientHost() method (RemoteServer class), Getting information about the client
	getCodeBase() method (Applet class), Constructing relative URLs, Other sources of URL objects
	getConnectTimeout() method (URLConnection
 class), Timeouts
	getContent() methods, public final Object getContent() throws IOException, public final Object getContent(Class[] classes) throws
 IOException // Java 1.3, Getting Content, What Is a Content Handler?, The ContentHandler Class, Choosing Return Types, Reading the contents of the part
		ContentHandler class, What Is a Content Handler?, The ContentHandler Class, Choosing Return Types
		overloaded variant, Choosing Return Types

	Part interface, Reading the contents of the part
	URL class, public final Object getContent() throws IOException, public final Object getContent(Class[] classes) throws
 IOException // Java 1.3
		overloaded variant, public final Object getContent(Class[] classes) throws
 IOException // Java 1.3

	URLConnection class, Getting Content

	getContentEncoding() method (URLConnection
 class), public String getContentEncoding()
	getContentID() method (MimePart interface), MIME Messages
	getContentLanguage() method (MimePart interface), MIME Messages
	getContentLength() method (URLConnection
 class), public int getContentLength()
	getContentType() methods, public String getContentType(), Writing a Protocol Handler, Reading the contents of the part, Multipart Messages and File Attachments
		Multipart class, Multipart Messages and File Attachments
	Part interface, Reading the contents of the part
	URLConnection class, public String getContentType(), Writing a Protocol Handler
		finger protocol, using in, Writing a Protocol Handler

	getCount() method (Multipart class), Multipart Messages and File Attachments
	getData() method (DatagramPacket class), public byte[] getData()
	getDataHandler() method (Part interface), Reading the contents of the part
	getDate() method (URLConnection class), public long getDate()
	getDefault() method (SSLSocketFactory class), Creating Secure Client Sockets
	getDefaultAllowUserInteraction() method (URLConnection
 class, protected boolean allowUserInteraction
	getDefaultPort() methods, public int getDefaultPort(), protected int getDefaultPort() // Java 1.3
		URL class, public int getDefaultPort()
	URLStreamHandler class, protected int getDefaultPort() // Java 1.3

	getDisposition() method (Part interface), Attributes
	getDocumentBase() method (Applet class), Constructing relative URLs, Other sources of URL objects
	getDoInput() method, protected boolean doInput
	getDoOutput() method, protected boolean doOutput
	getEnabledCipherSuites() methods, Choosing the Cipher Suites, Choosing the Cipher Suites
		SSLServerSocket class, Choosing the Cipher Suites
	SSLSocket class, Choosing the Cipher Suites

	getEnableSessionCreation() methods, Session Management, Session Management
		SSLServerSocket class, Session Management
	SSLSocket class, Session Management

	getEncoding() method (MimePart interface), MIME Messages
	getEventType() method (HyperlinkListener
 class), Handling Hyperlinks
	getExpiration() method (URLConnection class), public long getExpiration()
	getFibonacci() method (FibonacciImpl class), The Server Side
	getFile() method (URL class), public String getFile()
	getFlags() method (Flags class), Flags
	getFolder() methods, Folders, Opening Folders
		Folder class, Opening Folders
	Message class, Folders

	getFrom() method (Message class), The From address
	getHeader() methods, Headers, MIME Messages
		MimePart interface, MIME Messages
	Part interface, Headers

	getHeaderField() method (URLConnection
 class), public String getHeaderField(String name)
	getHost() method (URL class), public String getHost()
	getHostAddress() method, public String getHostAddress()
	getHostAddress() methods, public String getHostAddress(), protected InetAddress getHostAddress(URL u) // Java
 1.3
		InetAddress class, public String getHostAddress()
	URLStreamHandler class, protected InetAddress getHostAddress(URL u) // Java
 1.3

	getHostName() method, public String getHostName()
	getHostName() method (InetAddress class), public String getHostName()
	getInetAddress() methods, public InetAddress getInetAddress(), public InetAddress getInetAddress(), public InetAddress getInetAddress() // Java 1.2
		DatagramSocket class, public InetAddress getInetAddress() // Java 1.2
	ServerSocket class, public InetAddress getInetAddress()
	Socket class, public InetAddress getInetAddress()

	getInputStream() methods, public InputStream getInputStream() throws
 IOException, Reading Data from a Server, JarURLConnection, Reading the contents of the part
		Part interface, Reading the contents of the part
	Socket class, public InputStream getInputStream() throws
 IOException
	URLConnection class, Reading Data from a Server, JarURLConnection
		JAR archives, accessing with, JarURLConnection

	getInterface() method (MulticastSocket
 class), public InetAddress getInterface() throws
 SocketException
	getJarEntry() method (JarURLConnection class), JarURLConnection
	getJarFile() method (JarURLConnection class), JarURLConnection
	getJarFileURL() method (JarURLConnection class), JarURLConnection
	getKeepAlive() method (Socket class), SO_KEEPALIVE
	getLastModified() method (URLConnection
 class), public long getLastModified()
	getLength() method (DatagramPacket class), public int getLength()
	getLineCount() method (Part interface), Attributes
	getLocalAddress() methods, public InetAddress getLocalAddress(), public InetAddress getLocalAddress()
		DatagramSocket class, public InetAddress getLocalAddress()
	Socket class, public InetAddress getLocalAddress()

	getLocalHost() method, public static InetAddress getLocalHost() throws
 UnknownHostException
	getLocalPort() methods, public int getLocalPort(), public int getLocalPort(), public int getLocalPort()
		DatagramSocket class, public int getLocalPort()
	ServerSocket class, public int getLocalPort()
	Socket class, public int getLocalPort()

	getLocalSocketAddress() methods, Socket Addresses, public SocketAddress getLocalSocketAddress() // Java
 1.4
		DatagramSocket class, public SocketAddress getLocalSocketAddress() // Java
 1.4
	Socket class, Socket Addresses

	getLoopbackMode() method (MulticastSocket
 class), public boolean getLoopbackMode() throws SocketException //
 Java 1.4
	getManifest() method (JarURLConnection class), JarURLConnection
	getMatchingHeaderLines() method (MimePart
 interface), MIME Messages
	getMatchingHeaders() method (Part interface), Headers
	getMessage() method (Folder class), Getting messages from folders, Getting Messages from Folders
	getMessageCount() method (Folder class), Checking for Mail
	getMessageDigest() method (DigestOuptputStream
 class), Digest Streams
	getMessageNumber() method (Message class), Folders
	getMessages() method (Folder class), Getting messages from folders
	getMessages() methods (Folder class), Getting Messages from Folders
	getMode() method (Folder class), Basic Folder Info
	getName() method (Folder class), Basic Folder Info
	getNeedClientAuth() methods, Client Mode, Client Mode
		SSLServerSocket class, Client Mode
	SSLSocket class, Client Mode

	getNetworkInterface() method (MulticastSocket
 class), public NetworkInterface getNetworkInterface() throws
 SocketException // Java 1.4
	getNetworkInterfaces() method (NetworkInterface
 class), public static Enumeration getNetworkInterfaces() throws
 SocketException
	getNewMessageCount() method (Folder class), Checking for Mail
	getNonMatchingHeaderLines() method (MimePart
 interface), MIME Messages
	getNonMatchingHeaders() method (Part
 interface), Headers
	getOffset() method (DatagramPacket class), public int getOffset() // Java 1.2
	getOOBInLine() method (Socket class), OOBINLINE // Java 1.4
	getOutputStream() methods, public OutputStream getOutputStream() throws
 IOException, Writing Data to a Server, Caches
		ResponseCache class, Caches
	Socket class, public OutputStream getOutputStream() throws
 IOException
	URLConnection class, Writing Data to a Server

	getParent() method (Folder class), Basic Folder Info
	getPassword() method (JPasswordField class), The JPasswordField Class
	getPasswordAuthentication() method (Authenticator
 class), Password Authentication
	getPath() method (URL class), public String getPath() // Java 1.3
	getPermanentFlags() method (Folder class), Flags
	getPermission() method (URLConnection class), Security Considerations for URLConnections, HttpURLConnection
		HttpURLConnection subclass and, HttpURLConnection

	getPort() methods, public int getPort(), The Parts of the URI, public int getPort(), public int getPort(), public int getPort() // Java 1.2
		DatagramPacket class, public int getPort()
	DatagramSocket class, public int getPort() // Java 1.2
	Socket class, public int getPort()
	URI class, The Parts of the URI
	URL class, public int getPort()

	getProtocol() method (URL class), public String getProtocol()
	getQuery() methods, public String getQuery() // Java 1.3, URLEncoder
		QueryString class, URLEncoder
	URL class, public String getQuery() // Java 1.3

	getReadTimeout() method (URLConnection class), Timeouts
	getReceiveBufferSize() method (Socket class), SO_RCVBUF
	getReceivedDate() method (Message class), The date of the message
	getRecipients() method (Message class), The recipient addresses
	getRef() method (URL class), public String getRef()
	getRemoteSocketAddress() methods, Socket Addresses, public InetAddress getRemoteSocketAddress() // Java
 1.4
		DatagramSocket class, public InetAddress getRemoteSocketAddress() // Java
 1.4
	Socket class, Socket Addresses

	getReplyTo() method (Message class), The Reply-to address
	getRequestProperty() method (URLConnection
 class), Configuring the Client Request HTTP Header, Configuring the Client Request HTTP Header
	getResponseCode() method (Http URLConnection
 class), Handling Server Responses
	getResponseMessage() method (HttpURLConnection
 class), Handling Server Responses
	getReuseAddress() method (Socket class), SO_REUSEADDR // Java 1.4
	getSendBufferSize() method (Socket class), SO_SNDBUF
	getSentDate() method (Message class), The date of the message
	getSeparator() method (Folder class), Basic Folder Info
	getSession() method (SSLSocket class), Session Management
	getSize() method (Part interface), Attributes
	getSocketAddress() method (DatagramPacket
 class), public SocketAddress getSocketAddress() // Java 1.4
	getSoTimeout() method (ServerSocket class), SO_TIMEOUT
	getStore() method (Folder class), Basic Folder Info
	getSubject() method (Message class), The subject of the message
	getSupportedCipherSuites() methods, Choosing the Cipher Suites, Choosing the Cipher Suites
		SSLServerSocket class, Choosing the Cipher Suites
	SSLSocket class, Choosing the Cipher Suites

	getSystemResource() method (ClassLoader
 class), Other sources of URL objects
	getTcpNoDelay() method (Socket class), TCP_NODELAY
	getter methods (URI class), The Parts of the URI
	getTimeToLive() methods, public int getTimeToLive() throws IOException // Java
 1.2
		MulticastSocket class, public int getTimeToLive() throws IOException // Java
 1.2

	getTrafficClass() methods, Class of Service, Traffic class
		DatagramSocket class, Traffic class
	Socket class, Class of Service

	getTTL() method (MulticastSocket class), public int getTimeToLive() throws IOException // Java
 1.2
	getType() methods, The Address Class, Basic Folder Info
		Address class, The Address Class
	Folder class), Basic Folder Info

	getUnreadMessageCount() method (Folder class), Checking for Mail
	getURLName() method (Folder class), Basic Folder Info
	getUseClientMode() method (SSLSocket class), Client Mode
	getUserInfo() method (URL class), public String getUserInfo() // Java 1.3
	global multicast addresses, public boolean isMCGlobal()
	guessContentTypeFromName() method (URLConnection
 class), Guessing MIME Content Types
	guessContentTypeFromStream() method (URLConnection
 class), Guessing MIME Content Types
	GZIPInputStream and GZIPOutputStream classes, Compressing Streams

H
	half-closing sockets, Half-closed sockets // Java 1.3
	handleEndTag() method (HTML.Tag class), HTML.Tag
	handles, Whois
	handleStartTag() method (HTML.Tag class), HTML.Tag
	HandshakeCompletedEvent class, Event Handlers
	HandshakeCompletedListener interface, Event Handlers
	hashCode() methods, public int hashCode(), public int hashCode(), Object Methods, public int hashCode(), public int hashCode(), Object Methods, The RemoteObject Class
		Buffer classes, Object Methods
	InetAddress class, public int hashCode(), public int hashCode()
	NetworkInterface class, Object Methods
	RemoteObject class, The RemoteObject Class
	URI class, public int hashCode()
	URL class, public int hashCode()

	hasNewMessages() method (Folder class), Checking for Mail
	hasRemaining() method (Buffer classes), Buffers
	headers, The Internet Layer, Cookies, Sockets for Clients, URLConnections, Reading the Header, Configuring the Client Request HTTP Header, Configuring the Client Request HTTP Header, Caches, Basic Header Info, Saving changes, Basic Header Info, Saving changes, The recipient addresses, Headers
		header information (Message class), Basic Header Info, Saving changes
	HTTP headers, Cookies, Configuring the Client Request HTTP Header, Caches
		cache control for, Caches
	client request header configuration, Configuring the Client Request HTTP Header
	cookies and, Cookies

	information in, Reading the Header
	IP datagram headers, The Internet Layer
	Message class header information (JavaMail
 API), Basic Header Info, Saving changes
	MIME headers, URLConnections
	Part interface (JavaMail API), Headers
	recipient header information, The recipient addresses
	server restrictions on, Configuring the Client Request HTTP Header

	historic protocols and RFCs, IETF RFCs
	host-to-network layer, The Host-to-Network Layer
	HostLookup application, HostLookup, HostLookup, HostLookup
		methods, HostLookup

	hosts, Networks, Looking Up Internet Addresses
	hostsEqual() method (URLStreamHandler class), protected boolean hostsEqual(URL u1, URL u2) // Java
 1.3
	HotJava, Examples
	HTML (Hypertext Markup Language), Basic Web Concepts, HTML, SGML, and XML, HTML, SGML, and XML, HTML, SGML, and XML, Server-Side Programs, HTML in Swing, HTML in Swing, JEditorPane, Constructing HTML User Interfaces on the Fly, Reading HTML Directly, Parsing HTML, Attributes
		elements, HTML, SGML, and XML
	forms, Server-Side Programs
	JEditorPane, reading with, Reading HTML Directly
	parsing, Parsing HTML, Attributes
	processing with Swing, HTML in Swing (see Swing)
	programmatic construction of user
 interfaces, Constructing HTML User Interfaces on the Fly
	specification, problems with, HTML in Swing
	tags, HTML, SGML, and XML
	Version 3.2 and JEditorPane, JEditorPane

	HTML.Tag class, HTML.Tag, HTML.Tag, HTML.Tag, HTML.Tag, HTML.Tag, HTML.Tag, HTML.Tag, HTML.Tag
		breaksFlow() method, HTML.Tag
	handleEndTag() method, HTML.Tag
	handleStartTag() method, HTML.Tag
	isBlock() method, HTML.Tag
	isPreformatted() method, HTML.Tag
	mnemonic constants, HTML.Tag
	object constants, HTML.Tag

	HTMLEditorKit.Parser class, HTMLEditorKit.Parser, HTMLEditorKit.Parser
	HTMLEditorKit.ParserCallback class, HTMLEditorKit.ParserCallback, HTMLEditorKit.ParserCallback
	HTTP (Hypertext Transfer Protocol), Basic Web Concepts, HTTP, HTTP, HTTP, HTTP, Cookies, HTTP Servers, Reading the Header, Configuring the Client Request HTTP Header, Handling Server Responses, Caches
		HTTP 1.1 response codes, Handling Server Responses
	HTTP headers, Cookies, Reading the Header, Configuring the Client Request HTTP Header, Caches
		cache control, for, Caches
	client request header configuration, Configuring the Client Request HTTP Header
	cookies and, Cookies

	HTTP servers, HTTP Servers (see HTTP servers)
	response codes, HTTP, HTTP

	HTTP servers, HTTP Servers, A full-fledged HTTP server, HTTP Servers, HTTP Servers, HTTP Servers, A single-file server, A redirector, A redirector, A full-fledged HTTP server
		creating with server sockets, HTTP Servers, A full-fledged HTTP server, A single-file server, A redirector, A redirector, A full-fledged HTTP server
		full-fledged server, A full-fledged HTTP server (see JHTTP server)
	Redirector, A redirector, A redirector
	SingleFileHTTPServer, A single-file server

	custom servers, HTTP Servers
	Java, advantages for, HTTP Servers
	JigSaw, HTTP Servers

	HttpURLConnection subclass, HttpURLConnection, Streaming Mode, The Request Method, HEAD, OPTIONS, DELETE, PUT, TRACE, Disconnecting from the Server, Handling Server Responses, Redirects, Handling Server Responses, Handling Server Responses, Handling Server Responses, Handling Server Responses, Handling Server Responses, Error conditions, Redirects, Proxies, Streaming Mode
		proxies, Proxies
	request methods, The Request Method, HEAD, OPTIONS, DELETE, PUT, TRACE
		DELETE, DELETE
	HEAD, HEAD
	OPTIONS, OPTIONS
	PUT, PUT
	TRACE, TRACE

	server responses, handling, Handling Server Responses, Redirects, Handling Server Responses, Handling Server Responses, Handling Server Responses, Handling Server Responses, Handling Server Responses, Error conditions, Redirects
		error conditions, Error conditions
	getResponseCode() method, Handling Server Responses
	getResponseMessage() method, Handling Server Responses
	redirects, Redirects
	response codes, HTTP 1.1, Handling Server Responses, Handling Server Responses
	response messages, Handling Server Responses

	servers, disconnecting from, Disconnecting from the Server
	streaming mode, Streaming Mode

	HyperlinkListener class, Handling Hyperlinks
	Hypertext Markup Language, Basic Web Concepts (see HTML)

I
	I/O (input/output), Streams, Non-Blocking I/O, The SelectionKey Class
		blocking, Non-Blocking I/O (see blocking I/O)
	non-blocking, The SelectionKey Class (see non-blocking I/O)

	IANA, Multicast Addresses and Groups
	ICANN (Internet Corporation for Assigned Names and
 Numbers), Networks
	IESG (Internet Engineering Steering Group), IETF RFCs
	IETF (Internet Engineering Task Force), Internet Standards
	implAccept() method (ServerSocket class), protected final void implAccept(Socket s) throws
 IOException
	implementing the Runnable interface, Implementing the Runnable Interface
	INBOX folder, Folders
	Inet4Address and Inet6Address classes, Inet4Address and Inet6Address
	InetAddress class, The InetAddress Class, Inet4Address and Inet6Address, The InetAddress Class, Creating New InetAddress Objects, public static InetAddress getLocalHost() throws
 UnknownHostException, public static InetAddress getByAddress(byte[] address)
 throws UnknownHostException // Java 1.4public static InetAddress
 getByAddress(String hostName, byte[] address) throws
 UnknownHostException // Java 1.4, Security Issues, Getter Methods, Address Types, Testing Reachability // Java 1.5, Object Methods, Object Methods
		address types and testing methods, Address Types
	creating objects, Creating New InetAddress Objects, public static InetAddress getLocalHost() throws
 UnknownHostException
	getter methods, Getter Methods
	Object class, inheritance from, Object Methods
	object methods, Object Methods
	security issues, Security Issues
	subclassing, The InetAddress Class
	testing reachability (Java 1.5), Testing Reachability // Java 1.5
	UnknownHostExceptions, public static InetAddress getByAddress(byte[] address)
 throws UnknownHostException // Java 1.4public static InetAddress
 getByAddress(String hostName, byte[] address) throws
 UnknownHostException // Java 1.4

	InflaterInputStream class, Compressing Streams
	input streams, Streams, Input Streams, Marking and Resetting, Marking and Resetting
		marking and resetting methods, Marking and Resetting

	InputStreamReader class, Readers and Writers, Filter Readers and Writers
	IntBuffer class, View Buffers
	interface-local multicast addresses, public boolean isMCNodeLocal()
	Internet, The Internet, Internet Standards, W3C Recommendations, Internet Standards, Internet Standards, IETF RFCs, IETF RFCs, W3C Recommendations
		standards, Internet Standards, W3C Recommendations, Internet Standards, Internet Standards, IETF RFCs, IETF RFCs, W3C Recommendations
		IESG, IETF RFCs
	IETF, Internet Standards
	public relations aspects, W3C Recommendations
	RFCs, IETF RFCs
	W3C, Internet Standards

	Internet address classes, Internet Address Classes
	Internet address lookup, Looking Up Internet Addresses, Processing Web Server Log Files, public static InetAddress getByName(String hostName) throws
 UnknownHostException, public static InetAddress getByName(String hostName) throws
 UnknownHostException, public static InetAddress[] getAllByName(String hostName)
 throws UnknownHostException, public static InetAddress getLocalHost() throws
 UnknownHostException, public String getHostName(), public String getHostAddress(), public byte[] getAddress(), public boolean isMCNodeLocal(), public boolean equals(Object o), public static Enumeration getNetworkInterfaces() throws
 SocketException, HostLookup, Processing Web Server Log Files, Processing Web Server Log Files, Processing Web Server Log Files
		code examples, public static InetAddress getByName(String hostName) throws
 UnknownHostException, public static InetAddress getByName(String hostName) throws
 UnknownHostException, public static InetAddress[] getAllByName(String hostName)
 throws UnknownHostException, public static InetAddress getLocalHost() throws
 UnknownHostException, public String getHostName(), public String getHostAddress(), public byte[] getAddress(), public boolean isMCNodeLocal(), public boolean equals(Object o), public static Enumeration getNetworkInterfaces() throws
 SocketException, HostLookup, Processing Web Server Log Files, Processing Web Server Log Files, Processing Web Server Log Files
		finding the local machine address, public static InetAddress getLocalHost() throws
 UnknownHostException
	finding tP address of the local machine, public String getHostAddress()
	IP addresses, comparing, public boolean equals(Object o)
	LookupThread, Processing Web Server Log Files
	network interfaces, program for listing, public static Enumeration getNetworkInterfaces() throws
 SocketException
	nslookup clone, HostLookup
	PooledWebLog, Processing Web Server Log Files
	print local machine IP address, public byte[] getAddress()
	test IP address characteristics (Java 1.4), public boolean isMCNodeLocal()
	using address, find the hostname, public String getHostName()
	web server log processing, Processing Web Server Log Files
	www.microsoft.com addresses printing
 program, public static InetAddress[] getAllByName(String hostName)
 throws UnknownHostException
	www.oreilly.com address printing program, public static InetAddress getByName(String hostName) throws
 UnknownHostException
	www.oreilly.com IP address printing program, public static InetAddress getByName(String hostName) throws
 UnknownHostException

	Internet addresses, Looking Up Internet Addresses
	Internet layer, The Internet Layer
	Internet protocols, public InputStream getInputStream() throws
 IOException, public InputStream getInputStream() throws
 IOException, public OutputStream getOutputStream() throws
 IOException, Half-closed sockets // Java 1.3, Class of Service
		classes of service for, Class of Service
	daytime protocol (RFC 867), public InputStream getInputStream() throws
 IOException
	echo protocol (RFC 862), public OutputStream getOutputStream() throws
 IOException
	half-closing sockets for, Half-closed sockets // Java 1.3
	time protocol (RFC 868), public InputStream getInputStream() throws
 IOException

	InternetAddress class, The InternetAddress Class, The InternetAddress Class, The InternetAddress Class
		protected fields, The InternetAddress Class

	IP (Internet Protocol), IP, TCP, and UDP, IP Addresses and Domain Names, What Is a Multicast Socket?
		broadcasting, What Is a Multicast Socket?
	IPv4 vs. IPv6, IP Addresses and Domain Names

	IP addresses, IP Addresses and Domain Names, Internet Address Classes, Looking Up Internet Addresses, Looking Up Internet Addresses, Looking Up Internet Addresses, The InetAddress Class, Address Types, public boolean isAnyLocalAddress(), public boolean isLoopbackAddress(), public boolean isLinkLocalAddress(), public boolean isSiteLocalAddress(), public boolean isMulticastAddress(), public boolean isMCGlobal(), public boolean isMCOrgLocal(), public boolean isMCSiteLocal(), public boolean isMCLinkLocal(), public boolean isMCNodeLocal(), Testing Reachability // Java 1.5, Multicast Addresses and Groups
		address types, Address Types, public boolean isAnyLocalAddress(), public boolean isLoopbackAddress(), public boolean isLinkLocalAddress(), public boolean isSiteLocalAddress(), public boolean isMulticastAddress(), public boolean isMCGlobal(), public boolean isMCOrgLocal(), public boolean isMCSiteLocal(), public boolean isMCLinkLocal(), public boolean isMCNodeLocal()
		global multicast addresses, public boolean isMCGlobal()
	interface-local multicast addresses, public boolean isMCNodeLocal()
	link-local addresses, public boolean isLinkLocalAddress()
	loopback addresses, public boolean isLoopbackAddress()
	multicast addresses, public boolean isMulticastAddress()
	organization-wide multicast addresses, public boolean isMCOrgLocal()
	site-local addresses, public boolean isSiteLocalAddress()
	site-wide multicast addresses, public boolean isMCSiteLocal()
	subnet-wide multicast addresses, public boolean isMCLinkLocal()
	wildcard addresses, public boolean isAnyLocalAddress()

	InetAddress class, and, The InetAddress Class
	IPv4 format, Looking Up Internet Addresses
	IPv6 format, Looking Up Internet Addresses
	multicast addresses, Multicast Addresses and Groups
	non-routable addresses, Internet Address Classes
	testing reachability (Java 1.5), Testing Reachability // Java 1.5

	IP datagram headers, The Internet Layer
	IPv6 link-local addresses, public boolean isLinkLocalAddress()
	IPv6 site-local addresses, public boolean isSiteLocalAddress()
	IRIs (Internationalized Resource Identifiers), The URLEncoder and URLDecoder Classes
	isAbsolute() method (URI class), The Parts of the URI
	isAnyLocalAddress() method, public boolean isAnyLocalAddress()
	isBlock() method (HTML.Tag class), HTML.Tag
	isBound() methods, public void close() throws IOException, public void close() throws IOException
		ServerSocket class, public void close() throws IOException
	Socket class, public void close() throws IOException

	isClosed() method (Socket class), public void close() throws IOException
	isConnected() methods, public void close() throws IOException, Connecting, Connecting
		DatagramChannel class, Connecting
	Socket class, public void close() throws IOException
	SocketChannel class, Connecting

	isHostName() method, HostLookup program, HostLookup
	isInputShutdown() and isOutputShutdown methods (Socket
 class), Half-closed sockets // Java 1.3
	isLinkLocalAddress() method, public boolean isLinkLocalAddress()
	isLoopbackAddress method, public boolean isLoopbackAddress()
	isMCGlobal() method, public boolean isMCGlobal()
	isMCLinkLocal() method, public boolean isMCLinkLocal()
	isMCNodeLocal() method, public boolean isMCNodeLocal()
	isMCOrgLocal() method, public boolean isMCOrgLocal()
	isMCSiteLocal() method, public boolean isMCSiteLocal()
	isMimeType() method (Part interface), Reading the contents of the part
	isMulticastAddress() method, public boolean isMulticastAddress()
	isOpaque() method (URI class), The Parts of the URI
	isOpen() methods, Closing, Closing, Opening Folders
		DatagramChannel class, Closing
	Folder class, Opening Folders
	SocketChannel class, Closing

	isPreformatted() method (HTML.Tag class), HTML.Tag
	ISPs (Internet Service Providers), Networks
	isSet() method (Flags class), Flags
	isSiteLocalAddress() method, public boolean isSiteLocalAddress()
	isSubscribed() method (Folder class), Subscriptions

J
	J2ME (Java 2 Micro Edition), Interactive Television
	JAR archives, JarURLConnection, JarURLConnection
		manifest files, JarURLConnection

	JarURLConnection class, JarURLConnection, JarURLConnection, JarURLConnection
		methods, JarURLConnection

	Java, Java Versions, Java Versions, Java Versions, Java Versions, Conventions Used in This Book, Why Networked Java?, Security, Security, Testing Reachability // Java 1.5, Inet4Address and Inet6Address, The NetworkInterface Class, Accessing Password-Protected Sites, HTML in Swing, Cookies, Cookies, Examples, Non-Blocking I/O
		case sensitivity, Conventions Used in This Book
	cookie support, lack of, Accessing Password-Protected Sites
	data transmission, balancing network and CPU speed
 differential, Non-Blocking I/O
	network-aware applications, Examples
	security, Security, Security
	supported operating systems, Java Versions
	Swing, HTML in Swing (see Swing)
	Version 1.4, Java Versions, Inet4Address and Inet6Address, The NetworkInterface Class
		Inet4Address and Inet6Address classes, Inet4Address and Inet6Address
	NetworkInterface class, The NetworkInterface Class (see NetworkInterface class)

	Version 1.5, Java Versions, Testing Reachability // Java 1.5, Cookies, Cookies
		CookieHandler class, Cookies, Cookies
	testing reachability, Testing Reachability // Java 1.5

	versions, Java Versions

	Java 2 Micro Edition (J2ME), Interactive Television
	Java extension content-type mappings, Guessing MIME Content Types
	Java first bytes content-type mappings, Guessing MIME Content Types
	Java Runtime Environment, registration of security
 extensions, Secure Communications
	Java TV API, Interactive Television
	java.io package, Streams, PrintWriter
	Òjava.net.SocketException\:SSL
 implementation not availableÓ error, Secure Communications
	java.rmi.package, The java.rmi Package, The Remote Interface, The Naming Class, public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException, The RMISecurityManager Class, Remote Exceptions
		Naming class, The Naming Class, public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException
	remote exceptions, Remote Exceptions
	Remote interface, The Remote Interface
	RMISecurityManager class, The RMISecurityManager Class

	java.rmi.registry package, The java.rmi.registry Package
	java.rmi.server package, The java.rmi.server Package, Exceptions, The RemoteObject Class, The RemoteServer Class, The UnicastRemoteObject Class, Exceptions
		exceptions, Exceptions
	RemoteObject class, The RemoteObject Class
	RemoteServer class, The RemoteServer Class
	UnicastRemoteObject class, The UnicastRemoteObject Class

	JavaBeans Activation Framework, What Is the JavaMail API?
	JavaMail API, The JavaMail API, Utility Methods, What Is the JavaMail API?, What Is the JavaMail API?, What Is the JavaMail API?, What Is the JavaMail API?, What Is the JavaMail API?, What Is the JavaMail API?, What Is the JavaMail API?, Sending Email, Sending Email, Sending Email from an Application, Sending Email from an Application, Sending Email from an Applet, Sending Email from an Applet, Password Authentication, Password Authentication, Password Authentication, Password Authentication, Password Authentication, Password Authentication, Password Authentication, Addresses, The NewsAddress Class, The Address Class, The InternetAddress Class, The InternetAddress Class, The NewsAddress Class, The URLName Class, Parsing Methods, The Constructors, Parsing Methods, Parsing Methods, The Message Class, Creating Messages, Creating Messages, Basic Header Info, Saving changes, The date of the message, The date of the message, Flags, Flags, Flags, Folders, Searching, The Part Interface, Writing the contents of the part, Attributes, Attributes, Headers, Headers, Content, Writing the contents of the part, Multipart Messages and File Attachments, Multipart Messages and File Attachments, Multipart Messages and File Attachments, Multipart Messages and File Attachments, MIME Messages, Folders, Utility Methods, Opening Folders, Basic Folder Info, Managing Folders, Managing Messages in Folders, Subscriptions, Listing the Contents of a Folder, Checking for Mail, Getting Messages from Folders, Searching Folders, Searching Folders, Searching Folders, Flags, Event Handling, Utility Methods
		addresses, Addresses, The NewsAddress Class, The Address Class, The InternetAddress Class, The InternetAddress Class, The NewsAddress Class
		Address class, The Address Class
	InternetAddress class, The InternetAddress Class, The InternetAddress Class
	NewsAddress class, The NewsAddress Class

	authentication, Password Authentication, Password Authentication
	code examples, Sending Email, Sending Email from an Application, Sending Email from an Application, Sending Email from an Applet, Sending Email from an Applet, Password Authentication, Password Authentication, The date of the message, The date of the message, Flags, Flags, Attributes, Headers, Multipart Messages and File Attachments, Multipart Messages and File Attachments, Searching Folders, Searching Folders
		applet that sends email, Sending Email from an Applet, Sending Email from an Applet
	graphical SMTP clients, Sending Email from an Application, Sending Email from an Application
	GUI authenticator, Password Authentication
	mail client for multipart messages with attache
 files, Multipart Messages and File Attachments, Multipart Messages and File Attachments
	mail client that searches by From: address, Searching Folders, Searching Folders
	POP client that requests password as necessary, Password Authentication
	program to read mail attributes, Attributes
	program to read mail headers, The date of the message, The date of the message, Headers
	program to read mailbox flags, Flags, Flags
	sending simple mail messages, Sending Email

	description, What Is the JavaMail API?, What Is the JavaMail API?
	event-based callbacke, What Is the JavaMail API?
	factory design pattern, What Is the JavaMail API?
	folders, Folders, Folders, Utility Methods, Opening Folders, Basic Folder Info, Managing Folders, Managing Messages in Folders, Subscriptions, Listing the Contents of a Folder, Checking for Mail, Getting Messages from Folders, Searching Folders, Flags, Event Handling, Utility Methods
		checking for mail, Checking for Mail
	contents, listing, Listing the Contents of a Folder
	event handling, Event Handling
	flags, Flags
	folder information, Basic Folder Info
	getting messages, Getting Messages from Folders
	managing, Managing Folders
	managing messages, Managing Messages in Folders
	opening, Opening Folders
	searching, Searching Folders
	subscriptions, Subscriptions
	utility methods, Utility Methods

	JAF (JavaBeans Activation Framework), What Is the JavaMail API?
	JPasswordField from Swing, Password Authentication, Password Authentication
	Message class, The Message Class, Creating Messages, Creating Messages, Basic Header Info, Saving changes, Flags, Searching
		constructors, Creating Messages
	creating messages, Creating Messages
	flags, Flags
	header information, Basic Header Info, Saving changes
	searching, Searching

	MIME messages, MIME Messages
	multipart messages and file attachments, Multipart Messages and File Attachments, Multipart Messages and File Attachments
	Part interface, The Part Interface, Writing the contents of the part, Attributes, Headers, Content, Writing the contents of the part
		attributes, Attributes
	content, Content, Writing the contents of the part
	headers, Headers

	password authentication, Password Authentication
	sending email, Sending Email
	service providers, What Is the JavaMail API?, What Is the JavaMail API?
	URLName class, The URLName Class, Parsing Methods, The Constructors, Parsing Methods, Parsing Methods
		constructors, The Constructors
	parsing methods, Parsing Methods, Parsing Methods

	JavaScript interpreters, JEditorPane
		Open Source Rhino, JEditorPane

	JCE (Java Cryptography Extension), Encrypting Streams
	JEditorPane class, JEditorPane, Reading HTML Directly, JEditorPane, JEditorPane, Constructing HTML User Interfaces on the Fly, Handling Hyperlinks, Reading HTML Directly
		constructors, JEditorPane
	HTML 3.2 and, JEditorPane
	HTML user interfaces, constructing
 programmatically, Constructing HTML User Interfaces on the Fly
	hyperlinks, Handling Hyperlinks
	read() method, Reading HTML Directly

	Jessie, Secure Communications
	JHTTP server, A full-fledged HTTP server, A full-fledged HTTP server, A full-fledged HTTP server, A full-fledged HTTP server
		main() method, A full-fledged HTTP server
	RequestProcessor class, A full-fledged HTTP server

	Jini, What Is a Multicast Socket?
	joinGroup() method (MulticastSocket class), Working with Multicast Sockets, public void joinGroup(InetAddress address) throws
 IOException, public void joinGroup(SocketAddress address, NetworkInterface
 interface) throws IOException // Java 1.4
		overloaded variant, public void joinGroup(SocketAddress address, NetworkInterface
 interface) throws IOException // Java 1.4

	JPasswordField class, The JPasswordField Class
	JPasswordField component (Swing), Password Authentication, Password Authentication
	JSSE (Java Secure Sockets Extension), Secure Sockets, Secure Communications, Secure Communications, Secure Communications, Choosing the Cipher Suites, Choosing the Cipher Suites, Event Handlers, Session Management, Session Management
		event handlers, Event Handlers
	JRE, requirement for multiple registrations, Secure Communications
	packages, Secure Communications
	registration in java.security file, Secure Communications
	sessions and session management, Session Management
	SSLSession interface, Session Management
	supported algorithms, Choosing the Cipher Suites, Choosing the Cipher Suites

K
	keys (encryption), Encrypting Streams

L
	leaveGroup() method (MulticastSocket class), Working with Multicast Sockets, public void leaveGroup(InetAddress address) throws
 IOException
	Legion of the Bouncy Castle, Encrypting Streams
	LineNumberReader class, LineNumberReader
	link-local addresses, public boolean isLinkLocalAddress()
	list() methods, public static String[] list(String url) throws
 RemoteException, MalformedURLException, The Registry Interface
		Naming class), public static String[] list(String url) throws
 RemoteException, MalformedURLException
	Registry interface), The Registry Interface

	local caching, Proxy Servers
	local loopback address, Internet Address Classes
	localhost, Internet Address Classes
	LocalPortScanner, public ServerSocket(int port) throws BindException,
 IOException
	LocateRegistry class, The LocateRegistry Class, The LocateRegistry Class
	log files, Processing Web Server Log Files (see Web server log file processing program)
	lookup() methods, HostLookup, public static Remote lookup(String url) throws
 RemoteException, NotBoundException, AccessException,
 MalformedURLException, The Registry Interface
		HostLookup application, HostLookup
	Naming class, public static Remote lookup(String url) throws
 RemoteException, NotBoundException, AccessException,
 MalformedURLException
	Registry interface, The Registry Interface

	lookUpNames() method (Whois class), Whois
	loopback addresses, public boolean isLoopbackAddress()
	LowPortScanner, public Socket(String host, int port) throws
 UnknownHostException, IOException

M
	mail providers and protocols, What Is the JavaMail API?
	main() methods, HostLookup, Simple UDP Clients
		HostLookup program, HostLookup
	UDPPoke class, Simple UDP Clients

	man-in-the-middle attacks, Secure Communications
	manifest files, JarURLConnection
	mark() methods, Marking and Resetting, Buffers, Marking and Resetting
		Buffer classes, Buffers, Marking and Resetting
	InputStream class, Marking and Resetting

	markSupported() method (InputStream class), Marking and Resetting
	markup languages, HTML, SGML, and XML
	Marshall, Casey, Secure Communications
	marshalling and unmarshalling, The Server Side
	match() method (Message class), Searching
	matches() method (Cookie class), Cookies
	MBONE (Multicast Backbone on the Internet), Multicast Addresses and Groups, Two Simple Examples
		session announcements, Two Simple Examples

	Message class, The Message Class, The Message Class, Creating Messages, Creating Messages, Replying to messages, Getting messages from folders, Basic Header Info, Saving changes, The From address, The Reply-to address, The recipient addresses, The subject of the message, The date of the message, Flags
		constructors, Creating Messages
	creating messages, Creating Messages
	flags, Flags
	getting messages from folders, Getting messages from folders
	header information, Basic Header Info, Saving changes, The From address, The Reply-to address, The recipient addresses, The subject of the message, The date of the message
		date\: header, The date of the message
	From\: header information, The From address
	Reply-to\: header, The Reply-to address
	subject\: header, The subject of the message
	To\:, Cc\:, and Bcc\: headers, The recipient addresses

	implementation of Part interface, The Message Class
	replying to messages, Replying to messages

	message integrity checking and asymmetric
 encryption, Secure Communications
	META tags, public final InputStream openStream() throws
 IOException
	methods, protected, URLConnections
	Microsoft, Java support, Java Versions
	MIME (Multipurpose Internet Mail Extension) types, MIME Media Types, MIME Media Types, MIME Media Types, MIME Media Types, MIME Media Types, MIME Media Types, URLConnections, Guessing MIME Content Types, Guessing MIME Content Types, What Is a Content Handler?, MIME Messages
		content handlers and, What Is a Content Handler?
	content types, MIME Media Types, MIME Media Types, Guessing MIME Content Types, Guessing MIME Content Types
	headers and protocols, URLConnections
	MIME messages, MIME Messages
	x-types, MIME Media Types, MIME Media Types

	MimeMessage class, MIME Messages
	MimePart interface, MIME Messages
	multicast addresses, public boolean isMulticastAddress()
	multicast sockets, Multicast Sockets, Two Simple Examples, Multicast Sockets, What Is a Multicast Socket?, What Is a Multicast Socket?, Multicast Addresses and Groups, Multicast Addresses and Groups, Clients and Servers, Routers and Routing, Routers and Routing, Routers and Routing, Routers and Routing, Working with Multicast Sockets, Working with Multicast Sockets, Two Simple Examples, Two Simple Examples
		clients and servers, Clients and Servers
	code examples, Two Simple Examples, Two Simple Examples
		multicast sniffer, Two Simple Examples
	MulticastSender, Two Simple Examples

	definition, What Is a Multicast Socket?, What Is a Multicast Socket?
	efficiency of, Routers and Routing
	multicast addresses and groups, Multicast Addresses and Groups, Multicast Addresses and Groups
	MulticastSocket class, Working with Multicast Sockets (see MulticastSocket class)
	routers and, Routers and Routing, Routers and Routing
		availability of, Routers and Routing

	routersand, Routers and Routing
		multicast support by routers, Routers and Routing

	security issues, Working with Multicast Sockets
	UDP and, Multicast Sockets

	multicasting, The UDP Protocol, What Is a Multicast Socket?, Multicast Addresses and Groups, Multicast Addresses and Groups, Clients and Servers, Clients and Servers, Two Simple Examples, Two Simple Examples
		common permanent multicast addresses, Multicast Addresses and Groups, Multicast Addresses and Groups
	examples, What Is a Multicast Socket?, Two Simple Examples, Two Simple Examples
	reception by member host, Clients and Servers
	UDP and, The UDP Protocol
	versus standard UDP, Clients and Servers

	MulticastSender class, Two Simple Examples, Two Simple Examples
	MulticastSniffer class, Two Simple Examples, Two Simple Examples
	MulticastSocket class, Working with Multicast Sockets, public boolean getLoopbackMode() throws SocketException //
 Java 1.4, The Constructors, Communicating with a Multicast Group, public boolean getLoopbackMode() throws SocketException //
 Java 1.4
		communicating with multicast groups, Communicating with a Multicast Group, public boolean getLoopbackMode() throws SocketException //
 Java 1.4
	constructors, The Constructors

	Multipart class, Multipart Messages and File Attachments
	multithreading and data transmission, Non-Blocking I/O
	MutableAttributeSet interface, Attributes, Attributes, Attributes
		methods for additions and removal of
 attributes, Attributes

N
	Nagle's algorithm, TCP_NODELAY
	Naming class, The Naming Class, public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException
	NAT (network address translation), Network Address Translation
	Netscape Open Directory, Communicating with Server-Side Programs Through GET
	network layer, The Internet Layer
	network programming, Why Networked Java?, Why Networked Java?, What Can a Network Program Do?, Retrieve Data, Retrieve Data, Send Data, Massively parallel computing, Peer-to-Peer Interaction, File sharing, Servers, Searching the Web, Electronic Commerce, Ubiquitous Computing, Interactive Television, But Wait! There's More!
		(see also networks)
	data retrieval, Retrieve Data, Retrieve Data
	data transmission, Send Data, Massively parallel computing
	distributed processing, But Wait! There's More!
	electronic commerce, Electronic Commerce
	interactive television, Interactive Television
	peer-to-peer interaction, Peer-to-Peer Interaction, File sharing
	search engines, Searching the Web
	servers, Servers
	ubiquitous computing, Ubiquitous Computing
	utility, What Can a Network Program Do?

	network programs and buffers, Buffers
	network streams, reading, Input Streams
	networking concepts, Basic Network Concepts
	NetworkInterface class, The NetworkInterface Class, Object Methods, Factory Methods, Getter Methods, Object Methods
		factory methods, Factory Methods
	getter methods, Getter Methods
	object methods, Object Methods

	networks, Networks, Networks, Networks, Networks, The Layers of a Network, The Application Layer, The Host-to-Network Layer, The Internet Layer, The Transport Layer, The Application Layer, public InputStream getInputStream() throws
 IOException, Non-Blocking I/O, Data Conversion, Remote Method Invocation
		(see also network programming)
	data transmission speed compared to CPUs and
 memory, Non-Blocking I/O
	fundamental applications, Remote Method Invocation
	layers, The Layers of a Network, The Application Layer, The Host-to-Network Layer, The Internet Layer, The Transport Layer, The Application Layer
		application layer, The Application Layer
	host-to-network layer, The Host-to-Network Layer
	Internet layer, The Internet Layer
	transport layer, The Transport Layer

	packet-switching, Networks
	protocols, Networks
	testing with binary data, Data Conversion
	timekeeping, public InputStream getInputStream() throws
 IOException

	newChannel() method (Channels class), An Example Client
	NewsAddress class, The NewsAddress Class
	noargs constructor (JEditorPane class), JEditorPane
	nodes, Networks, Looking Up Internet Addresses
	non-blocking I/O, Non-Blocking I/O, The SelectionKey Class, Non-Blocking I/O, Non-Blocking I/O, An Example Client, An Example Client, An Example Client, An Example Client, An Example Client, An Example Client, An Example Client, An Example Client, An Example Server, An Example Server, An Example Server, An Example Server, An Example Server, An Example Server, An Example Server, An Example Server, Buffers, Buffers, Data Conversion, View Buffers, View Buffers, Compacting Buffers, Duplicating Buffers, Duplicating Buffers, SocketChannel, Closing, ServerSocketChannel, Accepting connections, The Channels Class, Readiness Selection, The SelectionKey Class, The Selector Class, The SelectionKey Class
		Buffer classes, Buffers
	buffering and multithreading, Non-Blocking I/O
	buffers, An Example Client, Buffers (see buffers)
	ByteBuffer class, An Example Server
	channels, An Example Client (see channels)
	Channels class, The Channels Class
	Channels utility class, An Example Client
	clients, An Example Client, An Example Client
	code examples, An Example Client, An Example Server, View Buffers, Compacting Buffers, Duplicating Buffers, Duplicating Buffers
		channel-based chargen client, An Example Client
	Echo server, Compacting Buffers
	Ingen client, View Buffers
	non-blocking chargen server, An Example Server
	non-blocking HTTP server that chunks a file, Duplicating Buffers, Duplicating Buffers

	data conversion, Data Conversion
	I/O APIs, An Example Client, An Example Client
	IntBuffer class, View Buffers
	network vs. CPU speed, Non-Blocking I/O
	readiness selection, Readiness Selection, The SelectionKey Class
	SelectionKey class, An Example Server, The SelectionKey Class
	Selector class, An Example Server, An Example Server, The Selector Class
	servers, An Example Server, An Example Server
	ServerSocketChannel class, An Example Server, ServerSocketChannel, Accepting connections
	SocketChannel class, SocketChannel, Closing

	non-routable addresses, Internet Address Classes
	NoRouteToHostException (SocketException class), Socket Exceptions
	nslookup utility, HostLookup

O
	object serialization, Object Serialization, Object Serialization, Object Serialization
		limitations, Object Serialization

	OOBINLINE socket option, OOBINLINE // Java 1.4
	Open Directory interface, Communicating with Server-Side Programs Through GET
	Open Source Rhino JavaScript interpreter, JEditorPane
	open() methods, An Example Client, Connecting, Creating server socket channels, The Selector Class, Opening a socket, Opening Folders
		DatagramChannel class, Opening a socket
	Folder class, Opening Folders
	Selector class, The Selector Class
	ServerSocketChannel class, Creating server socket channels
	SocketChannel class, An Example Client, Connecting

	openConnection() methods, public URLConnection openConnection() throws
 IOException, JarURLConnection, protected abstract URLConnection openConnection(URL u) throws
 IOException
		opening jar URLs (URLConnection class), JarURLConnection
	URL class, public URLConnection openConnection() throws
 IOException
	URLStreamHandler class, protected abstract URLConnection openConnection(URL u) throws
 IOException

	openStream() method (URL class), public final InputStream openStream() throws
 IOException
	OP_ACCEPT, An Example Server
	OP_WRITE, An Example Server
	organization-wide multicast addresses, public boolean isMCOrgLocal()
	output streams, Streams, Output Streams, Output Streams, Output Streams, Output Streams, Output Streams
		flushing, Output Streams, Output Streams, Output Streams
		failure to, Output Streams

	OutputStreamWriter class, Readers and Writers, OutputStreamWriter, Filter Readers and Writers

P
	packet-switched networks, Networks
	packets, Networks
	PageSaver class, Attributes
	ParserCallback class, HTMLEditorKit.ParserCallback, HTMLEditorKit.ParserCallback
	parseServerAuthority() method (URI class), The Parts of the URI
	parseURL() method (URLStreamHandler class), protected void parseURL(URL u, String spec, int start, int
 limit)
	Part interface, The Message Class, The Part Interface, Writing the contents of the part, Attributes, Headers, Content, Writing the contents of the part
		attributes, Attributes
	content, Content, Writing the contents of the part
	headers, Headers

	passing a reference, Under the Hood, Under the Hood, Under the Hood
		by value, Under the Hood
	remote references, Under the Hood

	password authentication (JavaMail API), Password Authentication
	password-protected sites, accessing, Accessing Password-Protected Sites, The JPasswordField Class
	PasswordAuthentication class, The PasswordAuthentication Class
	path, URLs
	payloads, Sockets for Clients
	plug-ins, Content Handlers
	poke() method (UDPPoke class), Simple UDP Clients
	polling, Polling, Callbacks
		vs callbacks, Callbacks

	pools, Thread Pools
	POP protocol, Receiving Mail, Receiving Mail
	ports, Ports, Ports, URLs, public Socket(String host, int port) throws
 UnknownHostException, IOException, public Socket(InetAddress host, int port) throws
 IOException, public void close() throws IOException, public ServerSocket(int port) throws BindException,
 IOException
		anonymous ports, public ServerSocket(int port) throws BindException,
 IOException
	port assignments, Ports, Ports
	port scanners, public Socket(String host, int port) throws
 UnknownHostException, IOException, public Socket(InetAddress host, int port) throws
 IOException, public void close() throws IOException

	position() method (Buffer classes), Buffers
	POST (URL), Server-Side Programs
		CGI and, Server-Side Programs

	POST method, Server-Side Programs
	post() method (URLConnection class), Writing Data to a Server
	predefinede attributes of the Attribute class, Attributes
	print() and printin() methods (PrintStream
 class), PrintStream
	PrintStream class, PrintStream, PrintStream, PrintStream
		problems with, PrintStream

	PrintWriter class, PrintWriter, PrintWriter
	private key, Secure Communications
	processes, reuse of, Threads
	processMultipart() method (Multipart class), Multipart Messages and File Attachments
	proposed standards (IETF RFCs), IETF RFCs
	protected fields and methods (URLConnection class), URLConnections
	protocol handlers, URLConnections, Protocol Handlers, The URLStreamHandlerFactory Interface, Protocol Handlers, Protocol Handlers, What Is a Protocol Handler?, What Is a Protocol Handler?, What Is a Protocol Handler?, The URLStreamHandler Class, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5, Methods for Parsing URLs, protected int hashCode(URL u) // Java 1.3, A Method for Connecting, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler, More Protocol Handler Examples and Techniques, A daytime Protocol Handler, A daytime Protocol Handler, A daytime Protocol Handler, A daytime Protocol Handler, A chargen Protocol Handler, A chargen Protocol Handler, A chargen Protocol Handler, A chargen Protocol Handler, The URLStreamHandlerFactory Interface, The URLStreamHandlerFactory Interface, The URLStreamHandlerFactory Interface, What Is a Content Handler?
		chargen protocol handler, A chargen Protocol Handler
	classes used for, Protocol Handlers
	code examples, Writing a Protocol Handler, Writing a Protocol Handler, A daytime Protocol Handler, A daytime Protocol Handler, A chargen Protocol Handler, A chargen Protocol Handler, A chargen Protocol Handler, The URLStreamHandlerFactory Interface, The URLStreamHandlerFactory Interface
		chargen Handler class, A chargen Protocol Handler
	ChargeURLConnection class, A chargen Protocol Handler
	DaytimeURLConnection class, A daytime Protocol Handler
	DaytimeURLStreamHandler class, A daytime Protocol Handler
	finger handler class, Writing a Protocol Handler
	FingerURLConnection class, Writing a Protocol Handler
	FinitInputStream, A chargen Protocol Handler
	SourceViewer program that sets a
 URLStreamHandlerFactory, The URLStreamHandlerFactory Interface
	URLStreamHandlerFactory for finger, daytime, and
 chargen, The URLStreamHandlerFactory Interface

	content handlers and, What Is a Content Handler?
	daytime protocol handler, A daytime Protocol Handler, A daytime Protocol Handler
	development by Sun, Protocol Handlers
	sequence of events in handling protocols, What Is a Protocol Handler?
	URLStreamHandler class, The URLStreamHandler Class, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5, Methods for Parsing URLs, protected int hashCode(URL u) // Java 1.3, A Method for Connecting, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5
		connecting method, A Method for Connecting, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5
	protecting hash code, protected int hashCode(URL u) // Java 1.3
	proxy server specification, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5
	URL parsing methods, Methods for Parsing URLs

	URLStreamHandlerFactory interface, The URLStreamHandlerFactory Interface
	writing, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler, Writing a Protocol Handler, More Protocol Handler Examples and Techniques
		finger protocol handler, Writing a Protocol Handler, Writing a Protocol Handler
	five baseic steps, More Protocol Handler Examples and Techniques

	writing classes for new protocols, What Is a Protocol Handler?, What Is a Protocol Handler?

	protocols, Networks, The Transport Layer, IP, TCP, and UDP, IP, TCP, and UDP, IP, TCP, and UDP, IP Addresses and Domain Names, URLs, Investigating Protocols with Telnet, public Socket accept() throws IOException
		investigating with Telnet, Investigating Protocols with Telnet
	IP (Internet Protocol), IP, TCP, and UDP, IP Addresses and Domain Names
		IPv4 vs. IPv6, IP Addresses and Domain Names

	reliable and unreliable, The Transport Layer
	TCP (transmission control protocol), IP, TCP, and UDP
	time protocol (RFC 868), public Socket accept() throws IOException
	UDP (user datagram protocol), IP, TCP, and UDP

	proxies, Proxies, The ProxySelector Class, System Properties, The Proxy Class, The Proxy Class, The ProxySelector Class, The ProxySelector Class
		Proxy class, The Proxy Class
	proxy types, The Proxy Class
	ProxySelector class, The ProxySelector Class, The ProxySelector Class
	setting system properties, System Properties

	proxy servers, Proxy Servers, Proxies
	public key encryption, Secure Communications
	PushbackInputStream class, PushbackInputStream, PushbackInputStream, PushbackInputStream
		methods, PushbackInputStream
	unsupported methods, PushbackInputStream

	PushbackReader class, PushbackReader
	put() methods, Cookies, Cookies, Bulk Methods, Caches
		ByteBuffer class, Bulk Methods
	CookieHandler class, Cookies, Cookies
	ResponseCache class, Caches

Q
	query strings, URLs, Server-Side Programs, URLEncoder
		preparations for server-side GETS, URLEncoder

	QueryString class, URLEncoder
	queueLength, public ServerSocket(int port, int queueLength) throws
 IOException, BindException
	QuickTime for Java, JEditorPane

R
	race conditions, Race Conditions
	RandomPort, public int getLocalPort()
	RC4 and DES/AES-based ciphers, comparison, Choosing the Cipher Suites
	read() methods, Input Streams, Reading HTML Directly, Reading, Reading
		DatagramChannel class, Reading
	InputStream class, Input Streams
	JEditorPane class, Reading HTML Directly
	SocketChannel class, Reading

	Reader class, Readers, Readers, Readers
		methods, Readers, Readers

	readers, Streams
	readiness selection, Readiness Selection, The SelectionKey Class
	readLine() method (DataInputStream class), Data Streams
	rebind() methods, public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException, The Registry Interface
		Naming class, public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException
	Registry interface, The Registry Interface

	receive() methods, public void receive(DatagramPacket dp) throws
 IOException, Receiving
		DatagramChannel class, Receiving
	DatagramSocket class, public void receive(DatagramPacket dp) throws
 IOException

	ReceiverThread class, A UDP Echo Client
	recipient (To:, Cc\:, and Bcc\:) header
 information, The recipient addresses
	records, A Content Handler for Tab-Separated Values
	redirection, A redirector
	Redirector, A redirector, A redirector, A redirector, A redirector, A redirector, A redirector
		main() method, A redirector
	multi-threading, A redirector
	RedirectThread object, A redirector
	run() method, A redirector

	register() method (SelectableChannel class), The Selector Class
	registries, Under the Hood
	Registry interface, The Registry Interface, The Registry Interface
	REGISTRY_PORT field (Registry interface), The Registry Interface
	relative URIs, The Parts of the URI
	relative URLs, Relative URLs
	relativize() method (URI class), public URI relativize(URI uri)
	reliable protocol vs. unreliable protocols, The Transport Layer
	remaining() method (Buffer classes), Buffers
	Remote interface, The Server Side, The Remote Interface
	remote objects, What Is Remote Method Invocation?
	remote references, Under the Hood
	RemoteException class, Remote Exceptions
	RemoteExceptions, What Is Remote Method Invocation?
	RemoteObject class, The RemoteObject Class
	RemoteServer class, The RemoteServer Class
	removeBodyPart() methods (Multipart class), Multipart Messages and File Attachments
	removeHeader() method (Part interface), Headers
	renameTo() method (Folder class), Managing Folders
	Rendezvous, What Is a Multicast Socket?
	reply() method (Message class), Replying to messages
	Reply-to: header information, The Reply-to address
	requestPasswordAuthentication() method (Authenticator
 class), The Authenticator Class
	reset() methods, Marking and Resetting, Buffers, Marking and Resetting
		Buffer classes, Buffers, Marking and Resetting
	InputStream class, Marking and Resetting

	resolve() method (URI class), public URI resolve(String uri)
	resolveURI() method (URI class), public URI resolve(URI uri)
	response codes, HTTP 1.1, Handling Server Responses, Handling Server Responses
	response messages, Handling Server Responses
	ResponseCache class, Caches
	ReturnDigest class, Returning Information from a Thread
	rewind() method (Buffer classes), Buffers
	RFCs (Requests for Comments), IETF RFCs, IETF RFCs, IETF RFCs, Cookies
		cookies and RFC 2965, Cookies

	RMI (Remote Method Invocation), Remote Method Invocation, Exceptions, What Is Remote Method Invocation?, Under the Hood, What Is Remote Method Invocation?, Object Serialization, Object Serialization, Object Serialization, Under the Hood, Under the Hood, Under the Hood, Implementation, Running the Client, Implementation, The Server Side, The Server Side, The Server Side, The Server Side, The Server Side, Compiling the Stubs, Starting the Server, The Client Side, The Client Side, Running the Client, Loading Classes at Runtime, Loading Classes at Runtime, Loading Classes at Runtime, Loading Classes at Runtime, The java.rmi Package, The Remote Interface, The Remote Interface, The Naming Class, public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException, public static String[] list(String url) throws
 RemoteException, MalformedURLException, The RMISecurityManager Class, Remote Exceptions, Remote Exceptions, The java.rmi.registry Package, The Registry Interface, The LocateRegistry Class, The java.rmi.server Package, Exceptions, The RemoteObject Class, The RemoteServer Class, The UnicastRemoteObject Class, Exceptions
		classes, loading at runtime, Loading Classes at Runtime, Loading Classes at Runtime
	client side, The Client Side, Running the Client
		running the client, Running the Client

	code examples, What Is Remote Method Invocation?, The Server Side, The Server Side, The Client Side, Loading Classes at Runtime, Loading Classes at Runtime, The Remote Interface, public static String[] list(String url) throws
 RemoteException, MalformedURLException
		applet client for the Fibonacci object, Loading Classes at Runtime
	database interface, The Remote Interface
	FibonacciApplet.html, Loading Classes at Runtime
	FibonacciClient, The Client Side
	FibonacciImpl class, The Server Side
	FibonacciServer class, The Server Side
	RegistryLister, public static String[] list(String url) throws
 RemoteException, MalformedURLException
	weather interface, What Is Remote Method Invocation?

	description, What Is Remote Method Invocation?, Under the Hood
	implementation, Implementation, Running the Client
	java.rmi.package, The java.rmi Package, The Remote Interface, The Naming Class, public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException, Remote Exceptions
		Naming class, The Naming Class, public static void rebind(String url, Remote object) throws
 RemoteException, AccessException, MalformedURLException
	remote exceptions, Remote Exceptions
	Remote interface, The Remote Interface

	java.rmi.registry package, The java.rmi.registry Package, The Registry Interface, The LocateRegistry Class
		LocateRegistry class, The LocateRegistry Class
	Registry interface, The Registry Interface

	java.rmi.server package, The java.rmi.server Package, Exceptions, Exceptions
		exceptions, Exceptions

	necessary packages, Implementation
	object serialization, Object Serialization, Object Serialization, Object Serialization
		limitations, Object Serialization

	registries, Under the Hood
	remote exceptions, Remote Exceptions
	RemoteObject class, The RemoteObject Class
	RemoteServer class, The RemoteServer Class
	RMISecurityManager class, The RMISecurityManager Class
	server side implementation, The Server Side, The Server Side
	server startup, Starting the Server
	skeleton, Under the Hood
	stubs, Under the Hood, Compiling the Stubs
		compiling, Compiling the Stubs

	UnicastRemoteObject class, The Server Side, The UnicastRemoteObject Class

	RMISecurityManager class, The RMISecurityManager Class
	run() method (Thread class), Running Threads

S
	SafeBufferedReader class, Buffered readers and writers
	SafePrintWriter class, PrintWriter, PrintWriter
	sameFile() methods, public boolean sameFile(URL other), protected boolean sameFile(URL u1, URL u2) // Java
 1.3
		URL class, public boolean sameFile(URL other)
	URLStreamHandler class, protected boolean sameFile(URL u1, URL u2) // Java
 1.3

	saveChanges() method (Message class), Saving changes
	scatters, Reading
	schemes for authentication, The Authenticator Class
	search() methods (Folder class), Searching Folders
	SearchTerm class, Searching Folders
	secret key encryption, Secure Communications
	secure communications, Secure Communications, Secure Communications
	secure sockets, Secure Sockets, Client Mode, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Methods of the SSLSocket Class, Choosing the Cipher Suites, Choosing the Cipher Suites, Client Mode, Creating Secure Server Sockets, Creating Secure Server Sockets, Creating Secure Server Sockets, Creating Secure Server Sockets, Creating Secure Server Sockets
		client mode, Client Mode
	client sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets, Methods of the SSLSocket Class, Choosing the Cipher Suites, Choosing the Cipher Suites
		cipher suites, Choosing the Cipher Suites, Choosing the Cipher Suites
	connections refusal, Creating Secure Client Sockets
	SSLSocket class, Methods of the SSLSocket Class
	SSLSocketFactory class, Creating Secure Client Sockets
	utilizing, Creating Secure Client Sockets, Creating Secure Client Sockets

	code examples, Creating Secure Client Sockets, Creating Secure Server Sockets, Creating Secure Server Sockets
		HTTPS client, Creating Secure Client Sockets
	SecureOrderTaker, Creating Secure Server Sockets, Creating Secure Server Sockets

	server sockets, Creating Secure Server Sockets, Creating Secure Server Sockets, Creating Secure Server Sockets
		SSLServerSocket class, Creating Secure Server Sockets

	security, Security, Security, Security Issues, Cookies, Security Considerations for URLConnections
		applets and, Security, Security
	cookies and, Cookies
	InetAddress class, Security Issues
	URLConnection class, considerations, Security Considerations for URLConnections

	select methods (Selector class), The Selector Class
	select() method (Selector class), An Example Server
	SelectableChannel class, The Selector Class
	selectedKeys() methods, An Example Server, The Selector Class, The SelectionKey Class
		SelectionKey class, The SelectionKey Class
	Selector class, An Example Server, The Selector Class

	SelectionKey class, An Example Server, The SelectionKey Class
	selectNow() method (Selector class), The Selector Class
	Selector class, An Example Server, An Example Server, The Selector Class, The Selector Class
		named bit constants, The Selector Class

	send() methods, public void send(DatagramPacket dp) throws
 IOException, public void send(DatagramPacket packet, byte ttl) throws
 IOException, public void send(DatagramPacket packet, byte ttl) throws
 IOException
		DatagramSocket class, public void send(DatagramPacket dp) throws
 IOException
	MulticastSocket class, public void send(DatagramPacket packet, byte ttl) throws
 IOException, public void send(DatagramPacket packet, byte ttl) throws
 IOException
		overloaded variant with TTL field, public void send(DatagramPacket packet, byte ttl) throws
 IOException

	SenderThread class, A UDP Echo Client
	sendUrgentData() method (Socket class), OOBINLINE // Java 1.4
	server sockets, Sockets for Servers, A full-fledged HTTP server, public ServerSocket(int port) throws BindException,
 IOException, public Socket accept() throws IOException, public Socket accept() throws IOException, public Socket accept() throws IOException, public int getLocalPort(), SO_TIMEOUT, SO_REUSEADDR // Java 1.4, SO_RCVBUF // Java 1.4, public void setPerformancePreferences(int connectionTime, int
 latency, int bandwidth) // Java 1.5, Some Useful Servers, A full-fledged HTTP server, Client Tester, Client Tester, Client Tester, Client Tester, HTTP Servers, A full-fledged HTTP server, A single-file server, A single-file server, A redirector, A redirector, A full-fledged HTTP server, A full-fledged HTTP server, A full-fledged HTTP server, A full-fledged HTTP server
		code examples, public ServerSocket(int port) throws BindException,
 IOException, public Socket accept() throws IOException, public Socket accept() throws IOException, public int getLocalPort(), Client Tester, Client Tester, A single-file server, A single-file server, A redirector, A redirector, A full-fledged HTTP server, A full-fledged HTTP server, A full-fledged HTTP server, A full-fledged HTTP server
		client tester, Client Tester, Client Tester
	daytime server, public Socket accept() throws IOException
	HTTP redirector, A redirector, A redirector
	HTTP server that chunks out the same file, A single-file server, A single-file server
	JHTTP web server, A full-fledged HTTP server, A full-fledged HTTP server
	look for local ports, public ServerSocket(int port) throws BindException,
 IOException
	random port, public int getLocalPort()
	thread pool for handling HTTP requests, A full-fledged HTTP server, A full-fledged HTTP server
	time server, public Socket accept() throws IOException

	manual shutdown, public Socket accept() throws IOException
	options, SO_TIMEOUT, SO_REUSEADDR // Java 1.4, SO_RCVBUF // Java 1.4, public void setPerformancePreferences(int connectionTime, int
 latency, int bandwidth) // Java 1.5
		setPerformancePreferences() method, public void setPerformancePreferences(int connectionTime, int
 latency, int bandwidth) // Java 1.5
	SO_RCVBUF, SO_RCVBUF // Java 1.4
	SO_REUSEADDR, SO_REUSEADDR // Java 1.4
	SO_TIME OUT, SO_TIMEOUT

	servers, Some Useful Servers, A full-fledged HTTP server, Client Tester, Client Tester, HTTP Servers, A full-fledged HTTP server
		client tester, Client Tester, Client Tester
	HTTP servers, HTTP Servers, A full-fledged HTTP server

	server-side programs, Server-Side Programs, Server-Side Programs, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET
		communicating with, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET
		reverse engineering, Communicating with Server-Side Programs Through GET
	server-side input processing, Communicating with Server-Side Programs Through GET

	servers, An Example Server, An Example Server, Configuring the Client Request HTTP Header
		header restrictions, Configuring the Client Request HTTP Header
	non-blocking I/O APIs, An Example Server, An Example Server

	ServerSocket class, The ServerSocket Class, The ServerSocket Class, The ServerSocket Class, The Constructors, public ServerSocket() throws IOException // Java 1.4, public ServerSocket(int port) throws BindException,
 IOException, public ServerSocket(int port, int queueLength) throws
 IOException, BindException, public ServerSocket(int port, int queueLength, InetAddress
 bindAddress) throws BindException, IOException, public ServerSocket() throws IOException // Java 1.4, public ServerSocket() throws IOException // Java 1.4, Accepting and Closing Connections, Accepting and Closing Connections, public Socket accept() throws IOException, public Socket accept() throws IOException, public void close() throws IOException, public void close() throws IOException, public void close() throws IOException, The get Methods, public InetAddress getInetAddress(), public int getLocalPort(), SO_TIMEOUT, SO_TIMEOUT, public void setPerformancePreferences(int connectionTime, int
 latency, int bandwidth) // Java 1.5, The Object Methods, Implementation, public static void setSocketFactory(SocketImplFactory
 factory) throws IOException, protected final void implAccept(Socket s) throws
 IOException
		accept() method, public Socket accept() throws IOException, public Socket accept() throws IOException, SO_TIMEOUT
	accepting and closing connections, Accepting and Closing Connections
	close() method, Accepting and Closing Connections, public void close() throws IOException
	constructors, The Constructors, public ServerSocket() throws IOException // Java 1.4, public ServerSocket(int port, int queueLength) throws
 IOException, BindException, public ServerSocket(int port, int queueLength, InetAddress
 bindAddress) throws BindException, IOException, public ServerSocket() throws IOException // Java 1.4, public void close() throws IOException
		binding to a local IP address, public ServerSocket(int port, int queueLength, InetAddress
 bindAddress) throws BindException, IOException
	no-args constructor, public ServerSocket() throws IOException // Java 1.4, public void close() throws IOException
	queueLength, public ServerSocket(int port, int queueLength) throws
 IOException, BindException

	getInetAddress() method, public InetAddress getInetAddress()
	getLocalPort() method, public int getLocalPort()
	getSoTimeout() method, SO_TIMEOUT
	getter methods, The get Methods
	implAccept() method, protected final void implAccept(Socket s) throws
 IOException
	implementation methods, Implementation
	IOExceptions, public ServerSocket(int port) throws BindException,
 IOException, public ServerSocket() throws IOException // Java 1.4
	isBound() method, public void close() throws IOException
	object methods, The Object Methods
	program lifecycle, The ServerSocket Class, The ServerSocket Class
		spawning of threads, The ServerSocket Class

	setPerformancePreferences() method, public void setPerformancePreferences(int connectionTime, int
 latency, int bandwidth) // Java 1.5
	SocketImplFactory, public static void setSocketFactory(SocketImplFactory
 factory) throws IOException

	ServerSocketChannel class, The ServerSocket Class, An Example Server, An Example Server, ServerSocketChannel, Accepting connections, Accepting connections
		exceptions, Accepting connections
	making a channel non-blocking, An Example Server

	service providers (JavaMail API), What Is the JavaMail API?
	servlets, limitations of, Server-Side Programs
	Set-Cookie field, Cookies
	Set-Cookie2 HTTP header, Cookies
	setAddress() method (DatagramPacket class), public void setAddress(InetAddress remote)
	setAllowUserInteraction() method, protected boolean allowUserInteraction
	setConnectTimeout() method (URLConnection
 class), Timeouts
	setContentHandlerFactory() method (URLConnection
 class), Installing Content Handler Factories
	setContentLanguage() method (MimePart interface), MIME Messages
	setData() method (DatagramPacket class), public void setData(byte[] data), public void setData(byte[] data, int offset, int length) //
 Java 1.2
		overloaded variant, public void setData(byte[] data, int offset, int length) //
 Java 1.2

	setDataHandler() method (Part interface), Reading the contents of the part
	setDefault() method (Authenticator class), The Authenticator Class
	setDefaultAllowUserInteraction() method (URLConnection
 class), protected boolean allowUserInteraction
	setDescriptionMethod() (Part interface), Attributes
	setDisposition() method (Part interface), Attributes
	setDoInput() method, protected boolean doInput
	setDoOutput() method, protected boolean doOutput
	setEnabledCipherSuites() methods, Choosing the Cipher Suites, Choosing the Cipher Suites
		SSLServerSocket class, Choosing the Cipher Suites
	SSLSocket class, Choosing the Cipher Suites

	setEnableSessionCreation() method (SSLServerSocket
 class), Session Management
	setFileName() method (Part interface), Attributes
	setFlag() methods (Flags class), Flags
	setFlags() methods, Flags, Flags
		Flags class, Flags
	Message class, Flags

	setFrom() methods, Sending Email, The From address
		InternetAddress class, Sending Email
	Message class, The From address

	setHeader() method (Part interface), Headers
	setInterface() method (MulticastSocket
 class), public void setInterface(InetAddress address) throws
 SocketException
	setKeepAlive() method (Socket class), SO_KEEPALIVE
	setLength() method (DatagramPacket class), public void setLength(int length)
	setLog() method (RemoteServer class), Logging
	setLoopback() method (MulticastSocket class), public void setLoopbackMode(boolean disable) throws
 SocketException // Java 1.4
	setMessageNumber() method (Message class), Folders
	setNeedClientAuth() methods, Client Mode, Client Mode
		SSLServerSocket class, Client Mode
	SSLSocket class, Client Mode

	setNetworkInterface() method (MulticastSocket
 class), public void setNetworkInterface(NetworkInterface interface)
 throws SocketException // Java 1.4
	setOOBInLine() method (Socket class), OOBINLINE // Java 1.4
	setPerformancePreferences() method (ServerSocket
 class), public void setPerformancePreferences(int connectionTime, int
 latency, int bandwidth) // Java 1.5
	setPort() method (DatagramPacket class), public void setPort(int port)
	setReadTimeout() method (URLConnection class), Timeouts
	setReceiveBufferSize() method (Socket class), SO_RCVBUF
	setRecipient() method (InternetAddress class), Sending Email
	setRecipients() method (Message class), The recipient addresses
	setReplyTo() method (Message class), The Reply-to address
	setRequestMethod() method (HttpURLConnection
 class), The Request Method
	setRequestProperty() method (URLConnection
 class), Configuring the Client Request HTTP Header, Configuring the Client Request HTTP Header
	setReuseAddress() method (Socket class), SO_REUSEADDR // Java 1.4
	setSendBufferSize() method (Socket class), SO_SNDBUF
	setSentDate() method (Message class), The date of the message
	setSocketAddress() method (DatagramPacket
 class), public void setAddress(SocketAddress remote) // Java
 1.4
	setSoLinger() method (Socket class), SO_LINGER
	setSoTimeout() method (Socket class), SO_TIMEOUT
	setSubscribed() method (Folder class), Subscriptions
	setTcpNoDelay() method (Socket class), TCP_NODELAY
	setText() methods, Writing the contents of the part, MIME Messages
		MimePart interface, MIME Messages
	Part interface, Writing the contents of the part

	setTimeToLive() method (MulticastSocket
 class), public void setTimeToLive(int ttl) throws IOException // Java
 1.2
	setTrafficClass() methods, Class of Service, Traffic class
		DatagramSocket class, Traffic class
	Socket class, Class of Service

	setURL() method (URLStreamHandler class), protected void setURL(URL u, String protocol, String host,
 int port, String authority, String userInfo, String path, String
 query, String fragmentID) // Java 1.3
	setUseClientMode() method (SSLSocket class), Client Mode
	SGML (Standard Generalized Markup Language), HTML, SGML, and XML
	shutdownInput() and shutdownOutput() methods (Socket
 class), Half-closed sockets // Java 1.3
	SingleFileHTTPServer, A single-file server, A single-file server, A single-file server
		main() method, A single-file server
	run() method, A single-file server

	site-local addresses, public boolean isSiteLocalAddress()
	site-wide multicast addresses, public boolean isMCSiteLocal()
	skeleton, Under the Hood
	skip() method (InputStream class), Input Streams
	Socket class, The Socket Class, Socket Exceptions, The Socket Class, The Constructors, public Socket(Proxy proxy) // Java 1.5, The Constructors, public Socket(InetAddress host, int port) throws
 IOException, protected Socket(), Getting Information About a Socket, public OutputStream getOutputStream() throws
 IOException, public void close() throws IOException, public void close() throws IOException, public void close() throws IOException, public void close() throws IOException, Half-closed sockets // Java 1.3, Half-closed sockets // Java 1.3, TCP_NODELAY, Socket Addresses, OOBINLINE // Java 1.4, The Object Methods
		close() method, public void close() throws IOException
	constructors, The Constructors, public Socket(Proxy proxy) // Java 1.5, The Constructors, public Socket(InetAddress host, int port) throws
 IOException
		protected constructors, The Constructors, public Socket(InetAddress host, int port) throws
 IOException

	getter and setter methods, TCP_NODELAY, Socket Addresses
	isBound() method, public void close() throws IOException
	isClosed() method, public void close() throws IOException
	isConnected() method, public void close() throws IOException
	isInputShutdown() and isOutputShutdown()
 methods, Half-closed sockets // Java 1.3
	methods for getting information, Getting Information About a Socket, public OutputStream getOutputStream() throws
 IOException
	noargs Socket() constructor, protected Socket()
	object methods, The Object Methods
	other Java classes, relation to, The Socket Class
	sendUrgentData() method, OOBINLINE // Java 1.4
	shutdownInput() and shutdownOutput()
 methods, Half-closed sockets // Java 1.3

	SocketAddress class, Socket Addresses
	SocketChannel class, An Example Client, View Buffers, SocketChannel, Closing
		open() method, An Example Client
	supported buffers, View Buffers

	SocketException class, Socket Exceptions
	SocketImplFactory (ServerSocket class), public static void setSocketFactory(SocketImplFactory
 factory) throws IOException
	sockets, public Socket(String host, int port) throws
 UnknownHostException, IOException, public InetAddress getLocalAddress(), public InputStream getInputStream() throws
 IOException, public InputStream getInputStream() throws
 IOException, public OutputStream getOutputStream() throws
 IOException, public void close() throws IOException, Finger, Whois, Whois, Whois, Whois, Sockets for Servers, public Socket accept() throws IOException, public void close() throws IOException, Secure Sockets, UDP Datagrams and Sockets, Closing, Multicast Sockets, Multicast Sockets
		closing, public Socket accept() throws IOException, public void close() throws IOException
		ServerSockets as opposed to Sockets, public void close() throws IOException

	code examples, public Socket(String host, int port) throws
 UnknownHostException, IOException, public InetAddress getLocalAddress(), public InputStream getInputStream() throws
 IOException, public InputStream getInputStream() throws
 IOException, public OutputStream getOutputStream() throws
 IOException, public void close() throws IOException, Finger, Whois, Whois, Whois, Whois
		command-line whois client, Whois
	daytime protocol client, public InputStream getInputStream() throws
 IOException
	echo client, public OutputStream getOutputStream() throws
 IOException
	getting a socket's information, public InetAddress getLocalAddress()
	graphical Whois client interface, Whois, Whois
	Java command-line finger client, Finger
	port scanning the low 1024 ports, public Socket(String host, int port) throws
 UnknownHostException, IOException
	socket closing port scanner, public void close() throws IOException
	time protocol client, public InputStream getInputStream() throws
 IOException
	Whois class, Whois

	multicast sockets, Multicast Sockets (see multicast sockets)
	secure sockets, Secure Sockets (see secure sockets)
	server sockets, Sockets for Servers (see server sockets)
	UDP datagrams and, UDP Datagrams and Sockets, Closing
	unicast versus multicast, Multicast Sockets

	SO_BROADCAST option (DatagramSocket class), SO_BROADCAST
	SO_KEEPALIVE socket option, SO_KEEPALIVE
	SO_LINGER socket option, SO_LINGER
	SO_RCVBUF option (DatagramSocket class), SO_RCVBUF
	SO_RCVBUF server socket option, SO_RCVBUF // Java 1.4
	SO_RCVBUFsocket option, SO_RCVBUF
	SO_REUSEADDR option (DatagramSocket class), SO_REUSEADDR
	SO_REUSEADDR server socket option, SO_REUSEADDR // Java 1.4
	SO_REUSEADDR socket option, SO_REUSEADDR // Java 1.4
	SO_SNDBUF option (DatagramSocket class), SO_SNDBUF
	SO_SNDBUFsocket option, SO_SNDBUF
	SO_TIME OUT server socket option, SO_TIMEOUT
	SO_TIMEOUT option (DatagramSocket class), SO_TIMEOUT
	SO_TIMEOUTsocket option, SO_TIMEOUT
	spaces, urlencoding of, The URLEncoder and URLDecoder Classes
	special characters in URLs, The URLEncoder and URLDecoder Classes
	spiders, Searching the Web
	SQLQuery() method, The Remote Interface
	SSL (Secure Sockets Layer), Secure Sockets, Session Management
		sessions, Session Management

	SSLServerSocket class, Creating Secure Server Sockets, Methods of the SSLServerSocket Class, Choosing the Cipher Suites, Choosing the Cipher Suites, Choosing the Cipher Suites, Session Management, Session Management, Session Management, Client Mode, Client Mode, Client Mode
		getEnabledCipherSuites method, Choosing the Cipher Suites
	getEnableSessionCreation() method, Session Management
	getNeedClientAuth() method, Client Mode
	getSupportedCipherSuites() method, Choosing the Cipher Suites
	methods, Methods of the SSLServerSocket Class, Client Mode
		client mode, Client Mode

	session management, Session Management
	setEnabledCipherSuites method, Choosing the Cipher Suites
	setEnableSessionCreation() method, Session Management
	setNeedClientAuth() method, Client Mode

	SSLSocket class, Methods of the SSLSocket Class, Choosing the Cipher Suites, Choosing the Cipher Suites, Choosing the Cipher Suites, Session Management, Session Management, Session Management, Client Mode, Client Mode, Client Mode, Client Mode
		getEnabledCipherSuites() method, Choosing the Cipher Suites
	getEnableSessionCreation() method, Session Management
	getNeedClientAuth() method, Client Mode
	getSession() method, Session Management
	getSupportedCipherSuites() method, Choosing the Cipher Suites
	getUseClientMode() method, Client Mode
	setEnabledCipherSuites() method, Choosing the Cipher Suites
	setNeedClientAuth() method, Client Mode
	setUseClientModel() method, Client Mode
	startHandshake() method, Session Management

	SSLSocketFactory class, Creating Secure Client Sockets, Creating Secure Client Sockets, Creating Secure Client Sockets
		createSocket() method, Creating Secure Client Sockets
	getDefault() method, Creating Secure Client Sockets

	Standard Generalized Markup Language (SGML), HTML, SGML, and XML
	startHandshake() method (SSLSocket class), Session Management
	streams, Streams, PrintWriter, Output Streams, Output Streams, Output Streams, Output Streams, Output Streams, Output Streams, Input Streams, Marking and Resetting, Marking and Resetting, Filter Streams, Chaining Filters Together, Filter Streams, Filter Streams, Chaining Filters Together, Buffered Streams, Buffered Streams, PrintStream, PrintStream, PrintStream, PushbackInputStream, Data Streams, Data Streams, Compressing Streams, Compressing Streams, Digest Streams, Encrypting Streams, Encrypting Streams, Readers and Writers, PrintWriter, Readers and Writers, Readers and Writers, Writers, OutputStreamWriter, Readers, Filter Readers and Writers, PrintWriter, Filter Readers and Writers, Filter Readers and Writers, Buffered readers and writers, Buffered readers and writers, Buffered readers and writers, PrintWriter, PrintWriter, PrintWriter, PrintWriter, PrintWriter, PrintWriter, The Socket Class, Buffers
		buffered streams, Buffered Streams, Buffered Streams
	channels, compared to, Buffers
	closing, Output Streams
	code examples, Buffered readers and writers, PrintWriter, PrintWriter
		SafeBufferedReader class, Buffered readers and writers
	SafePrintWriter class, PrintWriter, PrintWriter

	compressing streams, Compressing Streams, Compressing Streams
		included classes, Compressing Streams

	data buffering, Output Streams
	data streams, Data Streams, Data Streams
	digest streams, Digest Streams
	encrypting streams, Encrypting Streams, Encrypting Streams
	filter streams, Filter Streams, Chaining Filters Together, Filter Streams, Filter Streams, Chaining Filters Together
		chaining, Filter Streams, Chaining Filters Together
	methods, Filter Streams

	input streams, Input Streams, Marking and Resetting, Marking and Resetting
		marking and resetting, Marking and Resetting

	output streams, Output Streams, Output Streams, Output Streams, Output Streams
		flushing, Output Streams, Output Streams

	PrintStream class, PrintStream, PrintStream, PrintStream
		problems with, PrintStream

	PushbackInputStream class, PushbackInputStream
	readers and writers, Readers and Writers, PrintWriter, Readers and Writers, Readers and Writers, Writers, OutputStreamWriter, Readers, Filter Readers and Writers, PrintWriter, Filter Readers and Writers, Filter Readers and Writers, Buffered readers and writers, Buffered readers and writers, PrintWriter, PrintWriter, PrintWriter, PrintWriter
		ASCII code and, Readers and Writers
	BufferedReader and BufferedWriter classes, Buffered readers and writers, Buffered readers and writers
	character encoding and, Readers and Writers
	filters, Filter Readers and Writers, PrintWriter
	InputStreamReader class, Filter Readers and Writers
	OutputStreamWriter class, OutputStreamWriter, Filter Readers and Writers
	PrintWriter class, PrintWriter, PrintWriter
	Reader class, Readers
	SafePrintWriter class, PrintWriter, PrintWriter
	Writer class, Writers

	stubs, Under the Hood, Compiling the Stubs
		compiling, Compiling the Stubs

	subject: header information, The subject of the message
	subnet-wide multicast addresses, public boolean isMCLinkLocal()
	Swing, HTML in Swing, Cookies, HTML on Components, HTML on Components, JEditorPane, JEditorPane, Constructing HTML User Interfaces on the Fly, Handling Hyperlinks, Handling Hyperlinks, Parsing HTML, Attributes, HTMLEditorKit.Parser, HTMLEditorKit.Parser, HTMLEditorKit.Parser, HTMLEditorKit.ParserCallback, HTMLEditorKit.ParserCallback, HTMLEditorKit.ParserCallback, HTML.Tag, HTML.Tag, HTML.Tag, HTML.Tag, HTML.Tag, Attributes, Attributes, Attributes, Attributes, Attributes, Attributes, Cookies, Cookies, Cookies, Cookies, Password Authentication
		AttributeSet interface, Attributes, Attributes
		methods, Attributes

	Authenticator subclass, Password Authentication
	code examples, HTML on Components, JEditorPane, Constructing HTML User Interfaces on the Fly, Handling Hyperlinks, Handling Hyperlinks, HTMLEditorKit.Parser, HTMLEditorKit.ParserCallback, HTML.Tag, HTML.Tag, HTML.Tag, HTML.Tag, Attributes, Attributes, Cookies, Cookies, Cookies
		cookie class, Cookies
	CookieHandler, Cookies
	CookieHandler implemented on the Java Collections
 API, Cookies
	Fibonacci sequence in HTML, Constructing HTML User Interfaces on the Fly
	HyperlinkListener class, Handling Hyperlinks
	including HTML in JLabels, HTML on Components
	JEditorPane, displaying web pages with, JEditorPane
	LineBreakingTagStripper, HTML.Tag, HTML.Tag
	making the getParser() method public, HTMLEditorKit.Parser
	Outliner, HTML.Tag, HTML.Tag
	PageSaver, Attributes, Attributes
	SimpleWebBrowser, Handling Hyperlinks
	TagStripper, HTMLEditorKit.ParserCallback

	cookies, Cookies (see cookies)
	HTML on components, HTML on Components
	HTML, parsing, Parsing HTML, Attributes
	HTML.Tag class, HTML.Tag
	HTMLEditorKit.Parser class, HTMLEditorKit.Parser, HTMLEditorKit.Parser
	JEditorPane, JEditorPane (see JEditorPane class)
	MutableAttributeSet class, Attributes, Attributes
	ParserCallback class, HTMLEditorKit.ParserCallback, HTMLEditorKit.ParserCallback

	symmetric key encryption, Secure Communications
	synchronization, Synchronization, Alternatives to Synchronization, Alternatives to Synchronization
		alternatives, Alternatives to Synchronization

	synchronized blocks, Synchronized Blocks
	synchronized keywords, Synchronized Blocks
	synchronized methods, Synchronized Methods
	synchronous input/output, Streams

T
	tab-separated values, A Content Handler for Tab-Separated Values, A Content Handler for Tab-Separated Values, A Content Handler for Tab-Separated Values, Using Content Handlers
		content handler for, A Content Handler for Tab-Separated Values, A Content Handler for Tab-Separated Values, Using Content Handlers
		using, Using Content Handlers

	tags, HTML, SGML, and XML
	TCP (Transmission Control Protocol), IP, TCP, and UDP, The UDP Protocol
		UDP, compared to, The UDP Protocol

	TCP stack buffers, SO_RCVBUF
	TCP/IP (Transmission Control Protocol/Internet Protocol),
 buffering of data, Output Streams
	TCP_NODELAY socket option, TCP_NODELAY
	Telnet, Investigating Protocols with Telnet
	Thread class, Running Threads, Subclassing Thread, Subclassing Thread, Implementing the Runnable Interface
		subclassing of, Subclassing Thread, Subclassing Thread
		run() method, overriding, Subclassing Thread

	thread scheduling, Thread Scheduling, Finish, Priorities, Preemption, Blocking, Yielding, Sleeping, Sleeping, Joining threads, Joining threads, Joining threads, Waiting on an object, Priority-based preemption, Finish
		(see also threads)
	preemptive and cooperative scheduling, Preemption, Blocking, Yielding, Sleeping, Sleeping, Joining threads, Joining threads, Waiting on an object, Priority-based preemption, Finish
		blocking, Blocking
	finishing, Finish
	joining threads, Joining threads, Joining threads
	priority-base preemption, Priority-based preemption
	sleeping, Sleeping, Sleeping
	waiting on an object, Waiting on an object
	yielding, Yielding

	priorities, Priorities

	threads, Threads, Thread Pools, Running Threads, Subclassing Thread, Subclassing Thread, Implementing the Runnable Interface, Returning Information from a Thread, Returning Information from a Thread, Returning Information from a Thread, Returning Information from a Thread, Returning Information from a Thread, Race Conditions, Polling, Callbacks, Callbacks, Callbacks, Callbacks, Callbacks, Callbacks, Callbacks, Synchronization, Alternatives to Synchronization, Synchronization, Synchronized Blocks, Synchronized Blocks, Synchronized Methods, Alternatives to Synchronization, Deadlock, Thread Scheduling, Priority-based preemption, Thread Pools, Thread Pools, Thread Pools, Thread Pools, The ServerSocket Class, Non-Blocking I/O
		advantages and disadvantages, Synchronization
	code examples, Subclassing Thread, Subclassing Thread, Implementing the Runnable Interface, Returning Information from a Thread, Returning Information from a Thread, Callbacks, Callbacks, Callbacks, Callbacks, Callbacks, Synchronized Blocks, Priority-based preemption, Thread Pools, Thread Pools
		DigestListener interface, Callbacks
	DigestRunnable, Implementing the Runnable Interface
	FileDigestThread, Subclassing Thread, Subclassing Thread
	GZipThread class, Thread Pools
	GZipThread user interface class, Thread Pools
	InstanceCallbackDigest, Callbacks
	InstanceCallbackDigestUserInterface, Callbacks
	ListCallbackDigest class, Callbacks
	ListCallbackDigestUserInterface interface, Callbacks
	LogFile, Synchronized Blocks
	preemptive scheduling thread, Priority-based preemption
	program using accessor method to get thread
 output, Returning Information from a Thread
	thread using accessor methods, Returning Information from a Thread

	constructors and, Callbacks
	deadlock, Deadlock
	definition, Running Threads
	multithreading and data transmission, Non-Blocking I/O
	returning information from, Returning Information from a Thread, Returning Information from a Thread, Returning Information from a Thread, Race Conditions, Polling, Callbacks
		accessor method examples, Returning Information from a Thread, Returning Information from a Thread
	callbacks, Callbacks
	polling, Polling
	race conditions, Race Conditions

	server sockets and, The ServerSocket Class
	synchronization, Synchronization, Alternatives to Synchronization, Synchronized Blocks, Synchronized Methods, Alternatives to Synchronization
		alternatives to, Alternatives to Synchronization
	synchronized blocks, Synchronized Blocks
	synchronized methods, Synchronized Methods

	thread pools, Thread Pools, Thread Pools
	thread scheduling, Thread Scheduling (see thread scheduling)

	time protocol (RFC 868), public Socket accept() throws IOException
	time servers, public InputStream getInputStream() throws
 IOException
	TimeClient, public InputStream getInputStream() throws
 IOException
	TimeServer, public Socket accept() throws IOException
	TLS (Transport Layer Security), Secure Sockets
	To: header information, The recipient addresses
	toASCIIString() method (URI class), public String toASCIIString()
	toExternalForm() methods, public String toExternalForm(), protected String toExternalForm(URL u)
		URL class, public String toExternalForm()
	URLStreamHandler class, protected String toExternalForm(URL u)

	toString() methods, public String toString(), public String toString(), Object Methods, public String toString(), public String toString(), public String toString(), Object Methods, The RemoteObject Class, The Address Class
		Address class, The Address Class
	Buffer classes, Object Methods
	InetAddress class, public String toString(), public String toString()
	NetworkInterface class, Object Methods
	RemoteObject class, The RemoteObject Class
	ServerSocket class, public String toString()
	URI class, public String toString()
	URL class, public String toString()

	toURI() method (URL class), public URI toURI() throws URISyntaxException // Java
 1.5
	toURL() method (File class), Other sources of URL objects
	transport layer, The Transport Layer
	TTL (Time-To-Live), What Is a Multicast Socket?, Clients and Servers, Clients and Servers
		estimated values for U.S. datagrams, Clients and Servers

U
	UDP (User Datagram Protocol), IP, TCP, and UDP, The UDP Protocol, The UDP Protocol, The UDP Protocol, The UDP Protocol, The UDP Protocol, The UDP Protocol, The DatagramPacket Class, public void setLength(int length), The DatagramPacket Class, The DatagramPacket Class, The DatagramSocket Class, Traffic class, Sending and Receiving Datagrams, public SocketAddress getLocalSocketAddress() // Java
 1.4, public void receive(DatagramPacket dp) throws
 IOException, Managing Connections, Traffic class, Simple UDP Clients, UDPServer, A UDP Echo Client, A UDP Echo Client, DatagramChannel, Closing, Writing, Multicast Sockets, Clients and Servers
		connections, managing, Managing Connections
	DatagramChannel class, DatagramChannel, Closing
	DatagramPacket class, The DatagramPacket Class, public void setLength(int length)
	datagrams, sending and receiving, Sending and Receiving Datagrams, public SocketAddress getLocalSocketAddress() // Java
 1.4
	DatagramSocket class, The DatagramSocket Class, Traffic class
	discard server, public void receive(DatagramPacket dp) throws
 IOException
	file transfer protocols using, The UDP Protocol
	Java classes implementing, The UDP Protocol
	multicasting and, The UDP Protocol, Multicast Sockets
	multicasting, compared to, Clients and Servers
	packet size, The DatagramPacket Class
	ports per host, The DatagramPacket Class
	simple clients, Simple UDP Clients
	TCP channels versus datagram channels, Writing
	TCP, compared to, The UDP Protocol
	Traffic class, Traffic class
	UDP echo client, A UDP Echo Client, A UDP Echo Client
	UDPServer class, UDPServer

	UDP datagrams and sockets, UDP Datagrams and Sockets, Closing, public int getOffset() // Java 1.2, public DatagramSocket(int port) throws
 SocketException, public void send(DatagramPacket dp) throws
 IOException, public void receive(DatagramPacket dp) throws
 IOException, Simple UDP Clients, Simple UDP Clients, UDPServer, UDPServer, UDPServer, UDPServer, UDPServer, A UDP Echo Client, A UDP Echo Client, A UDP Echo Client, Receiving, Sending, Writing
		code examples, public int getOffset() // Java 1.2, public DatagramSocket(int port) throws
 SocketException, public void send(DatagramPacket dp) throws
 IOException, public void receive(DatagramPacket dp) throws
 IOException, Simple UDP Clients, Simple UDP Clients, UDPServer, UDPServer, UDPServer, UDPServer, UDPServer, A UDP Echo Client, A UDP Echo Client, A UDP Echo Client, Receiving, Sending, Writing
		DatagramPacket, constructing for receipt of
 data, public int getOffset() // Java 1.2
	high-performance UDP discard server, UDPServer
	local UDP port scanning, public DatagramSocket(int port) throws
 SocketException
	ReceiverThread class, A UDP Echo Client
	SenderThread class, A UDP Echo Client
	UDP daytime server, UDPServer
	UDP discard client, public void send(DatagramPacket dp) throws
 IOException
	UDP discard server, UDPServer
	UDP echo client based on channels, Writing
	UDP echo server, UDPServer
	UDP time client, Simple UDP Clients
	UDPDiscardServer, public void receive(DatagramPacket dp) throws
 IOException
	UDPDiscardServer based on channels, Receiving
	UDPEchoClient class, A UDP Echo Client
	UDPEchoServer based on channels, Sending
	UDPPoke class, Simple UDP Clients
	UDPServer class, UDPServer

	UDPDiscardClient class, public void send(DatagramPacket dp) throws
 IOException
	UDPEchoClient class, A UDP Echo Client
	UDPPoke class, Simple UDP Clients, Simple UDP Clients
		private fields, Simple UDP Clients

	UDPServer class, UDPServer
		fields, UDPServer

	unbind() methods, public static void unbind(String url) throws RemoteException,
 NotBoundException, AlreadyBoundException, MalformedURLException,
 AccessException // Java 1.2, The Registry Interface
		Naming class, public static void unbind(String url) throws RemoteException,
 NotBoundException, AlreadyBoundException, MalformedURLException,
 AccessException // Java 1.2
	Registry interface, The Registry Interface

	unicast sockets, Multicast Sockets
	UnicastRemoteObject class, The Server Side, The UnicastRemoteObject Class
	uniform resource names (URNs), URNs
	unread() methods (PushbackInputStream class), PushbackInputStream
	URI class, The URI Class, public String toASCIIString(), The URI Class, Constructing a URI, public static URI create(String uri), The Parts of the URI, The Parts of the URI, The Parts of the URI, The Parts of the URI, The Parts of the URI, The Parts of the URI, Resolving Relative URIs, public URI resolve(URI uri), public URI resolve(String uri), public URI relativize(URI uri), Utility Methods, public boolean equals(Object o), public int hashCode(), public int compareTo(Object o), public String toString(), public String toASCIIString()
		constructing URIs, Constructing a URI, public static URI create(String uri)
	getPort() method, The Parts of the URI
	getter methods, The Parts of the URI
	isAbsolute() method, The Parts of the URI
	isOpaque() method, The Parts of the URI
	parseServerAuthority() method, The Parts of the URI
	resolving relative URIs, Resolving Relative URIs, public URI resolve(URI uri), public URI resolve(String uri), public URI relativize(URI uri)
		relativize() method, public URI relativize(URI uri)
	resolve() method, public URI resolve(String uri)
	resolveURI() method, public URI resolve(URI uri)

	URL class, compared to, The URI Class, The Parts of the URI
	utility methods, Utility Methods, public boolean equals(Object o), public int hashCode(), public int compareTo(Object o), public String toString(), public String toASCIIString()
		compareTo() method, public int compareTo(Object o)
	equals()method, public boolean equals(Object o)
	hashCode() method, public int hashCode()
	toASCIIString() method, public String toASCIIString()
	toString() method, public String toString()

	URIs (Uniform Resource Identifiers), URIs, URIs, URIs, The Parts of the URI, The Parts of the URI, The Parts of the URI
		absolute and relative URIs, The Parts of the URI
	hierarchical and non-hierarchical URIs, The Parts of the URI
	parts, The Parts of the URI
	schemes, URIs

	URL class, The URL Class, Creating New URLs, Other sources of URL objects, Creating New URLs, Creating New URLs, Constructing a URL from a string, Constructing a URL from a string, Constructing a URL from its component parts, Constructing relative URLs, Specifying a URLStreamHandler // Java 1.2, Splitting a URL into Pieces, public String getProtocol(), public String getHost(), public int getPort(), public int getDefaultPort(), public String getFile(), public String getPath() // Java 1.3, public String getRef(), public String getQuery() // Java 1.3, public String getUserInfo() // Java 1.3, public String getAuthority() // Java 1.3, Retrieving Data from a URL, public final InputStream openStream() throws
 IOException, public URLConnection openConnection() throws
 IOException, public final Object getContent() throws IOException, public final Object getContent(Class[] classes) throws
 IOException // Java 1.3, Utility Methods, public boolean sameFile(URL other), public String toExternalForm(), public URI toURI() throws URISyntaxException // Java
 1.5, The Object Methods, public String toString(), public boolean equals(Object o), public int hashCode(), Methods for Protocol Handlers, The URLEncoder and URLDecoder Classes, The URI Class, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Accessing Password-Protected Sites, Reading Data from a Server, Protocol Handlers
		character encoding and, The URLEncoder and URLDecoder Classes
	constructing relative URLs, Constructing relative URLs
	constructing URLs from strings, Constructing a URL from a string
	constructing URLs from thier parts, Constructing a URL from its component parts
	constructors, Creating New URLs
	creating new URLs, Creating New URLs, Other sources of URL objects
	GET method, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET
		server-side input processing, Communicating with Server-Side Programs Through GET

	HTTP authentication, Accessing Password-Protected Sites
	inaccessible but supported protocols, Constructing a URL from a string
	methods for protocol handlers, Methods for Protocol Handlers
	object methods, The Object Methods, public String toString(), public boolean equals(Object o), public int hashCode()
		equals(), public boolean equals(Object o)
	hashCode() method, public int hashCode()
	toString() method, public String toString()

	protocol handlers, usage in, Protocol Handlers
	retrieving data, Retrieving Data from a URL, public final InputStream openStream() throws
 IOException, public URLConnection openConnection() throws
 IOException, public final Object getContent() throws IOException, public final Object getContent(Class[] classes) throws
 IOException // Java 1.3
		getContent() method, public final Object getContent() throws IOException
	openConnection() method, public URLConnection openConnection() throws
 IOException
	openStream() method, public final InputStream openStream() throws
 IOException
	overloaded getContent() method, public final Object getContent(Class[] classes) throws
 IOException // Java 1.3

	server-side programs, communicating with, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET, Communicating with Server-Side Programs Through GET
		reverse engineering, Communicating with Server-Side Programs Through GET
	server-side input processing, Communicating with Server-Side Programs Through GET

	splitting URLs into pieces, Splitting a URL into Pieces, public String getProtocol(), public String getHost(), public int getPort(), public int getDefaultPort(), public String getFile(), public String getPath() // Java 1.3, public String getRef(), public String getQuery() // Java 1.3, public String getUserInfo() // Java 1.3, public String getAuthority() // Java 1.3
		getAuthority() method, public String getAuthority() // Java 1.3
	getDefaultPort() method, public int getDefaultPort()
	getFile() method, public String getFile()
	getHost() method, public String getHost()
	getPath() method, public String getPath() // Java 1.3
	getPort() method, public int getPort()
	getProtocol() method, public String getProtocol()
	getQuery() method, public String getQuery() // Java 1.3
	getRef() method, public String getRef()
	getUserInfor() method, public String getUserInfo() // Java 1.3

	supported protocols, Creating New URLs
	URI class, compared to, The URI Class
	URLConnection class, compared to, Reading Data from a Server
	URLStreamHandler objects, Specifying a URLStreamHandler // Java 1.2
	utility methods, Utility Methods, public boolean sameFile(URL other), public String toExternalForm(), public URI toURI() throws URISyntaxException // Java
 1.5
		sameFile() method, public boolean sameFile(URL other)
	toExternalForm() method, public String toExternalForm()
	toURI method, public URI toURI() throws URISyntaxException // Java
 1.5

	URLConnection class, URLConnections, JarURLConnection, URLConnections, URLConnections, Opening URLConnections, Opening URLConnections, Reading Data from a Server, Reading Data from a Server, Reading Data from a Server, Reading the Header, public int getHeaderFieldInt(String name, int
 default), Reading the Header, Reading the Header, public String getContentType(), public String getContentType(), public int getContentLength(), public int getContentLength(), public String getContentEncoding(), public long getDate(), public long getExpiration(), public long getLastModified(), public long getLastModified(), Retrieving Arbitrary Header Fields, public String getHeaderField(String name), Configuring the Connection, Configuring the Connection, Configuring the Connection, protected URL url, protected URL url, protected boolean connected, protected boolean allowUserInteraction, protected boolean doInput, protected boolean doOutput, protected boolean doOutput, protected boolean ifModifiedSince, protected boolean ifModifiedSince, protected boolean useCaches, Timeouts, Configuring the Client Request HTTP Header, Writing Data to a Server, Writing Data to a Server, Writing Data to a Server, Writing Data to a Server, Writing Data to a Server, Writing Data to a Server, Content Handlers, ContentHandlerFactory, Getting Content, ContentHandlerFactory, The Object Methods, Security Considerations for URLConnections, Guessing MIME Content Types, Guessing MIME Content Types, HEAD, Handling Server Responses, Streaming Mode, Caches, Caches, Caches, Caches, Caches, JarURLConnection, JarURLConnection, Protocol Handlers, What Is a Protocol Handler?
		API, URLConnections
	caching, Caches
	client request HTTP headers, configuring, Configuring the Client Request HTTP Header
	code examples, public String getContentType(), public int getContentLength(), public long getLastModified(), protected URL url, protected boolean ifModifiedSince, Writing Data to a Server, Writing Data to a Server, HEAD, Handling Server Responses, Caches, Caches, Caches, Caches
		CacheRequest class, Caches
	CacheResponse class, Caches
	CacheResponse subclass, Caches
	downloading and saving binaries from web
 sites, public int getContentLength()
	get time of URL's last change, HEAD
	in-memory ResponseCache, Caches
	posting a form, Writing Data to a Server, Writing Data to a Server
	printing URL of URLConnection to
 www.oreilly.com, protected URL url
	returning headers, public long getLastModified()
	set ifModifiedSince to 24 hours ago, protected boolean ifModifiedSince
	SourceViewer with response code and message, Handling Server Responses
	web pages, downloading with correct character
 sets, public String getContentType()

	connections, configuring, Configuring the Connection, Configuring the Connection, Configuring the Connection, protected URL url, protected boolean connected, protected boolean allowUserInteraction, protected boolean doInput, protected boolean doOutput, protected boolean doOutput, protected boolean ifModifiedSince, protected boolean useCaches, Timeouts
		allowUserInteraction instance field, protected boolean allowUserInteraction
	connected instance field, protected boolean connected
	doinput instance field, protected boolean doInput
	doOutput instance field, protected boolean doOutput
	getter and setter methods, Configuring the Connection
	ifModifiedSince instance field, protected boolean ifModifiedSince
	POST method versus GET for long URLs, protected boolean doOutput
	protected instance fields, Configuring the Connection
	timeouts, Timeouts
	url instance field, protected URL url
	useCaches instance field, protected boolean useCaches

	constructor, Opening URLConnections
	content handlers, Content Handlers, ContentHandlerFactory, Getting Content, ContentHandlerFactory
		ContentHandlerFactory, ContentHandlerFactory
	getContent() methods, Getting Content

	getContentEncoding() method, public String getContentEncoding()
	getContentLength() method, public int getContentLength()
	getContentType() method, public String getContentType()
	getDate() method, public long getDate()
	getExpiration() method, public long getExpiration()
	getHeaderField() method, public String getHeaderField(String name)
	getInputStream() method, Reading Data from a Server
	getLastModified() method, public long getLastModified()
	headers, reading, Reading the Header, public int getHeaderFieldInt(String name, int
 default)
	HTTP dependency, URLConnections
	HttpURLConnection subclass, Streaming Mode (see HttpURLConnection subclass)
	JarURLConnection class, JarURLConnection, JarURLConnection
	MIME content types, guessing, Guessing MIME Content Types, Guessing MIME Content Types
	object methods, The Object Methods
	opening connections, Opening URLConnections, Reading Data from a Server, Reading the Header, Reading the Header, Retrieving Arbitrary Header Fields
		header querying methods, Reading the Header
	reading headers, Reading the Header
	retrieving arbitrary header fields, Retrieving Arbitrary Header Fields
	servers, reading data from, Reading Data from a Server

	protocol handlers, usage in, Protocol Handlers
	security, Security Considerations for URLConnections
	servers, writing data to, Writing Data to a Server, Writing Data to a Server, Writing Data to a Server, Writing Data to a Server
		POST versus GET, Writing Data to a Server
	post() method, Writing Data to a Server

	URL class, compared to, Reading Data from a Server

	URLConnection object, public URLConnection openConnection() throws
 IOException
	URLDecoder class, URLDecoder
	URLEncoder class, URLEncoder, URLEncoder, URLEncoder
		encode() method, URLEncoder, URLEncoder
		Java 1.3 versus Java 1.4 versions, URLEncoder

	URLName class, The URLName Class, Parsing Methods, The Constructors, Parsing Methods, Parsing Methods
		constructors, The Constructors
	parsing methods, Parsing Methods, Parsing Methods

	URLs (Uniform Resource Locators), Comments and Questions, Comments and Questions, Comments and Questions, URLs, URLs, Relative URLs, Splitting a URL into Pieces, The URLEncoder and URLDecoder Classes, URLEncoder, What Is a Protocol Handler?, More Protocol Handler Examples and Techniques
		character encodinging, The URLEncoder and URLDecoder Classes
	distributed computing technologies, Comments and Questions
	EJB, Comments and Questions
	piece-by-piece encoding, URLEncoder
	relaitve URLs, Relative URLs
	relative, URLs
	schemes, What Is a Protocol Handler?, More Protocol Handler Examples and Techniques
		IANA list, More Protocol Handler Examples and Techniques

	structure, Splitting a URL into Pieces
	this book, Comments and Questions

	URLs and URIs, URLs and URIs, The JPasswordField Class, Constructing a URL from a string, Constructing relative URLs, public String getAuthority() // Java 1.3, public final InputStream openStream() throws
 IOException, public boolean equals(Object o), URLEncoder, URLEncoder, The Parts of the URI, The ProxySelector Class, Communicating with Server-Side Programs Through GET, The JPasswordField Class, The JPasswordField Class, The JPasswordField Class
		code examples, Constructing a URL from a string, Constructing relative URLs, public String getAuthority() // Java 1.3, public final InputStream openStream() throws
 IOException, public boolean equals(Object o), URLEncoder, URLEncoder, The Parts of the URI, The ProxySelector Class, Communicating with Server-Side Programs Through GET, The JPasswordField Class, The JPasswordField Class, The JPasswordField Class
		A URL relative to the web page, Constructing relative URLs
	comparing http://www.oreilly.com/ and
 http://www.ora.com/, public boolean equals(Object o)
	download a web page, public final InputStream openStream() throws
 IOException
	downloading password-protected web pages, The JPasswordField Class
	GUI authenticator, The JPasswordField Class, The JPasswordField Class
	Open Directory searches, Communicating with Server-Side Programs Through GET
	parts of a URI, The Parts of the URI
	parts of a URL, public String getAuthority() // Java 1.3
	protocol tester, Constructing a URL from a string
	ProxySelectors that remember connections, The ProxySelector Class
	QueryString class, URLEncoder
	-x-www-form-urlencoded
 strings, URLEncoder

	URLStreamHandler and URLStreamHandlerFactory, public static synchronized void
 setURLStreamHandlerFactory(URLStreamHandlerFactory factory)
	URLStreamHandler class, Protocol Handlers, What Is a Protocol Handler?, The URLStreamHandler Class, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5, The Constructor, Methods for Parsing URLs, protected int hashCode(URL u) // Java 1.3, A Method for Connecting, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5
		connecting method, A Method for Connecting, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5
	constructor, The Constructor
	new protocols and, What Is a Protocol Handler?
	protecting hash code, protected int hashCode(URL u) // Java 1.3
	protocol handlers, usage in, Protocol Handlers
	proxy server specification, protected URLConnection openConnection(URL u, Proxy p) throws
 IOException // Java 1.5
	URL parsing methods, Methods for Parsing URLs

	URLStreamHandlerFactory interface, What Is a Protocol Handler?, The URLStreamHandlerFactory Interface
		protocol handlers, usage in, What Is a Protocol Handler?

	URNs (Uniform Resource Names), URNs
	Usenet news and JavaMail API, The NewsAddress Class
	usernames, URLs

V
	view buffers, View Buffers

W
	W3C (World Wide Web Consortium), Internet Standards, W3C Recommendations, W3C Recommendations, W3C Recommendations
		levels of standards, W3C Recommendations
	recommendations, W3C Recommendations, W3C Recommendations

	Web browsers, JarURLConnection
		jar URLs and, JarURLConnection

	web concepts, Basic Web Concepts, Server-Side Programs, Server-Side Programs
		code example, form with name and email address input
 fields, Server-Side Programs

	web forms, Server-Side Programs
	Web server log file processing program, Processing Web Server Log Files, Processing Web Server Log Files, Processing Web Server Log Files, Processing Web Server Log Files, Processing Web Server Log Files, Processing Web Server Log Files
		LookupThread class, Processing Web Server Log Files
	processing in parallel, Processing Web Server Log Files
	processLogFile() method, Processing Web Server Log Files
	thread pool, Processing Web Server Log Files

	Whistle Blower, The JavaMail API
	Whois class, Whois
	Whois clients, Whois, Whois, Whois, Whois, Whois, Whois
		handles, Whois
	prefixes, Whois
	setting search parameters, Whois
	whois servers, output differences, Whois

	wildcard addresses, public boolean isAnyLocalAddress()
	working groups, IETF RFCs
	wrap methods (Buffer classes), Creating Buffers
	write() methods, Writing, Writing
		DatagramChannel class, Writing
	SocketChannel class, Writing

	writeEntry() method, Synchronized Blocks
	Writer class, Writers
	writers, Streams
	writeTo() methods, Writing the contents of the part, Multipart Messages and File Attachments
		Multipart class, Multipart Messages and File Attachments
	Part interface, Writing the contents of the part

X
	XML (Extensible Markup Language), HTML, SGML, and XML
	XML declarations, public final InputStream openStream() throws
 IOException

Z
	Zeroconf, What Is a Multicast Socket?
	ZipInputStream and ZipOutputStream classes, Compressing Streams

About the Author
Elliotte Rusty Harold is originally from New Orleans to which he returns periodically in search of a decent bowl of gumbo. However, he currently resides in the University Town Center neighborhood of Irvine with his wife Beth, dog Shayna, and cats Charm (named after the quark) and Marjorie (named after his mother-in-law). He's an adjunct professor of computer science at Polytechnic University where he teaches Java, XML, and object oriented programming. He's a frequent speaker at industry conferences including Software Development, Dr. Dobb's Architecure & Design World, SD Best Practices, Extreme Markup Languages, and too many user groups to count. His open source projects include the XOM Library for processing XML with Java and the Amateur media player.

Colophon
Our look is the result of reader comments, our own experimentation,
 and feedback from distribution channels. Distinctive covers complement our
 distinctive approach to technical topics, breathing personality and life
 into potentially dry subjects.
The animal on the cover of Java Network Programming, Third Edition,
 is a North American river otter (Lutra canadensis). These small carnivores
 are found in all major waterways of the United States and Canada, and in
 almost every habitat except the tundra and the hot, dry regions of the
 southwestern U.S. They weigh about 20 pounds and are approximately two and
 a half feet long, and females tend to be about a third smaller than males.
 Their diet consists mainly of aquatic animals like fish and frogs, but
 since they spend about two-thirds of their time on land, they also eat the
 occasional bird or rodent. Two layers of fur-a coarse outer coat and a
 thick, dense inner coat-protect a river otter from the cold, and, in fact,
 they seem to enjoy playing in snow and ice. When diving, a river otter's
 pulse rate slows to only 20 beats per minute from its normal 170,
 conserving oxygen and allowing the otter to stay underwater longer. These
 animals are sociable and domesticated easily, and in Europe, a related
 species was once trained to catch fish for people to eat.
Colleen Gorman was the production editor and copyeditor for Java
 Network Programming, Third Edition. Sada Preisch proofread the book. Sarah
 Sherman and Claire Cloutier provided quality control. Mary Agner provided
 production assistance. John Bickelhaupt wrote the index.
Emma Colby designed the cover of this book, based on a series design
 by Edie Freedman. The cover image is a 19th-century engraving from the
 Dover Pictorial Archive. Clay Fernald produced the cover layout with
 QuarkXPress 4.1 using Adobe's ITC Garamond font.
David Futato designed the interior layout. This book was converted
 by Julie Hawks to FrameMaker 5.5.6 with a format conversion tool created
 by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl
 and XML technologies. The text font is Linotype Birka; the heading font is
 Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
 Condensed. The illustrations that appear in the book were produced by
 Robert Romano and Jessamyn Read using Macromedia FreeHand MX and Adobe
 Photoshop CS. The tip and warning icons were drawn by Christopher Bing.
 This colophon was written by Leanne Soylemez.
The online edition of this book was created by the Safari production
 group (John Chodacki, Ken Douglass, and Ellie Cutler) using a set of
 Frame-to-XML conversion and cleanup tools written and maintained by Erik
 Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

OEBPS/httpatomoreillycomsourceoreillyimages81236.png
adtess. 1] [pen] [cpentte
== T T e
fere =
bos
» & Busness [newsmease bt |
L R o i ot g o
[S Doty oom pe s it moweam
= Poes = MedalCrss Updre: The et of e ... LA LES2 AW syiney seth
Lo ey s ey
. eyl uefeere SO el |
=3 - = O
::“"""‘""‘" ‘RoboDac: Ay robot has bean approved by the FOA...
i o e medpundiLblogspat.com2004_06 06 medpundt_archive. humi# 108635424064990615
[P ———————— q
R i ettt sttt i sy |
s e X

=

S, one 13700 |

OEBPS/httpatomoreillycomsourceoreillyimages81302.png
=} 1t's all lost and stoof - Mozilla

& woinoev ooy <] psean| B,

404 FILE NOT FOUND Ybiblio
Autl (oops!) The page you are looking for is no longer on ibiblio.org or has
been moved. You may search biblio for it below:

Gongle's Universty Search
Select which Ibiblio hosted site you wish to search:

[t =
You may vant o check out our collections index, grouped

by category, or you may start from our homepage. If none
of these work, you may mail the webmaster.

f
Ah cain't find th' page yer lookin' fer. ~ Southern American
‘Whloss, man, de page yuh lookin for ent herel - San

1t's not there, eh? — Canadian

Ho'okahua '@ole ke apuapu. ~ poor Hawaiian translation
Mwen pa ka jwen pa) ke wap cheche a.— Haitian Creole.

It no ded-deh - Jamaican Patois

1001001, 7H47 p4g3 dON'T eXiSTI yOu suxOrz. — 1357/h440r
Dude? — West Coast US'

Lie ma y dudalen - W2/sh

Nil an leethanach go bhfuil tu ag loraig anseo, ~ Jrish

Strona nie mote zostat znaleziona. ~ Polish

Stidan du sookkas e int haa meera.

South Helsinki Swedish

-ar

OEBPS/httpatomoreillycomsourceoreillyimages81294.png
SanFrandsco

San Frandsco

Losngeles

Houstoh

Stouis

Hewjork

OEBPS/httpatomoreillycomsourceoreillyimages81246.png
00 1

BEse) [#4vE GOOIEX

ot

R R R T T
B R L TP S

OEBPS/httpatomoreillycomsourceoreillyimages81274.png
Eonpamisson

ez S| [rrrssaspomeon
[Fogeame 3] [ooment
[reone 3 [

Sgnacr

OEBPS/httpatomoreillycomsourceoreillyimages81308.png
iress: [Tz N P e

1SRG (14, - /0123456769 5 <> ABCDEPGHITKLMNOPQRSTIVAIKEZ (V] bcdefah
"HERG ()4, /0123456703 ; =>7 ABCEPGIITKLMNOPQRSTUNTA[\]*_ sbcdefghs,
86" ()24, /0123856780 ; <=>2BABCOEFGHISKIMNOP GRSTIVUXYZ [\] abedetahss
§867 ()4, /O123456780: ; =>2ARBCIEPGRITRIMNORQRSTIVIEEZ [\] abedefghisk,
S67 (]2, /0123456780 : ; <=>20ABCOETGHITKIMIORQRSTOVUXE3)] sbedefghighel
1)+, /0123456769 ; =>7EABCDEFGHITKIMIORQRSTUVIRYE] sbedefghsskian
(154, /0123456789 ; =>18ABCOERGHITKIMIOR QRSTIVWEYZ(\ 1 sbecefghs gkl
(14, /0123456789 ; <=>7 AABCDEFGHITKLIMIOPRSTUVEYZ () 1°_ abcdefghsklsma
14, /D123455789: ;<=>2GABCOBEGHITKLIMIOR QRS TIVWEL2\] *_ abedetohs klrmop
4, /D123455780: ;> 2QRBCDEESHITFMIOR GRS TIVWIEZ \] abedefehtgklinop
/D123456780+ ; =>1QABCOBFGITKLIIORQRSTIVUEYE \] ahedefahu K ienopar
- /0123456763 ; <=>7ABCDRRGHITKLMICPQRSTIVWRY2(\1*_ abedghi sk mnopars
- /0123456789 ; <=>7 GABCDEFGHITKLNNOPGRSTIVURYZ(\1*_ absdletghi sk Lnmoparat.
/0123456789 ; <=>7 ABCDEFGITKLMNOPORSTIVURYZ [\ ahcdetgha 3k Lnnoparatu
/D123A58789: <=>) BABCOREGHITFLNOR GRSTUVUEIZ\ | abedetghisklimnoparatur
D123456753: ; > BABCDEPGRITKIMNCRQRSTUVIIRT2 (] *_ abedefghiskLuncpestuvn

e ——— j

OEBPS/httpatomoreillycomsourceoreillyimages81272.png
AUOC O NPIYEVEIQ pavn POBodakTuAog Huwg

OEBPS/httpatomoreillycomsourceoreillyimages81292.png
0 4 3 n LI u B N

v | 2| pperae daopanons
e s mein
e = s e
=
i
e 06551 P —
Whte
bt g Tt Pt 555 | et 06555

OEBPS/httpatomoreillycomsourceoreillyimages81280.png
yen Director

T 64 Yo o Comrtor th
2 7338 2 a3

[R Home Seach Newcare it

&
seauty

T Boknaks Am}mnﬁuw

(dIm(ol(z] open dirctory project

jout dmo | 243 URL | zedback |k | edtor login

Search | anoces

P Document Done

Ans Home Science
o Teteison, Mt Ead,Houses, Consumers Bilogy Pevcholos, hgsie
Business MNews ‘Shopping

Recreation Society
{otemes Sofwar, Hordwse, Travel, Faod, utdoors, o . People Bl et
Games Reference Sports
Video s, P Gonblng. Mo, Edbcion Lies. Baasbal s, Bashtbal
Health Regional World

[[e ew - e

S % o9 @ 2| 4

OEBPS/httpatomoreillycomsourceoreillyimages81320.png
send mail applet

28|

] @ % ® A & @

s vt .

[@ oot @ one st @ e @ren @ s

send mail applet

sy,

ek I an 11 Geeparats nesd o 52 000 bales ot hay to be delsverst

by pactmber 55 (fa have g des hov wch fine {1ying roaucr mave to eat
g | ey R e S
g | 1ppretiat - e = i

[Eoi]

FEeT)

OEBPS/httpatomoreillycomsourceoreillyimages81322.png
= ReadermMail
R & o Blswmiet
© Stz g 5/ 3

2 Bampie 133 of e atuerk Programning = Frovien

- Socaues e 713138 25l etk Fregrenaing

B o w200 2 4o tetuerk g Prozroninn

e 3 hecuest o el

 pierve canion 11,2599 24 cumstion | possinle)
G Seetraran 12/5/50 5 e e Socket Prosrenming

e jon = 1272750 Zhate

1 YIS

OEBPS/httpatomoreillycomsourceoreillyimages81232.png
Chapter |
Networkd

}

Gaprs
etmerkConcets

}

Gaptrs
G

+
Gapert
Sotams

i

Gaptrs
Tireads

}

Gapirs
LooingUpernet Addreses

v v ¥
G s s
Lot Sodetlordlos Remoteethd mocation

Gty Gt Gayer 10

URoredirs WML nwng | Sodetorsevrs

) [—1

Gaptr 6 Gt
Prtoc anders i

o
soartiodes onBocing 0
1} 3

Captr 17 capr 3
Contnt Handers UDP betagramsan

'

o
MatSokts

i

Capis o
Thelava MailAP1

OEBPS/httpatomoreillycomsourceoreillyimages81268.png
Fesetemesgeo e
ethon uatior 10
et

s mesge st
e e
sever st et
namg

)
Sueupasuean

. J

WEB CLIENT

OEBPS/httpatomoreillycomsourceoreillyimages81264.png
Sample Form - Mozila.

EARTE N N P Ty T P S
Plesse ener your nene: s
Plenze anter your s adiress: Fhasemadaacr]

sioma qury

e

OEBPS/httpatomoreillycomsourceoreillyimages251598.jpg
Developing Networked Applications

Java Network®
Programming

O'REILLY® Elliotte Rusty Harold

OEBPS/httpatomoreillycomsourceoreillyimages81310.png
$ Choose Viewing Option: Hou:

wset M= |
Fio € Von Go Soowmks Hep

- R)
darss: [P Tmetb unc soupavataorades b

Choose Viewing Option

Hotdava™ Brawser does not recogrize this fl type and doesn't know which viewer
applcation you would ke 10 use wi it

Please ehoase one of the follawing options

Save. | Viewin Hosava Browser | Viewin Appication

To tel HotJava Brawser how to handle this il type from this paint on, go to the

Content Viewer Preferences in the EGit men to set up a viewer definiion for this
g of fle.

OEBPS/httpatomoreillycomsourceoreillyimages81276.png
© O © Wwhich schemes does this browser support? - Mozilla

2.2 3 b o -

Which schemes does this
browser support?

OEBPS/httpatomoreillycomsourceoreillyimages81284.png
£ o Go Boomans Tooh smiow

.0 0,0 9 T =) <[]
HTML in Labels and other Swing Components

e e o W 37

5 & O @ ot st v =2

OEBPS/httpatomoreillycomsourceoreillyimages81290.png
ot creny com

Searcn or: Searn
o any Newark AL
Cresonhest * ame
Domain Organization Malbex
CewGueay Hana

Cas

| v eaawae | fina

Sarn At

furots memicret

ats Server verston 1.3

bonsin nanes 1 <he .cov snd .t constns can o b ragtsceres
ATh aany i erent. Conoeting regiSErars. Co to Nt/ rcernic.net

Dot vane: GREILLY.CON
Reiistrar: BULGECISTER, Lic

W1 Server: wets.oulkragister. con
Referral RL: heng:/we bnkregister.con
Nane Server: WS, CRETLLY.CON

Updated dace: 17-0ct-2002

Creation bate: 27 vy 197

Expirstion bete: 2-vay-a00¢

5> Last update of whois datasase: ed, 17 Do 2003 08:31:24 EST <

D

T

OEBPS/httpatomoreillycomsourceoreillyimages81238.png
i Hoarls |

Last T
Lastriang

Seor

shle 1 hosted by jspersondd

“YaroO!
GAMES

pis 52

% jsosozss E]

> mifreas s 5

d imes!
HEARTS Lol i

P4t
D “japersonss

e
o

=

i

o o

I~ kb 5 wildeats204rts 10

I~ onmytm [T [
s g s o
15050268 has joined the table. !m?:zﬂ::f :vwa\

el

= wldcals 20455 o oo e ave

SHeaszoiss_provel

[[Unsgnod Jave Appiet Window

OEBPS/httpatomoreillycomsourceoreillyimages81282.png
lambanr

K[}

OEBPS/httpatomoreillycomsourceoreillyimages81258.png
’
server Gt
Portao Porta122

The et nates e annecton s

Town ot e Tom whkhews
—_ ot oo b i —_
ponts Ports1 22
putstream) (inputtream)
Pontso N e him
Theserveracepsthe onnecion nputand (Output tream)

J e
" ‘onthe specifed ports.

OEBPS/httpatomoreillycomsourceoreillyimages81278.png
53 Applet Viewer- RelativeURLTes 151
et

itmetalab une sausvataq RelatsURL htl

it metalab une ecufavataq malinglsts iml

Aoplet sared

OEBPS/httpatomoreillycomsourceoreillyimages81318.png
55 5M TP Cliont (= E |
1P Server: Malclous et

. eharogmetaiab unc edy

fom santa@northoote o

SUIEEE aking a st and checking e

Hello, -

On a7 second check, I notice that you have repeatediy wissed your
dzadlsnes for the second edicion of Java Nevwork Programing this
fyear. Tn ay book that nakes you & bad boy. Expect cosl in your
stocking this year.

5. Claus
sancstnoztipote. org

SendMossage

OEBPS/httpatomoreillycomsourceoreillyimages81260.png
= Index of fexamples - Mozila

2.2 3 B G] s 3

-

Index of /examples

& parent Drvectery

Lsgsnartzsas.ael

[ETm—

3 13-8pr1399 14156
B Losnualidstats cmligz 1a-Har-2988 Seh G1P conpressa decumes

STy P

e 72083

OEBPS/httpatomoreillycomsourceoreillyimages81244.png
0o dittey: Guoling Qyun iformatinn Shosing

[seacn | ® vonvor | 4 ubrar | @ LimeWire

Fi Resuts | Cieiiotte | < ava Network Pragramming () | Hareld
B et e -
% Omelly Google Hacks, 1 Edrondo03 pat 2922 Cae/o..
% ook OReiky e Oesign Nutshel P 6432 Cab/D. 0
b o R R e s

e o P ot 1064 Camero
o oo i cro
ot ol p et o 174 i
i o A g 1 3310 Cae
Eone e ormng 2783 Caoe

SRR T N
= S ey S T

ssas TRl e s 257808 W Lo r
- e R 411870 Dot hovr %
<o seaen % Gty oraning T Lok - 55 vt s o

OEBPS/httpatomoreillycomsourceoreillyimages81266.png
Confirm.

(73 Tow ey tryin o view catain POSTORT I o eset e o, sy ction e
.57 form carried out Cuch as s search o online purchase) vill b repested. To resend the
it KK Oterise, lickCanel

OEBPS/httpatomoreillycomsourceoreillyimages81288.png
(55 Fibonac sequence

Fibonacci Sequence

OEBPS/httpatomoreillycomsourceoreillyimages81286.png

OEBPS/httpatomoreillycomsourceoreillyimages81234.png
=101

Fle Commands Visualzations

REEE R
e commands o Commans
Housekeering Move Nod HouseReeping | Status
@ D
0000 swnn
i
Housekoeping e
_loix
e commands =
Move Houseleeping Status E
@ -IBlx]

OEBPS/httpatomoreillycomsourceoreillyimages81270.png
Gohernputsream

I ompresed ncyped o

Buferedoputstream

1awonpresad encypet o

1awconpresad ecypet o

Network

OEBPS/httpatomoreillycomsourceoreillyimages81242.png

OEBPS/httpatomoreillycomsourceoreillyimages81314.png
loalpath __, CientProgam
SenverProgan

Suskan b

-
[r—— RemoteRfennce o

! { Tangpontae
Tovpan e =

OEBPS/httpatomoreillycomsourceoreillyimages81248.png
80

Security Warning

“Tnis application s requesting unrestricted access (o your local machine and
network

Do you want to nstall and run: FreeTTS Clock
Signed and distrbuted by: Sun Labs

Warning: Failed to verify the authenticity of this certficate. No assertions
can be made o the origin or valdity of the code.

It highiy recommended ot to install and run this code.

G5 (omain) (san)

OEBPS/httpatomoreillycomsourceoreillyimages81254.png
Logtatras

Gient serwr
It ipintae i
Taspar o Tasporlae Tarsaer
) slon) bt

neneLae () [— [

T
pysatpt

OEBPS/httpatomoreillycomsourceoreillyimages81326.png

OEBPS/httpatomoreillycomsourceoreillyimages81298.png

OEBPS/httpatomoreillycomsourceoreillyimages81256.png
Preferences

Capry Proxie:

Lo

Heper dpalc Configure Prosies 0 Aces the ner et

Sart arewsi

ot L O pirctomestion o e et

ot B ® P provy suntgurston

Drwrlost HITE Bresy: [unbarasysioa ot part: [5000
bcomposer ssLproy. port [0
b teviaro 1P Prosy. [oroey couss et part: 1000

b ot Hessemer

bicy Goptr Bresy. [pgher gracycout et
b Privey & Securi SICKS Motk cloots et Part: [1080
e O srsvs @ socesvs.
e o prosy for-
e Example: meiloorg, et2
HITE Mot O Autrtic prosy confguratan U
Seftare .

Offine . Dok Sp

OEBPS/httpatomoreillycomsourceoreillyimages81312.png.jpg

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages81304.png
P X

Q a

-[o0x]

B

P~

ehontent
sy
Solouwot
ey
achangol
stoyelor

Alls Anchislavskara
P ——
ansLle sloua
Saskar oan
Allextao-Fung chag

“peesz
peers
“peart
“pea/0
prerts
wpeasz
epea/iao
*praszt
+prass
+praszs
pars
“peaiss
pea/iss

2

a
2

14
12
5
1
1
5

15
55
3
o
20
04

s

P siac.com
Chnera.poly.edu

wacs. polyeds
WICHEL05-13.splicros
128.239.202.109
puffin.poly.edu

photen. poly.edu

i ——_—

OEBPS/httpatomoreillycomsourceoreillyimages81300.png
Ruthorization required for W3C-Member
at www.w3.org:

user1n: [ciharo

Password:

OEBPS/httpatomoreillycomsourceoreillyimages81296.png
World

soure

packetdes

OEBPS/httpatomoreillycomsourceoreillyimages81252.png
o 4 3 7 L u 3 N

v | 5 | gt pE——
e = e
ey ot s
i
pem—
=

OEBPS/httpatomoreillycomsourceoreillyimages81240.png
R4 jabber@ conference jabber.org B x
User Moderator Admin Owner
Subject: Jabbering Away.

on 200406187 15-50.23 ocrr. minchen
on 200406187 15 50,23 ocr
on 200406187 15-50:26 ocr sizhe oben
h changed sty lable
inaro: Hello, 'm Just starting to exlre Jabber
clnaro: for possicle use as an example n the next edition of Java
Nework Frogramming
clraro: fm using the JETI client
110 1 seems 1o work pretty well o Linu using JOK 1.42.02
clharo: What clents do people prefer?

elharo
Chatgot
mir
st

[4] % [B] (] [a]

L send | Soume ||

OEBPS/httpatomoreillycomsourceoreillyimages81324.png
ferraa

OEBPS/httpatomoreillycomsourceoreillyimages81262.png
03 Forbidden - Netscape.
Fie ot Von o Conmnco Hob

d J 3B A . B IS &
ok Rdowt Home _ Semch Newn Pt Soamy

BB

§ Seknaks Lo i o oo T

Forbidden

You don' have permission o aceess fleatures/1999/05/ o this erver.

= Document. Done

OEBPS/httpatomoreillycomsourceoreillyimages81316.png
4 S A 4 s w3 & F m
ook Feost o Seach Neows P Secuy
" Booknaiks) Locaton [t riowwp coudine rmnsccnpaathn 7]

RMI Applet
o anonegste meger [T cakse

B e S e L P e |
2813330845301 726628 440245007071 TAAST 20050260088 7377841003656
§2549700407418096167755041 4503450401 203291 421 J6670815246476207 6442
S03742056260375687905786231 407 SEBBSEAET 18601 0915554500507 202763107
790127545526 16536 4695569418731 1000403151087 3556953150963557107C
215013561 2106062115174 2437 2650011 22545500425350561 42601 44985
1037632261 1030476461 20404431 3060267522524550705354501 0227260057502
G2014565734326179227 575261 05022305361 00GA1 080T 56111135093553621€
05714080607 43800681271 3621 2268133554721 413507901 7530901 7130165757
4042275499201 393633601 03310201 459736452251 3901375511301 0009620495¢
0724027542454 3000496547 095900025920791 7601 5054565422557 25541622
23905757261790900010956237 571 BABBR0SS7528450463135393201 3640651421
70635530357 62509051696036520026857 1500694147051 1269511707 3653156

ety o
o -

49 @ 2

OEBPS/httpatomoreillycomsourceoreillyimages81250.png
ApplcatinLayer Iogialpath Apslcation ayer

Tonspor o R U09) Tarsorayr 1G000)

et e 7). et e)

phyictpath

OEBPS/httpatomoreillycomsourceoreillyimages81306.png
(D Tho poly.odu: Hot
Flo &% Vew Go oimats Hep
< P X

a

[
gl
x|

drass: [Fvime eion noly adus

Fri Oct 29 15:15:54 1999

Sl 2

OEBPS/httpatomoreillycomsourceoreillyimages81328.png
=] 1ogin.metalab.unc.edu (1) 212

hi, e B g, T

